Evaluation of Adjunctive Aminoglycoside Therapy Compared to β-Lactam Monotherapy in Critically Ill Patients with Gram-Negative Bloodstream Infections
Abstract
:1. Introduction
2. Results
2.1. Demographics
2.2. Outcomes
3. Discussion
4. Materials and Methods
4.1. Study Cohort and Setting
4.2. Enrollment Criteria
4.3. Outcomes
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diekema, D.J.; Hsueh, P.R.; Mendes, R.E.; Pfaller, M.A.; Rolston, K.V.; Sader, H.S.; Jones, R.N. The Microbiology of Bloodstream Infection: 20-Year Trends from the SENTRY Antimicrobial Surveillance Program. Antimicrob. Agents Chemother. 2019, 63, e00355-19. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Franceschini, E.; Meschiari, M.; Menozzi, M.; Zona, S.; Venturelli, C.; Digaetano, M.; Rogati, C.; Guaraldi, G.; Paul, M.; et al. Epidemiology and Risk Factors Associated with Mortality in Consecutive Patients with Bacterial Bloodstream Infection: Impact of MDR and XDR Bacteria. Open Forum Infect. Dis. 2020, 7, ofaa461. [Google Scholar] [CrossRef]
- CDC. COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022; U.S. Department of Health and Human Services; CDC: Atlanta, GA, USA, 2022. [Google Scholar] [CrossRef]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111, Erratum in Clin. Infect. Dis. 2017, 64, 1298. https://doi.org/10.1093/cid/ciw799; Erratum in Clin. Infect. Dis. 2017, 65, 1435. https://doi.org/10.1093/cid/cix587; Erratum in Clin. Infect. Dis. 2017, 65, 2161. https://doi.org/10.1093/cid/cix759. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Cosgrove, S.E.; Maragakis, L.L. Combination therapy for treatment of infections with gram-negative bacteria. Clin. Microbiol. Rev. 2012, 25, 450–470. [Google Scholar] [CrossRef]
- Giamerellou, H. Aminoglycosides plus beta-lactams against gram-negative organisms. Evaluation of in vitro synergy and chemical interactions. Am. J. Med. 1986, 80, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.; Bulitta, J.B.; Schneider, E.K.; Shin, B.S.; Velkov, T.; Nation, R.L.; Landersdorfer, C.B. Aminoglycoside Concentrations Required for Synergy with Carbapenems against Pseudomonas aeruginosa Determined via Mechanistic Studies and Modeling. Antimicrob. Agents Chemother. 2017, 61, e00722-17. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Benuri-Silbiger, I.; Soares-Weiser, K.; Leibovici, L. Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: Systematic review and meta-analysis of randomised trials. BMJ 2004, 328, 668. [Google Scholar] [CrossRef]
- Paul, M.; Lador, A.; Grozinsky-Glasberg, S.; Leibovici, L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst. Rev. 2014, 2014, CD003344. [Google Scholar] [CrossRef]
- Martinez, J.A.; Cobos-Trigueros, N.; Soriano, A.; Ortega, M.; Marco, F.; Pitart, C.; Sterzik, H.; Lopez, J.; Mensa, J. Influence of empiric therapy with a beta-lactam alone or combine with an aminoglycooside on prognosis of bacteremia due to gram-negative microorganisms. Antimicrob. Agents Chemother. 2010, 54, 3590–3596. [Google Scholar] [CrossRef]
