Next Article in Journal
Correction: Rame Hau et al. The Prevalence and Risk Factors Associated with the Presence of Antibiotic Residues in Milk from Peri-Urban Dairy Cattle Farms in Kathmandu, Nepal. Antibiotics 2025, 14, 98
Previous Article in Journal
Use of Haloxylon scoparium Against Multidrug-Resistant Bacteria from Urinary Tract Infections
Previous Article in Special Issue
Azole Antifungal Consumption in Community Pharmacy Sales in Mainland Portugal: Trend Analysis from 2014 to 2023
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Terbinafine Resistance in Trichophyton rubrum and Trichophyton indotineae: A Literature Review

1
Division of Dermatology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
2
Mediprobe Research Inc., London, ON N5X 2P1, Canada
*
Author to whom correspondence should be addressed.
Antibiotics 2025, 14(5), 472; https://doi.org/10.3390/antibiotics14050472
Submission received: 17 April 2025 / Revised: 2 May 2025 / Accepted: 3 May 2025 / Published: 7 May 2025
(This article belongs to the Special Issue The Worldwide Problem of Antifungal Resistance: From Basic to Clinic)

Abstract

:
Background/Objectives: Terbinafine has been the gold standard for the management of superficial fungal infections. The etiological agent generally is Trichophyton rubrum (T. rubrum); however, there has been increased reporting of a new terbinafine-resistant strain of the T. mentagrophytes complex (T. mentagrophytes ITS genotype VIII otherwise known as T. indotineae). Here, we review the epidemiology, clinical features, diagnosis, and treatment of T. rubrum and T. indotineae infections. Methods: We conducted a systematic literature search using PubMed, Embase (Ovid), and Web of Science, resulting in 83 qualified studies with data summarized for clinical features, antifungal susceptibility, and terbinafine resistance mechanisms and mutations. Results: Dermatophytosis is most commonly caused by T. rubrum; however, in certain parts of the world, especially in the Indian subcontinent, T. indotineae infections have been reported more frequently. The majority of T. rubrum isolates remain susceptible to terbinafine (over 60% of isolates show MIC50 and MIC90 < 0.5 µg/mL). In contrast, for T. indotineae, 30% of isolates exhibit MIC50 ≥ 0.5 µg/mL and 80% exhibit MIC90 ≥ 0.5 µg/mL. Frequently detected squalene epoxidase (SQLE) mutations in T. rubrum are Phe397Leu/Ile (41.6%) and Leu393Phe (20.8%); in T. indotineae, these include Phe397Leu (33.0%) and Ala448Thr (24.5%). Other potential terbinafine resistance mechanisms in T. rubrum and T. indotineae are discussed. Conclusions: T. rubrum generally remain susceptible in vitro to terbinafine in contrast to T. indotineae. The essential components of an effective antifungal stewardship emphasize accurate clinical and laboratory diagnosis, susceptibility testing, and appropriate antifungal therapy selection with a multidisciplinary approach.

1. Introduction

Due to high infection rates, the global cost of treating dermatophytes is approximately USD 500 million each year [1]. In particular, it is estimated that in the United States approximately 22.4 million antifungal prescriptions are filled annually, which is enough to provide one prescription for every 15 people [2]. Additionally, reports have shown that dermatophyte infections represent a major portion of outpatient consultations for fungal diseases, with a notable prevalence of self-diagnosis (61.4%) and self-treatment (55.5%) among patients [2,3].
Terbinafine was first approved by the US FDA in 1992 and was the gold standard antifungal therapy [4,5,6]. Initially, terbinafine resistance was rarely reported, with the first confirmed case documented in the early 2000s [7,8,9]. The past decade has seen a significant rise in terbinafine resistance, coinciding with an increase in treatment failures and infection relapses [9,10].
Antifungal resistance can drive higher infection rates and contribute to the global spread of fungal diseases [11]. Clinical terbinafine-resistant dermatophyte isolates, specifically among anthropophilic clonal “offshoots” of Trichophyton mentagrophytes (Trichophyton indotineae), had an epicenter in the Indian subcontinent and have since been documented across Europe, Asia, the Americas, Australia, and Africa [12,13,14,15,16,17]. Infections acquired outside of South Asia have also been reported recently, reflecting an evolving outbreak scenario [18].

2. Clinical Features

Trichophyton rubrum (T. rubrum), the most prevalent dermatophyte and the leading cause of dermatophytosis globally [19], was also recently associated with emerging terbinafine resistance [20]. T. indotineae, originating in South Asia and spreading worldwide, with reported cases in Europe, the United States, and Canada, was recently identified with documented resistance to antifungals [21].
T. rubrum may manifest with dry, annular scaly plaques, affecting the feet (tinea pedis), corporis, cruris, and nails (onychomycosis), with relatively mild and slowly progressing lesions [22,23]. T. indotineae affects primarily the groin (tinea cruris), body (tinea corporis), and face (tinea faciei). T. indotineae can result in lesions that are intensely pruritic with a burning sensation and a high degree of inflammation. Other presentations include erythematous plaques and lesions with multiple concentric rings [21]. The eruption may become chronic and recalcitrant to treatment. Both species are contagious via human-to-human transmission; notably, there has been an epidemiological shift in the dominant dermatophyte species in India, with T. indotineae surpassing T. rubrum in prevalence (Table 1) [24].

3. Terbinafine Susceptibility

3.1. Literature Search

A systematic literature search (Figure 1) was conducted in January 2025 to identify and analyze recent investigations (2024–present) of in vitro terbinafine resistance in T. rubrum and T. indotineae. Literature searches were performed in three electronic databases: PubMed, Embase (Ovid), and Web of Science, the keywords and subject headings included “dermatophyte”, “Trichophyton”, and “terbinafine”. All retrieved records (n = 1122) were imported into Covidence for deduplication and screening. Reviews, non-English articles, and articles without full-text availability were excluded. Data extraction, conducted independently by authors A.L., S., and H.N., included study characteristics (authors, publication year, location), patient demographics, terbinafine susceptibility, resistance mechanisms, and treatment regimens, with discrepancies resolved through discussion with author A.K.G.

3.2. In Vitro Terbinafine Susceptibility

Antifungal susceptibility testing (AFST) can provide insights into the terbinafine resistance profiles of T. rubrum and T. indotineae, thereby helping to guide treatment strategies and help in monitoring resistance trends. AFST results were extracted from 45 studies (Figure 2) [25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69]. A cut-off was based on a North American study in 2023 that utilized a proposed resistance cut-off of minimum inhibitory concentration (MIC) ≥ 0.5 μg/mL [70]. For T. rubrum, a lesser degree of in vitro terbinafine resistance was observed. Clinical and Laboratory Standards Institute (CLSI) data revealed that over 80% of isolates had MIC50 values below 0.5 µg/mL. Similarly, per the European Committee on Antimicrobial Susceptibility Testing (EUCAST), more than 70% of isolates exhibited MIC50 values less than 0.5 µg/mL. When examining MIC90 results per CLSI, about 30% of T. rubrum isolates exhibited high MICs ≥ 0.5 µg/mL, while over 60% were below 0.5 µg/mL.
T. indotineae isolates exhibited a bimodal MIC50 distribution per the CLSI protocol, with approximately 30% of isolates showing MIC50 values greater than 0.5 µg/mL, while over 60% of isolates have MIC50 values below 0.5 µg/mL (Figure 2). The MIC50 distribution per EUCAST methodology reflected a similar bimodal pattern. However, when applying a different visual endpoint, more than 80% of T. indotineae isolates demonstrated MIC90 values equal to or greater than 0.5 µg/mL per CLSI. These findings indicate the need to standardize endpoint reading for growth inhibition to allow comparability between studies. In the absence of an established clinical breakpoint, AFST cannot reliably inform therapeutic decision making. Nonetheless, a resistance potential is clearly demonstrated by these in vitro observations.

3.3. Mechanisms of Resistance

Antifungal resistance arises from innate resistance and adaptive changes due to prolonged antifungal pressure (Figure 3) [71]. Terbinafine works by disrupting the early stages of ergosterol biosynthesis by inhibiting the squalene epoxidase enzyme (SQLE) and preventing squalene oxidation [71]. This leads to the toxic accumulation of squalene and the depletion of ergosterol in the fungal cell membrane, disrupting membrane integrity and function, ultimately causing cell death [10,71,72]. Terbinafine resistance can be acquired in dermatophytes, which primarily stems from single nucleotide variations (SNVs) in the SQLE gene that alter enzyme conformation, reducing drug binding [10,73,74]. However, varying MIC values in isolates with identical SQLE mutations suggest additional mechanisms, including efflux pump overexpression, naphthalene degradation pathway activation, biofilm formation, and heat shock response upregulation [74,75].

3.3.1. Single Nucleotide Variations (SNVs) in the Gene Encoding Squalene Epoxidase (SQLE)

Amino acid substitutions caused by SNVs in the SQLE gene result in structural changes that reduce terbinafine binding without disrupting the cell’s ergosterol biosynthesis pathway, resulting in resistance [75].
From our search, for T. rubrum isolates, Phe397Leu and Phe397Ile together comprise the most prevalent mutation (41.6% of isolates), followed by Leu393Phe (20.8%) and Ser395Pro (16.7%). Phe397Ile + Phe415Ser (8.3%) and Leu393Ser + Phe397Leu (4.2%) combination mutations are less common [29,36,37,45,51,61].
In T. indotineae, Phe397Leu emerges as the most dominant (in 33.0% of isolates), followed by Ala448Thr (24.5%) and Phe397Leu + Ala448Thr combination mutation (18.9%). Leu393Ser occurs in 13.7% of isolates, followed by Ser436Ala (2.4%) [28,29,30,31,34,37,39,42,44,50,52,55,62,66,76,77,78,79,80]. His440Tyr was uniquely detected in T. rubrum, while Ala448Thr was unique to T. indotineae (Figure 4).
SNVs such as Phe397Leu, Leu393Phe, Leu393Ser, Phe415Ser, His440Tyr, and Phe484Tyr have been identified in terbinafine-resistant Trichophyton isolates [73,81,82,83]. The Ala488 position, also detected in terbinafine-susceptible Trichophyton isolates, is not directly adjacent to the terbinafine binding pocket, suggesting that Ala488 substitutions may not be crucial in terbinafine resistance development [30,34,81,83,84]. However, Ala448 has been associated with interfering ergosterol synthesis, potentially leading to decreased susceptibility to azole antifungals [83,85]. The single Ala448Thr substitution has been documented to be not a primary driver of terbinafine resistance on its own. While initial findings suggested a potential link to terbinafine resistance, subsequent evidence indicates that this mutation is found in both terbinafine-resistant and terbinafine-susceptible isolates [83]. Notably, this mutation is located on the surface of the SQLE protein, distant from the terbinafine binding pocket, which aligns with its lack of direct impact on terbinafine susceptibility [34]. In particular, cases of terbinafine resistance often involve both Ala448Thr and Phe397Leu mutations [83].
However, the presence of a single Ala448Thr mutation has been associated with increased MICs for azole antifungals [34,85,86]. In particular, De Paepe et al. (2024) identified five T. indotineae isolates: two with MIC50 values of 0.25 µg/mL for itraconazole, two with MIC50 values of 64 µg/mL for fluconazole, and one with MIC50 values of 0.25 µg/mL for voriconazole [31]. All these isolates contained the single Ala448Thr substitution [31].
The His440 position is reported to be closer to the binding pocket of terbinafine on the SQLE enzyme, and mutations have been associated with resistance in only some clinical isolates [82,83,87]. Single His440 substitutions have been associated with low-level terbinafine resistance in Trichophyton isolates. In one study, His440Tyr was found in T. rubrum isolates exhibiting low resistance [82].