- Hoepelman, I.M.; Rozenberg-Arska, M.; Verhoef, J. Comparison of once daily ceftriaxone with gentamicin plus cefuroxime for treatment of serious bacterial infections. Lancet 1988, 1, 1305–1309. [Google Scholar] [CrossRef] [PubMed]
- Dupont, H.; Carbon, C.; Carlet, J. Monotherapy with a broad-spectrum beta-lactam is as effective as its combination with an aminoglycoside in treatment of severe generalized peritonitis: A multicenter randomized controlled trial. Antimicrob. Agents Chemother. 2000, 44, 2028–2033. [Google Scholar] [CrossRef]
- Hallander, H.O.; Dornbusch, K.; Gezelius, L.; Jacobson, K.; Karlsson, I. Synergism between aminoglyocsides and cephalosporins with antipseudomonal activity: Interaction index and killing curve method. Antimicrob. Agents Chemother. 1982, 22, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Hooton, T.M.; Blair, A.D.; Turck, M.; Counts, G.W. Synergism at clinically attainable concentrations of aminoglycoside and beta-lactam antibiotics. Antimicrob. Agents Chemother. 1984, 26, 535–538. [Google Scholar] [CrossRef]
- Marcus, R.; Paul, M.; Elphick, H.; Leibovici, L. Clinical implications of β-lactam-aminoglycoside synergism: Systematic review of randomize trials. Int. J. Antimicrob. Agents 2011, 37, 491–503. [Google Scholar] [CrossRef]
- Fatsis-Kavalopoulos, N.; Roelofs, L.; Andersson, D.I. Potential risks of treating bacterial infections with a combination of β-lactam and aminoglycoside antibiotics: A systematic quantification of antibiotic interactions in E. coli blood stream infection isolates. EBioMedicine 2022, 78, 103979. [Google Scholar] [CrossRef]
- Bliziotis, I.A.; Samonis, G.; Vardakas, K.Z.; Chrysanthopoulou, S.; Falagas, M.E. Effect of Aminoglycoside and β-Lactam Combination Therapy versus β-lactam Monotherapy on the Emergence of Antimicrobial Resistance: A Meta-analysis of Randomized, Controlled Trials. Clin. Infect. Dis. 2005, 41, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, E.; Lode, H.; Grassi, C. Ceftazidime monotherapy vs ceftriaxone/tobramycin for serious hospital-acquired gram-negative infections. Clin. Infect. Dis. 1995, 20, 1217–1228. [Google Scholar] [CrossRef]
- Timsit, J.F.; Soubirou, J.F.; Voiriot, G.; Chemam, S.; Neuville, M.; Mourvillier, B.; Sonneville, R.; Mariotte, E.; Bouadma, L.; Wolff, M. Treatment of bloodstream infections in ICUs. BMC Infect. Dis. 2014, 14, 489. [Google Scholar] [CrossRef]
- Safdar, N.; Handelsman, J.; Maki, D.G. Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. Lancet Infect. Dis. 2004, 4, 519–527. [Google Scholar] [CrossRef]
- Tumbarello, M.; Sanguinetti, M.; Montouri, E.; Trecarichi, E.M.; Posteraro, B.; Fiori, B.; Citton, R.; D’Inzeo, T.; Fadda, G.; Cauda, R.; et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: Importance of inadequate initial antimicrobial treatment. Antimicrob. Agents Chemother. 2007, 51, 1987–1994. [Google Scholar] [CrossRef] [PubMed]