3.3.2. Drug Efflux Channels

Efflux membrane transporters, such as those belonging to the ATP binding cassette (ABC) superfamily or major facilitator superfamily (MFS), expel antifungal drugs from the cell [88,89]. Mutations in transcription factors can shift efflux pump expression from drug-inducible to constant, driving drug resistance [88,90,91].
Resistance is often linked to overexpression ABC transporter proteins, including pleiotropic drug resistance (PDR1) and multidrug resistance (MDR1, MDR2, and MDR4) [88,89,90]. Terbinafine exposure increases ABC-B transporter expression in Trichophyton strains, further supporting the role of efflux transporters in resistance [88]. Microsporum canis and T. mentagrophytes isolates have shown higher expression of PDR1, MDR1, MDR2, and MDR4 [28,92]. Disrupting MDR2 in a resistant T. rubrum strain enhances terbinafine susceptibility, underscoring the efflux transporter’s role in resistance [93]. Notably, some terbinafine-resistant isolates lacking SQLE mutations exhibit ABC transporter overexpression, suggesting efflux pumps alone can confer resistance [75,89,94].

3.3.3. Biofilms

Dermatophyte biofilms are structured fungal communities embedded in an extracellular matrix, enabling adhesion to skin, nails, and medical devices [21,75]. Biofilms contribute to antifungal resistance, limiting drug penetration, forming structural barriers, and upregulating efflux pump genes [75,95]. While studied extensively in Candida, their role in dermatophyte resistance remains less explored [96]. T. rubrum, M. canis, and T. mentagrophytes can form biofilms in vitro exhibiting greater terbinafine resistance than planktonic cells [97,98,99,100]. Studies indicate that dermatophyte biofilms often require higher antifungal concentrations for effective inhibition or eradication [95].

3.3.4. Heat Shock Proteins

Heat shock proteins (HSPs) act as molecular chaperones, produced in response to cellular stress to support cell survival and enhance fungal virulence by aiding host adaptation, promoting biofilm formation, and stabilizing proteins under stress, contributing to antifungal resistance [75,92,101]. Following terbinafine exposure, dermatophytes show increased expression of specific HSP genes, highlighting their role in the cellular stress response. Notably, in T. rubrum, terbinafine exposure upregulates multiple HSP genes, including Hsp20, Hsp60, Hsp70, and Hsp90, with terbinafine-resistant T. indotineae isolates showing higher baseline Hsp60 and Hsp90 expression levels [20,28,101].
Hsp90 aids antifungal resistance by stabilizing calcineurin, which activates pathways necessary for resistance [102,103,104]. Crz1, a key downstream effector, links calcineurin activation to azole resistance in Candida albicans (C. albicans) [91,92,105]. Dephosphorylated Crz1 regulates genes involved in signaling, ion transport, cell wall integrity, and vesicular trafficking [91,103,104]. Deleting the CNA-1 gene in C. albicans increases terbinafine sensitivity [103]. While the interactions between HSPs, calcineurin, and terbinafine are not fully understood, calcineurin likely induces genetic or cellular changes that help fungi adapt to stress [103,104,106]. Though much research has focused on C. albicans, the calcineurin pathway is conserved in virulence and pathogenicity [104]. Since calcineurin regulates ergosterol biosynthesis, antifungals like terbinafine and azoles may share similar resistance mechanisms involving this pathway.

3.3.5. Naphthalene Degradation

The salA gene, which encodes salicylate 1-monooxygenase in the naphthalene degradation pathway, has been proposed as a terbinafine resistance mechanism. Since terbinafine contains a naphthalene ring, it may serve as a salA substrate, leading to drug degradation [107,108,109]. The presence of terbinafine has been proposed to promote the accumulation of salA transcripts and overexpression of this gene, potentially due to a multicopy effect, potentiating resistance to terbinafine [107]. In T. rubrum isolates, challenging with cytotoxic drugs, including terbinafine, has been shown to cause overexpression of the salA gene [107,110]. Moreover, plasmids containing the salA gene were used to successfully transform a T. rubrum strain from terbinafine-sensitive to terbinafine-resistant. This suggests that a similar resistance mechanism may enable T. rubrum to counteract the inhibitory effects of terbinafine [109].