- Benetazzo, L.; Delannoy, P.Y.; Houard, M.; Wallet, F.; Lambiotte, F.; Vachée, A.; Batt, C.; Van Grunderbeeck, N.; Nseir, S.; Robineau, O.; et al. Combination Therapy with Aminoglycoside in Bacteremias due to ESBL-Producing Enterobacteriaceae in ICU. Antibiotics 2020, 9, 777. [Google Scholar] [CrossRef] [PubMed]
- Piccart, M.; Klastersky, J.; Meunier, F.; Lagast, H.; Van Laethem, Y.; Weerts, D. Single-drug versus combination empirical therapy for gram-negative bacillary infections in febrile cancer patients with and without granulocytopenia. Antimicrob. Agents Chemother. 1984, 26, 870–875. [Google Scholar] [CrossRef]
- D’Antoinio, D.; Fioritoni, G.; Iacone, A.; Dell’Isola, M.; Natale, D.; D’Arcangelo, L.; Betti, S.; Spadano, A.; Recchia, A.; Mastrangelo, C. Randomized comparison of ceftriaxone versus ceftriaxone plus amikacin for the empirical treatment of infections in patients with altered host defense: Microbiological and clinical evaluation. Chemotherapy 1992, 38, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Fainstein, V.; Bodey, G.P.; Elting, L.; Bolivar, R.; Keating, M.J.; McCredie, K.B.; Valdivieso, M. A randomized study of ceftazidime compared to ceftazidime and tobramycin for the treatment of infections in cancer patients. J. Antimicrob. Chemother. 1983, 12 (Suppl. A), 101–110. [Google Scholar] [CrossRef]
- Bailey, J.A.; Virgo, K.S.; DiPiro, J.T.; Nathens, A.B.; Sawyer, R.G.; Mazuski, J.E. Aminoglycosides for intra-abdominal infection: Equal to the challenge? Surg. Infect. 2002, 3, 315–335. [Google Scholar] [CrossRef]
- Falagas, M.E.; Matthaiou, D.K.; Karveli, E.A.; Peppas, G. Meta-analysis: Randomized controlled trials of clindamycin/aminoglycoside vs beta-lactam monotherapy for the treatment of intra-abdominal infections. Aliment. Pharmacol. Ther. 2007, 25, 537–556. [Google Scholar] [CrossRef]
- Vidal, L.; Gafter-Gvili, A.; Borok, S.; Fraser, A.; Leibovici, L.; Paul, M. Efficacy and safety of aminoglycoside monotherapy: Systematic review and meta-analysis of randomized controlled trials. J. Antimicrob. Chemother. 2007, 60, 247–257. [Google Scholar] [CrossRef]
- Phe, K.; Bowers, D.R.; Babic, J.T.; Tam, V.H. Outcomes of empiric aminoglycoside monotherapy for Pseudomonas aeruginosa bacteremia. Diagn. Microbiol. Infect. Dis. 2019, 93, 346–348. [Google Scholar] [CrossRef]
- Carcas, A.J.; Garcia-Satue, J.L.; Zapater, P.; Frias-Iniesta, J. Tobramycin penetration into epithelial lining fluid of patients with pneumonia. Clin. Pharmacol. Ther. 1999, 65, 245–250. [Google Scholar] [CrossRef]
- Thy, M.; Timsit, J.-F.; de Montmollin, E. Aminoglycosides for the Treatment of Severe Infection Due to Resistant Gram-Negative Pathogens. Antibiotics 2023, 12, 860. [Google Scholar] [CrossRef] [PubMed]
- Panidis, D.; Markantonis, S.L.; Boutzouka, E.; Karatzas, S.; Baltopoulos, G. Penetration of gentamicin into the alveolar lining fluid of critically ill patients with ventilator associated pneumonia. Chest 2005, 128, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Lipman, J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit. Care Med. 2009, 37, 840–851. [Google Scholar] [CrossRef] [PubMed]