4. Treatments for Terbinafine Resistance

T. indotineae exhibits higher antifungal resistance compared to T. rubrum [70]. Current treatments for T. rubrum and T. indotineae primarily involve terbinafine and the azoles. Typically, topical therapies are preferred in milder cases, while oral antifungals are for widespread infections. In severe cases, combination therapy, which integrates both the topical and oral approach, may be considered (Table 2) [111]. Treatment strategies combining agents with different modes of action can reduce the likelihood of resistance development; for instance, topical ciclopirox—a broad-acting antifungal—has been tried in combination with terbinafine treatment [112,113,114]. In cases of terbinafine-resistant T. indotineae infection, combinations of oral itraconazole with topical azoles are commonly utilized to help ensure a sufficient dosage is reached at the site of infection. The latter includes topical azoles such as bifonazole, clotrimazole, ketoconazole, luliconazole and sertaconazole [86,115,116,117,118,119].
Azoles and terbinafine interfere with fungal ergosterol synthesis. Itraconazole, which needs to be taken with food, inhibits lanosterol 14α-demethylase, and terbinafine inhibits squalene epoxidase [120]. Griseofulvin inhibits dermatophyte growth by disrupting fungal microtubules, impairing mitosis, with a half-life of 9–24 h [121]. The effective half-lives of terbinafine and itraconazole are ~36 h and 16–24 h in adults, respectively [122].
In the case of glabrous infections, oral terbinafine is dosed at 250 mg/day for 4–8 weeks for T. rubrum and 4–12 weeks for T. indotineae [111]. Itraconazole and the super-bioavailable variant (SUBA-itraconazole) are generally effective against T. rubrum (itraconazole—200 mg daily for 4–8 weeks; SUBA-itraconazole—130 mg daily for 4–6 weeks) and T. indotineae (itraconazole—200 to 400 mg daily for 4–12 weeks; SUBA-itraconazole—130 mg daily for 6–8 weeks) [111].
Oral voriconazole and posaconazole are also effective against both T. rubrum and T. indotineae; however, they are typically reserved for resistant cases due to side-effects [70,123]. Fluconazole is less effective than terbinafine and itraconazole against T. rubrum, and griseofulvin may be effective against T. rubrum only with prolonged treatment [111,124]. Fluconazole and griseofulvin are not recommended for T. indotineae due to reported high-level resistance [70,124]. Adverse effects of oral antifungals can include gastrointestinal disturbances and hepatotoxicity; with itraconazole caution needs to be exercised with cardiovascular risks [125].
Topical terbinafine and voriconazole creams are available for localized resistant infections. Local adverse effects include burning irritation, erythema, and dermatitis [125]. Typical dosing for voriconazole cream is 1% compounded and applied 1–2 times a day for 1–4 weeks; topical terbinafine is dosed 2–3 times daily for 2–6 weeks [123].
Table 2. Summary of Antifungal Treatments for T. rubrum vs. T. indotineae.
Table 2. Summary of Antifungal Treatments for T. rubrum vs. T. indotineae.
DrugMechanismRoutePulse
Therapy
Continuous TherapyT. rubrumT. indotineae
TerbinafineInhibits squalene epoxidaseOral, topical250 mg BID, 1 week/month
(not commonly used)
250–500 mg/day,
4–12 weeks
Highly effective [124]High resistance [124]
GriseofulvinInhibits microtubule functionOralRarely used in pulse10–20 mg/kg/day, 6–12 weeksSomewhat effective but therapy for long
duration [21]
Limited data,
uncertain efficacy [21]
ItraconazoleInhibits lanosterol 14α-demethylaseOral200 mg BID, 1 week/month,
1–3 pulses (superficial fungal infections); 3–4 or more pulses (onychomycosis)
100–200–400
mg/day,
4–12 weeks
Effective [126]Preferred alternative to terbinafine [126]
VoriconazoleInhibits lanosterol 14α-demethylaseOral,
topical
Not typically used200–400 mg/dayEffective but rarely needed [111]Effective in resistant cases.
Topical voriconazole effective in
selected cases [111]
PosaconazoleInhibits lanosterol 14α-demethylaseOralNot commonly used300 mg/dayEffective but rarely needed [127]Used in
recalcitrant cases [70]
FluconazoleInhibits lanosterol 14α-demethylaseOral150–300 mg once weekly100–200 mg/day Less effective than terbinafine/itraconazole [21]Low efficacy, resistance
reported [21]

5. Antifungal Stewardship

Antifungal stewardship (AFS) is a strategy focused on optimizing antifungal use to improve patient outcomes, minimize resistance, and reduce toxicity [2,128,129]. By promoting appropriate prescribing practices and surveillance, AFS ensures effective treatment while safeguarding the current selection of antifungal therapies against growing resistance threats (Figure 5).

5.1. Reconfirm Clinical and Laboratory Diagnosis

Misuse of antifungals and misdiagnosis of fungal infections can worsen outcomes, drive resistance, and delay proper treatment [11]. Laboratory testing, comprising traditional (KOH microscopy and culture), molecular (PCR), and specialized (antifungal susceptibility testing, SQLE mutation identification, sequencing) methods, should complement clinical assessment to confirm diagnoses and guide treatment. Despite diagnostic limitations, prioritizing microbiologic confirmation over empiric treatment is crucial for optimizing antifungal therapy and preventing resistance [129].

5.2. Choice of Antifungal Agent

The selection of an appropriate antifungal agent to treat dermatophyte infections can be understood using six principles, referred to as the six Rs: right drug, right indication, right route of administration, right dose, right duration of treatment, and right frequency [2]. Optimal antifungal selection depends on fungal species, infection site, pharmacokinetics, and patient-specific factors like comorbidities and drug interactions.

5.3. AFST

AFST can inform on antifungal drug efficacy in vitro; however, in vitro resistance does not always correlate with clinical resistance [10,24]. Continued efforts in conducting AFST studies can help better inform future protocol amendments and standardization, as well as increasing its clinical utility [2,130].
Managing treatment relapse and maintenance therapy is key to preventing recurrent fungal infections and improving long-term outcomes. Relapse may result from incomplete pathogen eradication, poor adherence to the treatment protocol, or underlying co-morbid conditions. In cases of relapse, AFST can guide adjustments to antifungal therapy [11].
Maintenance therapy is necessary for patients with chronic or recurrent infections, particularly those with immunosuppression or persistent risk factors [131,132,133]. Long-term strategies should balance efficacy with minimizing toxicity and resistance, emphasizing patient education on adherence and regular follow-up to ensure continued success.