- Duong, A.; Simard, C.; Wang, Y.L.; Williamson, D.; Marsot, A. Aminoglycosides in the Intensive Care Unit: What is New in Population PK Modeling? Antibiotics 2021, 10, 507. [Google Scholar] [CrossRef]
- CLSI. CLSI M100-ED35:2025 Performance Standards for Antimicrobial Susceptibility Testing, 35th ed.; CLSI Breakpoint Revisions Since 2010; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2025. [Google Scholar]
- Hu, Y.; Li, L.; Li, W.; Xu, H.; He, P.; Yan, X.; Dai, H. Combination antibiotic therapy versus monotherapy for Pseudomonas aeruginosa bacteraemia: A meta-analysis of retrospective and prospective studies. Int. J. Antimicrob. Agents 2013, 42, 492–496. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Tansarli, G.S.; Bliziotis, I.A.; Falagas, M.E. Β-Lactam plus aminoglycoside or fluoroquinolone combination versus β-lactam monotherapy for Pseudomonas aeruginosa infections: A meta-analysis. Int. J. Antimicrob. Agents 2013, 41, 301–310. [Google Scholar] [CrossRef]
- Tang, S.Y.; Zhang, S.W.; Wu, J.D.; Wu, F.; Zhang, J.; Dong, J.T.; Guo, P.; Zhang, D.L.; Yang, J.T.; Zhang, W.J. Comparison of mono- and combination antibiotic therapy for the treatment of Pseudomonas aeruginosa bacteraemia: A cumulative meta-analysis of cohort studies. Exp. Ther. Med. 2018, 15, 2418–2428. [Google Scholar] [CrossRef]
- Albasanz-Puig, A.; Gudiol, C.; Puerta-Alcalde, P.; Ayaz, C.M.; Machado, M.; Herrera, F.; Martín-Dávila, P.; Laporte-Amargós, J.; Cardozo, C.; Akova, M.; et al. Impact of the Inclusion of an Aminoglycoside to the Initial Empirical Antibiotic Therapy for Gram-Negative Bloodstream Infections in Hematological Neutropenic Patients: A Propensity-Matched Cohort Study (AMINOLACTAM Study). Antimicrob. Agents Chemother. 2021, 65, e0004521. [Google Scholar] [CrossRef]
- Kumar, A.; Safdar, N.; Kethireddy, S.; Chateau, D. A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: A meta-analytic/meta-regression study. Crit. Care Med. 2010, 38, 1651–1664. [Google Scholar] [CrossRef]
- Gutierrez-Gutierrez, B.; Salamanca, E.; de Cueto, M.; Hsueh, P.R.; Viale, P.; Paño-Pardo, J.R.; Venditti, M.; Tumbarello, M.; Daikos, G.; Cantón, R.; et al. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): A retrospective cohort study. Lancet Infect. Dis. 2017, 17, 726–734. [Google Scholar] [CrossRef]
- Sjövall, F.; Perner, A.; Moller, M.H. Empirical mono- versus combination antibiotic therapy in adult intensive care patients with severe sepsis—A systematic review with meta-analysis and trial sequential analysis. J. Infect. 2017, 74, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Ong, D.S.Y.; Frencken, J.S.; Klouwenberg, P.M.C.K.; Juffermans, N.; van der Poll, T.; Bonten, M.J.M.; Cremer, O.L.; MARS Consortium. Short-Course Adjunctive Gentamicin as Empirical Therapy in Patients with Severe Sepsis and Septic Shock: A Prospective Observational Cohort Study. Clin. Infect. Dis. 2017, 64, 1731–1736. [Google Scholar] [CrossRef]
- Baltas, I.; Stockdale, T.; Tausan, M. Impact of antibiotics timing on mortality from Gram-negative bacteraemia in an English district general hospital: The importance of getting it right every time. J. Antimicrob. Chemother. 2021, 76, 813–819. [Google Scholar] [CrossRef]
- Kang, C.I.; Kim, S.H.; Park, W.B.; Lee, K.D.; Kim, H.B.; Kim, E.C.; Oh, M.D.; Choe, K.W. Bloodstream infections caused by antibiotic-resistant gram-negative bacilli: Risk factors for mortality and impact of inappropriate initial antimicrobial therapy on outcome. Antimicrob. Agents Chemother. 2005, 49, 760–767. [Google Scholar] [CrossRef]
- Micek, S.T.; Lloyd, A.E.; Ritchie, D.J.; Reichley, R.M.; Fraser, V.J.; Kollef, M.H. Pseudomoas aeruginosa bloodstream infection: Importance of appropriate initial antimicrobial treatment. Antimicrob. Agents Chemother. 2005, 49, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Marschall, J.; Agniel, D.; Fraser, V.J.; Doherty, J.; Warren, D.K. Gram-negative bacteraemia in non-ICU patients: Factors associated with inadequate antibiotic therapy and impact on outcomes. J. Antimicrob. Chemother. 2008, 61, 1376–1383. [Google Scholar] [CrossRef]
- Fitzpatrick, J.M.; Biswas, J.S.; Edgeworth, J.D.; Islam, J.; Jenkins, N.; Judge, R.; Lavery, A.J.; Melzer, M.; Morris-Jones, S.; Nsutebu, E.F.; et al. Gram-negative bacteraemia; a multi-centre prospective evaluation of empiric antibiotic therapy and outcome in English acute hospitals. Clin. Microbiol. Infect. 2016, 22, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Thom, K.A.; Schweizer, M.L.; Osih, R.B.; McGregor, J.C.; Furuno, J.P.; Perencevich, E.N.; Harris, A.D. Impact of empiric antimicrobial therapy on outcomes in patients with Escherichia coli and Klebsiella pneumoniae bacteremia: A cohort study. BMC Infect. Dis. 2008, 8, 116. [Google Scholar] [CrossRef]
- Lodise, T.P.; Patel, N.; Kwa, A.; Graves, J.; Furuno, J.P.; Graffunder, E.; Lomaestro, B.; McGregor, J.C. Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: Impact of delayed appropriate antibiotic selection. Antimicrob. Agents Chemother. 2007, 51, 3510–3515. [Google Scholar] [CrossRef]
- Retamar, P.; Portillo, M.M.; Lopez-Prieto, M.D.; Rodríguez-López, F.; de Cueto, M.; García, M.V.; Gómez, M.J.; Del Arco, A.; Muñoz, A.; Sánchez-Porto, A.; et al. Impact of inadequate empirical therapy on the mortality of patients with bloodstream infections: A propensity score-based analysis. Antimicrob. Agents Chemother. 2021, 56, 472–478. [Google Scholar] [CrossRef]
- Lodise, T.P.; Zhao, Q.; Fahrbach, K.; Gillard, P.J.; Martin, A. A systematic review of the association between delayed appropriate therapy and mortality among patients hospitalized with infections due to Klebsiella pneumoniae or Escherichia coli: How long is too long? BMC Infect. Dis. 2018, 18, 625. [Google Scholar] [CrossRef] [PubMed]