5.4. Institutional, Local, and National Guidelines

The WHO’s 2015 global action plan and 2022 priority pathogen list emphasize the need for continued research, especially in low-resource settings, to enhance treatment, diagnostics, and resistance strategies [134,135]. Effective AFS requires a multidisciplinary approach, with dermatologists, pharmacists, and microbiologists working together to optimize treatment, minimize prolonged therapy, and guide de-escalation [2,128,136,137]. Given regional resistance differences, a flexible, collaborative AFS program based on the resources and needs of the regional patients can inform diagnosis and treatment decisions and improve patient outcomes and institutional resistance monitoring [129,136,137].

5.5. Education and Awareness

A comprehensive approach includes workshops and social media to increase health care professionals’ understanding of the importance of antifungal stewardship and recognition of signs of resistance is recommended [8]. Public health campaigns focused on educating health care professionals to identify dermatophyte infections and educating patients on the importance of completing prescribed regimens and avoiding self-medication can help reduce the impact and spread of antifungal-resistant dermatophytes [2,138].
Disinfection of laundry helps curb the dermatophyte infection load [139]. Dermatophyte spores, particularly arthrospores, can remain present on textiles and surfaces for extended periods [140,141]. Moderate heat treatments can destroy most dermatophytes and their spores (e.g., laundering socks at temperatures of 60 °C or higher) [139,140,141]. Alternatively, 24 h soaking of contaminated textiles in a quaternary ammonium compound (QAC) detergent can achieve complete disinfection [140]. Notably, textile and attire types influence disinfection efficacy. For example, cotton is susceptible to fungal contamination due to high moisture absorption; hence, higher-temperature laundering is recommended [142]. For shoes, ozone sanitization can be considered [139,141,143]. Regular disinfection of more susceptible surfaces, such as bathroom floors, with 10% bleach solutions is recommended to eliminate fungal spores and prevent persistence [144].

Author Contributions

Conceptualization, A.K.G.; Data curation, S., H.C.N. and A.L.; Investigation, S., H.C.N. and A.L.; Methodology, T.W., S., H.C.N. and A.L.; Project Administration, T.W. and V.E.; Resources, A.K.G.; Supervision, A.K.G.; Visualization, T.W., S., H.C.N. and A.L.; Writing—Original Draft Preparation, S., H.C.N. and A.L.; Writing—Review and Editing, A.K.G. and T.W. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

No new data were created or analyzed in this study.