- Peralta, G.; Sanchez, M.B.; Garrido, J.C.; De Benito, I.; Cano, M.E.; Martínez-Martínez, L.; Roiz, M.P. Impact of antibiotic resistance and of adequate empirical antibiotic treatment in the prognosis of patients with Escherichia coli bacteraemia. J. Antimicrob. Chemother. 2007, 60, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Perez, K.K.; Olsen, R.J.; Musick, W.L.; Cernoch, P.L.; Davis, J.R.; Peterson, L.E.; Musser, J.M. Integrating rapid diagnostics and antimicrobial stewardship improves outcomes in patients with antibiotic-resistant Gram-negative bacteremia. J. Infect. 2014, 69, 216–225. [Google Scholar] [CrossRef] [PubMed]
Variable | Unmatched Cohort | Matched Cohort | ||||
---|---|---|---|---|---|---|
Monotherapy (362) | Aminoglycoside (77) | p-Value | Monotherapy (136) | Aminoglycoside (73) | SMD | |
Age (years), mean (SD) | 60.46 (15.2) | 60.75 (15.0) | 0.880 | 61.0 (13.6) | 60.8 (15.1) | 0.014 |
Weight (kg), mean (SD) | 83.4 (26.6) | 83.2 (22.9) | 0.954 | 83.0 (26.9) | 82.0 (22.4) | 0.037 |
Male, n (%) | 201 (55.5) | 41 (53.2) | 0.811 | 69 (50.7) | 39 (53.4) | 0.054 |
CCI, mean (SD) | 4.9 (3.09) | 5.96 (3.37) | 0.011 | 5.7 (3.2) | 5.9 (3.4) | 0.062 |
Liver disease, n (%) | 42 (11.6) | 14 (18.2) | 0.167 | 20 (14.7) | 13 (17.8) | 0.084 |
Cancer, n (%) | 75 (20.7) | 27 (35.1) | 0.011 | 42 (30.9) | 24 (32.9) | 0.043 |
Pitt, mean (SD) | 3.6 (3.0) | 4.66 (3.08) | 0.004 | 4.3 (3.42) | 4.6 (3.1) | 0.038 |
Vasopressor use, n (%) | 223 (61.6) | 63 (81.8) | 0.001 | 111 (81.6) | 59 (80.8) | 0.020 |
Pathogen information | ||||||
Escherichia coli, n (%) | 142 (39.2) | 27 (35.1) | 0.581 | 48 (35.3) | 24 (32.9) | 0.051 |
Klebsiella pneumoniae, n (%) | 74 (20.4) | 19 (24.7) | 0.502 | 30 (22.1) | 18 (24.7) | 0.061 |
Pseudomonas aeruginosa, n (%) | 25 (6.9) | 15 (19.5) | 0.001 | 13 (9.6) | 15 (20.5) | 0.311 |
Proteus mirabilis, n (%) | 34 (9.4) | 3 (3.9) | 0.177 | 13 (9.6) | 3 (4.1) | 0.217 |
Serratia marcescens, n (%) | 25 (6.9) | 6 (7.8) | 0.976 | 11 (8.1) | 6 (8.2) | 0.005 |
Enterobacter cloacae, n (%) | 20 (5.5) | 3 (3.9) | 0.764 | 7 (5.1) | 3 (4.1) | 0.049 |
Acinetobacter spp., n (%) | 9 (2.5) | 2 (2.6) | 1.000 | 0 (0.0) | 2 (2.7) | 0.237 |
Other Enterobacterales, n (%) | 32 (8.8) | 2 (2.6) | 0.104 | 14 (10.3) | 2 (2.7) | 0.310 |
Other NLF GNR, n (%) | 1 (0.3) | 0 (0.0) | 1.000 | 0 (0.0) | 0 (0.0) | - |
Polymicrobial, n (%) | 5 (1.4) | 1 (1.3) | 1.000 | 4 (2.9) | 1 (1.4) | 0.108 |
MDR organism, n (%) | 54 (14.9) | 22 (28.6) | 0.007 | 29 (21.3) | 19 (26.0) | 0.111 |
Source of infection | ||||||
Urine, n (%) | 151 (41.7) | 25 (32.5) | 0.169 | 48 (35.3) | 24 (32.9) | 0.051 |
Respiratory, n (%) | 50 (13.8) | 15 (19.5) | 0.273 | 27 (19.9) | 15 (20.5) | 0.017 |
Intra-abdominal, n (%) | 62 (17.1) | 18 (23.4) | 0.260 | 19 (14.0) | 16 (21.9) | 0.208 |
Primary BSI, n (%) | 54 (14.9) | 7 (9.1) | 0.246 | 26 (19.1) | 7 (9.6) | 0.274 |
Central venous catheter, n (%) | 13 (3.6) | 3 (3.9) | 1.000 | 3 (2.2) | 3 (4.1) | 0.109 |
SSTI, n (%) | 27 (7.5) | 8 (10.4) | 0.528 | 12 (8.8) | 7 (9.6) | 0.026 |
Endovascular, n (%) | 4 (1.1) | 1 (1.3) | 1.000 | 1 (0.7) | 1 (1.4) | 0.062 |
Bone and Joint, n (%) | 1 (0.3) | 0 (0.0) | 1.000 | 0 (0.0) | 0 (0.0) | - |
Active therapy within 24 h, n (%) | 313 (86.5) | 62 (80.5) | 0.161 | 117 (86) | 61 (82.4) | 0.099 |
Source control (yes or N/A), n (%) | 74 (49.7) | 20 (69.0) | 0.089 | 27 (43.5) | 20 (71.4) | 0.588 |
Time to source control, mean (SD) | 5.2 (7.06) | 3.3 (3.0) | 0.226 | 4.9 (8.2) | 3.3 (3.0) | 0.263 |
Variable | |
---|---|
Aminoglycoside used | |
Tobramycin, n (%) | 7 (9.1) |
Gentamicin, n (%) | 70 (90.9) |
Weight-based dose, mean (SD) | 4.2 (1.6) |
Time from index to first dose, median (IQR) | 18.1 (9.2–23.9) |
Outcome | Unmatched Cohort | Matched Cohort | ||||
---|---|---|---|---|---|---|
Monotherapy (362) | Aminoglycoside (77) | p-Value | Monotherapy (136) | Aminoglycoside (73) | p-Value | |
15-Day Mortality, n (%) | 46 (12.7) | 16 (20.8) | 0.096 | 23 (16.9) | 15 (20.5) | 0.644 |
30-Day Mortality, n (%) | 64 (17.7) | 19 (24.7) | 0.206 | 30 (22.1) | 18 (24.7) | 0.800 |
ICU-Free Survival Days | 19 (11.6) | 17 (12.1) | 0.275 | 16 (12.1) | 17 (12.2) | 0.813 |
60-Day Relapse *, n (%) | 5 (1.8) | 5 (8.8) | 0.017 | 3 (3.3) | 4 (7.4) | 0.465 |
30-Day Readmission *, n (%) | 65 (22.2) | 12 (21.1) | 0.989 | 24 (23.3) | 10 (18.5) | 0.626 |
New Resistance *, n (%) | 19 (6.5) | 5 (8.8) | 0.730 | 12 (11.5) | 5 (9.3) | 0.867 |
AKI, n (%) | 93 (25.7) | 28 (36.4) | 0.078 | 36 (26.5) | 27 (37.0) | 0.155 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eudy, J.; Chase, A.M.; Sharma, D.; Sulaiman, Z.I.; Anderson, A.; Huggett, A.; Gloe, L.; Anderson, D.T. Evaluation of Adjunctive Aminoglycoside Therapy Compared to β-Lactam Monotherapy in Critically Ill Patients with Gram-Negative Bloodstream Infections. Antibiotics 2025, 14, 497. https://doi.org/10.3390/antibiotics14050497
Eudy J, Chase AM, Sharma D, Sulaiman ZI, Anderson A, Huggett A, Gloe L, Anderson DT. Evaluation of Adjunctive Aminoglycoside Therapy Compared to β-Lactam Monotherapy in Critically Ill Patients with Gram-Negative Bloodstream Infections. Antibiotics. 2025; 14(5):497. https://doi.org/10.3390/antibiotics14050497
Chicago/Turabian StyleEudy, Joshua, Aaron M. Chase, Divisha Sharma, Zoheb Irshad Sulaiman, August Anderson, Ashley Huggett, Lucy Gloe, and Daniel T. Anderson. 2025. "Evaluation of Adjunctive Aminoglycoside Therapy Compared to β-Lactam Monotherapy in Critically Ill Patients with Gram-Negative Bloodstream Infections" Antibiotics 14, no. 5: 497. https://doi.org/10.3390/antibiotics14050497
APA StyleEudy, J., Chase, A. M., Sharma, D., Sulaiman, Z. I., Anderson, A., Huggett, A., Gloe, L., & Anderson, D. T. (2025). Evaluation of Adjunctive Aminoglycoside Therapy Compared to β-Lactam Monotherapy in Critically Ill Patients with Gram-Negative Bloodstream Infections. Antibiotics, 14(5), 497. https://doi.org/10.3390/antibiotics14050497