Conflicts of Interest

Authors A.K.G., S., H.C.N., A.L., V.E. and T.W. were employed by Mediprobe Research Inc. The authors declare that this research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Moskaluk, A.E.; VandeWoude, S. Current Topics in Dermatophyte Classification and Clinical Diagnosis. Pathogens 2022, 11, 957. [Google Scholar] [CrossRef] [PubMed]
  2. Gupta, A.K.; Mann, A.; Polla Ravi, S.; Wang, T. Navigating Fungal Infections and Antifungal Stewardship: Drug Resistance, Susceptibility Testing, Therapeutic Drug Monitoring and Future Directions. Ital. J. Dermatol. Venereol. 2024, 159, 105–117. [Google Scholar] [CrossRef] [PubMed]
  3. Benedict, K.; Gold, J.A.W.; Wu, K.; Lipner, S.R. High Frequency of Self-Diagnosis and Self-Treatment in a Nationally Representative Survey about Superficial Fungal Infections in Adults-United States, 2022. J. Fungi 2022, 9, 19. [Google Scholar] [CrossRef] [PubMed]
  4. Pathadka, S.; Yan, V.K.C.; Neoh, C.F.; Al-Badriyeh, D.; Kong, D.C.M.; Slavin, M.A.; Cowling, B.J.; Hung, I.F.N.; Wong, I.C.K.; Chan, E.W. Global Consumption Trend of Antifungal Agents in Humans from 2008 to 2018: Data from 65 Middle- and High-Income Countries. Drugs 2022, 82, 1193. [Google Scholar] [CrossRef]
  5. Darkes, M.J.M.; Scott, L.J.; Goa, K.L. Terbinafine: A Review of Its Use in Onychomycosis in Adults. Am. J. Clin. Dermatol. 2003, 4, 39–65. [Google Scholar] [CrossRef]
  6. Gupta, A.K.; Polla Ravi, S.; Talukder, M.; Mann, A. Effectiveness and Safety of Oral Terbinafine for Dermatophyte Distal Subungual Onychomycosis. Expert Opin. Pharmacother. 2024, 25, 15–23. [Google Scholar] [CrossRef]
  7. Mukherjee, P.K.; Leidich, S.D.; Isham, N.; Leitner, I.; Ryder, N.S.; Ghannoum, M.A. Clinical Trichophyton rubrum Strain Exhibiting Primary Resistance to Terbinafine. Antimicrob. Agents Chemother. 2003, 47, 82–86. [Google Scholar] [CrossRef]
  8. Favre, B.; Ghannoum, M.A.; Ryder, N.S. Biochemical Characterization of Terbinafine-Resistant Trichophyton rubrum Isolates. Med. Mycol. 2004, 42, 525–529. [Google Scholar] [CrossRef]
  9. Ferreira, C.B.; Lisboa, C. A Systematic Review on the Emergence of Terbinafine-resistant Trichophyton indotineae in Europe: Time to Act? J. Eur. Acad. Dermatol. Venereol. 2025, 39, 364–376. [Google Scholar] [CrossRef]
  10. Gupta, A.K.; Wang, T.; Mann, A.; Polla Ravi, S.; Talukder, M.; Lincoln, S.A.; Foreman, H.-C.; Kaplan, B.; Galili, E.; Piguet, V.; et al. Antifungal Resistance in Dermatophytes—Review of the Epidemiology, Diagnostic Challenges and Treatment Strategies for Managing Trichophyton indotineae Infections. Expert Rev. Anti-Infect. Ther. 2024, 22, 739–751. [Google Scholar] [CrossRef]
  11. Gupta, A.K.; Elewski, B.; Joseph, W.S.; Lipner, S.R.; Daniel, C.R.; Tosti, A.; Guenin, E.; Ghannoum, M. Treatment of Onychomycosis in an Era of Antifungal Resistance: Role for Antifungal Stewardship and Topical Antifungal Agents. Mycoses 2024, 67, e13683. [Google Scholar] [CrossRef] [PubMed]
  12. Gu, D.; Hatch, M.; Ghannoum, M.; Elewski, B.E. Treatment-Resistant Dermatophytosis: A Representative Case Highlighting an Emerging Public Health Threat. JAAD Case Rep. 2020, 6, 1153–1155. [Google Scholar] [CrossRef] [PubMed]
  13. Jones, C.M.E.; Blaya Alvarez, B.; Polcz, M. Multi-drug Resistant Dermatophyte Infections in Western Sydney: A Retrospective Case Series. Australas. J. Dermatol. 2022, 63, e360. [Google Scholar] [CrossRef] [PubMed]
  14. Nofal, A.; Fawzy, M.M.; El-Hawary, E.E. Successful Treatment of Resistant Onychomycosis with Voriconazole in a Liver Transplant Patient. Dermatol. Ther. 2020, 33, 7–9. [Google Scholar] [CrossRef]
  15. Saunte, D.M.L.; Pereiro-Ferreirós, M.; Rodríguez-Cerdeira, C.; Sergeev, A.Y.; Arabatzis, M.; Prohić, A.; Piraccini, B.M.; Lecerf, P.; Nenoff, P.; Kotrekhova, L.P.; et al. Emerging Antifungal Treatment Failure of Dermatophytosis in Europe: Take Care or It May Become Endemic. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 1582–1586. [Google Scholar] [CrossRef]
  16. Hiruma, J.; Noguchi, H.; Shimizu, T.; Hiruma, M.; Harada, K.; Kano, R. Epidemiological Study of Antifungal-Resistant Dermatophytes Isolated from Japanese Patients. J. Dermatol. 2023, 50, 1068–1071. [Google Scholar] [CrossRef]
  17. Singh, A.; Masih, A.; Monroy-Nieto, J.; Singh, P.K.; Bowers, J.; Travis, J.; Khurana, A.; Engelthaler, D.M.; Meis, J.F.; Chowdhary, A. A Unique Multidrug-Resistant Clonal Trichophyton Population Distinct from Trichophyton mentagrophytes/Trichophyton interdigitale Complex Causing an Ongoing Alarming Dermatophytosis Outbreak in India: Genomic Insights and Resistance Profile. Fungal Genet. Biol. 2019, 133, 103266. [Google Scholar] [CrossRef]
  18. Nobrega de Almeida, J., Jr.; dos Santos, A.R.; Roberto de Trindade, M.S.; Gold, J.A.; Razo, F.P.; Gonçalves, S.S.; Dorlass, E.G.; de Mello Ruiz, R.; Pasternak, J.; Mangueira, C.L.; et al. Trichophyton indotineae Infection, São Paulo, Brazil, 2024. Emerg. Infect. Dis. 2025, 31, 1049–4051. [Google Scholar] [CrossRef]
  19. Lee, W.J.; Kim, S.L.; Jang, Y.H.; Lee, S.J.; Kim, D.W.; Bang, Y.J.; Jun, J.B. Increasing Prevalence of Trichophyton rubrum Identified through an Analysis of 115,846 Cases over the Last 37 Years. J. Korean Med. Sci. 2015, 30, 639. [Google Scholar] [CrossRef]
  20. Zhang, W.; Yu, L.; Yang, J.; Wang, L.; Peng, J.; Jin, Q. Transcriptional Profiles of Response to Terbinafine in Trichophyton rubrum. Appl. Microbiol. Biotechnol. 2009, 82, 1123–1130. [Google Scholar] [CrossRef]
  21. Sonego, B.; Corio, A.; Mazzoletti, V.; Zerbato, V.; Benini, A.; di Meo, N.; Zalaudek, I.; Stinco, G.; Errichetti, E.; Zelin, E. Trichophyton indotineae, an Emerging Drug-Resistant Dermatophyte: A Review of the Treatment Options. J. Clin. Med. 2024, 13, 3558. [Google Scholar] [CrossRef]
  22. Elewski, B.E. Onychomycosis: Pathogenesis, Diagnosis, and Management. Clin. Microbiol. Rev. 1998, 11, 415. [Google Scholar] [CrossRef] [PubMed]
  23. Gong, J.Q.; Liu, X.Q.; Xu, H.B.; Zeng, X.S.; Chen, W.; Li, X.F. Deep Dermatophytosis Caused by Trichophyton rubrum: Report of Two Cases. Mycoses 2007, 50, 102–108. [Google Scholar] [CrossRef] [PubMed]
  24. Gupta, A.K.; Talukder, M.; Carviel, J.L.; Cooper, E.A.; Piguet, V. Combatting Antifungal Resistance: Paradigm Shift in the Diagnosis and Management of Onychomycosis and Dermatomycosis. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 1706–1717. [Google Scholar] [CrossRef]
  25. Abdolrasouli, A.; Borman, A.M.; Johnson, E.M.; Hay, R.J.; Arias, M. Terbinafine-Resistant Trichophyton indotineae Causing Extensive Dermatophytosis in a Returning Traveller, London, UK. Clin. Exp. Dermatol. 2024, 49, 635–637. [Google Scholar] [CrossRef]
  26. Abdolrasouli, A.; Barton, R.C.; Borman, A.M. Spread of Antifungal-Resistant Trichophyton indotineae, United Kingdom, 2017–2024. Emerg. Infect. Dis. 2025, 31, 192–194. [Google Scholar] [CrossRef]
  27. Amin, N.; Shenoy, M.M.; Pai, V. Antifungal Susceptibility of Dermatophyte Isolates from Patients with Chronic and Recurrent Dermatophytosis. Indian Dermatol. Online J. 2024, 16, 110–115. [Google Scholar] [CrossRef]
  28. Berstecher, N.; Burmester, A.; Gregersen, D.M.; Tittelbach, J.; Wiegand, C. Trichophyton indotineae Erg1Ala448Thr Strain Expressed Constitutively High Levels of Sterol 14-α Demethylase Erg11B MRNA, While Transporter MDR3 and Erg11A MRNA Expression Was Induced After Addition of Short Chain Azoles. J. Fungi 2024, 10, 731. [Google Scholar] [CrossRef]
  29. Bhuiyan, M.S.I.; Verma, S.B.; Illigner, G.M.; Uhrlaß, S.; Klonowski, E.; Burmester, A.; Noor, T.; Nenoff, P. Trichophyton mentagrophytes ITS Genotype VIII/Trichophyton indotineae Infection and Antifungal Resistance in Bangladesh. J. Fungi 2024, 10, 768. [Google Scholar] [CrossRef]
  30. Caplan, A.S.; Todd, G.C.; Zhu, Y.; Sikora, M.; Akoh, C.C.; Jakus, J.; Lipner, S.R.; Graber, K.B.; Acker, K.P.; Morales, A.E.; et al. Clinical Course, Antifungal Susceptibility, and Genomic Sequencing of Trichophyton indotineae. JAMA Dermatol. 2024, 160, 701. [Google Scholar] [CrossRef]
  31. De Paepe, R.; Normand, A.C.; Uhrlaß, S.; Nenoff, P.; Piarroux, R.; Packeu, A. Resistance Profile, Terbinafine Resistance Screening and MALDI-TOF MS Identification of the Emerging Pathogen Trichophyton indotineae. Mycopathologia 2024, 189, 29. [Google Scholar] [CrossRef] [PubMed]
  32. Duus, L. Terbinafine Resistance in Trichophyton Species From Patients with Recalcitrant Infections Detected by the EUCAST Broth Microdilution Method and DermaGenius Resistance Multiplex PCR Kit. Mycoses 2025, 68, e70011. [Google Scholar] [CrossRef] [PubMed]
  33. Fukada, N.; Kobayashi, H.; Nakazono, M.; Ohyachi, K.; Takeda, A.; Yaguchi, T.; Okada, M.; Sato, T. A Case of Tinea Faciei Due to Trichophyton indotineae with Steroid Rosacea Related to Topical Over-The-Counter Drugs Purchased Outside of Japan. Med. Mycol. J. 2024, 65, 23–26. [Google Scholar] [CrossRef] [PubMed]
  34. Haghani, I.; Babaie, M.; Hoseinnejad, A.; Rezaei-Matehkolaei, A.; Mofarrah, R.; Yahyazadeh, Z.; Kermani, F.; Javidnia, J.; Shokohi, T.; Azish, M.; et al. High Prevalence of Terbinafine Resistance Among Trichophyton mentagrophytes/T. interdigitale Species Complex, a Cross-Sectional Study from 2021 to 2022 in Northern Parts of Iran. Mycopathologia 2024, 189, 52. [Google Scholar] [CrossRef]
  35. Haghani, I.; Hashemi, S.M.; Abastabar, M.; Yahyazadeh, Z.; Ebrahimi-Barough, R.; Hoseinnejad, A.; Teymoori, A.; Azadeh, H.; Rashidi, M.; Aghili, S.R.; et al. In Vitro and Silico Activity of Piperlongumine against Azole-Susceptible/Resistant Aspergillus fumigatus and Terbinafine-Susceptible/Resistant Trichophyton Species. Diagn. Microbiol. Infect. Dis. 2025, 111, 116578. [Google Scholar] [CrossRef]
  36. Higuchi, S.; Noguchi, H.; Matsumoto, T.; Nojo, H.; Kano, R. Terbinafine-resistant Tinea Pedis and Tinea Unguium in Japanese Military Personnel. J. Dermatol. 2024, 51, 1256–1258. [Google Scholar] [CrossRef]
  37. Hiruma, J.; Nojyo, H.; Harada, K.; Kano, R. Development of Treatment Strategies by Comparing the Minimum Inhibitory Concentrations and Minimum Fungicidal Concentrations of Azole Drugs in Dermatophytes. J. Dermatol. 2024, 51, 1515–1518. [Google Scholar] [CrossRef]
  38. Ji, J.; Liang, C.T.; Zhong, J.J.; Kong, X.; Xu, H.X.; Xu, C.C.; Fu, M.H. 5-Aminolevulinic Acid-Based Photodynamic Therapy in Combination with Antifungal Agents for Adult Kerion and Facial Ulcer Caused by Trichophyton rubrum. Photodiagnosis Photodyn. Ther. 2024, 45, 103954. [Google Scholar] [CrossRef]
  39. Kolarczyková, D.; Lysková, P.; Švarcová, M.; Kuklová, I.; Dobiáš, R.; Mallátová, N.; Kolařík, M.; Hubka, V. Terbinafine Resistance in Trichophyton mentagrophytes and Trichophyton rubrum in the Czech Republic: A Prospective Multicentric Study. Mycoses 2024, 67, e13708. [Google Scholar] [CrossRef]
  40. Lemes, T.H.; Nascentes, J.A.S.; Regasini, L.O.; Siqueira, J.P.Z.; Maschio-Lima, T.; Pattini, V.C.; Ribeiro, M.D.; de Almeida, B.G.; de Almeida, M.T.G. Combinatorial Effect of Fluconazole, Itraconazole, and Terbinafine with Different Culture Extracts of Candida parapsilosis and Trichophyton spp. against Trichophyton rubrum. Int. Microbiol. 2024, 27, 899–905. [Google Scholar] [CrossRef]
  41. Madarasingha, N.P.; Thabrew, H.; Uhrlass, S.; Eriyagama, S.; Reinal, D.; Jayasekera, P.I.; Nenoff, P. Dermatophytosis Caused by Trichophyton indotineae (Trichophyton mentagrophytes ITS Genotype VIII) in Sri Lanka. Am. J. Trop. Med. Hyg. 2024, 111, 575–577. [Google Scholar] [CrossRef] [PubMed]
  42. Mahmood, H.R.; Shams-Ghahfarokhi, M.; Salehi, Z.; Razzaghi-Abyaneh, M. Epidemiological Trends, Antifungal Drug Susceptibility and SQLE Point Mutations in Etiologic Species of Human Dermatophytosis in Al-Diwaneyah, Iraq. Sci. Rep. 2024, 14, 12669. [Google Scholar] [CrossRef] [PubMed]
  43. Maschio-Lima, T.; Lemes, T.H.; Marques, M.D.R.; Siqueira, J.P.Z.; de Almeida, B.G.; Caruso, G.R.; Von Zeska Kress, M.R.; de Tarso da Costa, P.; Regasini, L.O.; de Almeida, M.T.G. Synergistic Activity between Conventional Antifungals and Chalcone-Derived Compound against Dermatophyte Fungi and Candida spp. Int. Microbiol. 2025, 28, 265–275. [Google Scholar] [CrossRef] [PubMed]
  44. McTaggart, L.R.; Cronin, K.; Ruscica, S.; Patel, S.N.; Kus, J.V. Emergence of Terbinafine-Resistant Trichophyton indotineae in Ontario, Canada, 2014–2023. J. Clin. Microbiol. 2025, 63, e0153524. [Google Scholar] [CrossRef]
  45. Mechidi, P.; Holien, J.; Grando, D.; Huynh, T.; Lawrie, A.C. New Sources of Resistance to Terbinafine Revealed and Squalene Epoxidase Modelled in the Dermatophyte Fungus Trichophyton interdigitale from Australia. Mycoses 2024, 67, e13795. [Google Scholar] [CrossRef]
  46. Ghazi Mirsaid, R.; Falahati, M.; Farahyar, S.; Ghasemi, Z.; Roudbary, M.; Mahmoudi, S. In Vitro Antifungal Activity of Eucalyptol and Its Interaction with Antifungal Drugs Against Clinical Dermatophyte Isolates Including Trichophyton indotineae. Discover. Public Health 2024, 21, 73. [Google Scholar] [CrossRef]
  47. Mochizuki, T.; Anzawa, K.; Bernales-Mendoza, A.M.; Shimizu, A. Case of Tinea Corporis Caused by a Terbinafine-Sensitive Trichophyton indotineae Strain in a Vietnamese Worker in Japan. J. Dermatol. 2025, 52, 163–166. [Google Scholar] [CrossRef]
  48. Gamal, A.; Elshaer, M.; Long, L.; McCormick, T.S.; Elewski, B.; Ghannoum, M.A. Antifungal Activity of Efinaconazole Compared with Fluconazole, Itraconazole, and Terbinafine Against Terbinafine- and Itraconazole-Resistant/Susceptible Clinical Isolates of Dermatophytes, Candida, and Molds. J. Am. Podiatr. Med. Assoc. 2024, 114, 1–30. [Google Scholar] [CrossRef]
  49. Gupta, V.; Ngullie, C.; Khattri, A.; Gupta, H.; Singh, K.; Paul, R. Dermatophyte Prevalence and Antifungal Resistance in Central India: Insights from a Clinical and Mycological Study. J. Cardiovasc. Dis. Res. 2024, 15, 858–861. [Google Scholar]
  50. Mohammadi, L.Z.; Shams-Ghahfarokhi, M.; Salehi, Z.; Razzaghi-Abyaneh, M. Increased Terbinafine Resistance among Clinical Genotypes of Trichophyton mentagrophytes/T. interdigitale Species Complex Harboring Squalene Epoxidase Gene Mutations. J. Mycol. Med. 2024, 34, 101495. [Google Scholar] [CrossRef]
  51. Moreno-Sabater, A.; Cordier, C.; Normand, A.C.; Bidaud, A.L.; Cremer, G.; Bouchara, J.P.; Huguenin, A.; Imbert, S.; Challende, I.; Brin, C.; et al. Autochthonous Trichophyton rubrum Terbinafine Resistance in France: Assessment of Antifungal Susceptibility Tests. Clin. Microbiol. Infect. 2024, 30, 1613–1615. [Google Scholar] [CrossRef] [PubMed]
  52. Ngo, T.M.C.; Santona, A.; Ton Nu, P.A.; Cao, L.C.; Tran Thi, G.; Do, T.B.T.; Ha, T.N.T.; Vo Minh, T.; Nguyen, P.V.; Ton That, D.D.; et al. Detection of Terbinafine-Resistant Trichophyton indotineae Isolates within the Trichophyton mentagrophytes Species Complex Isolated from Patients in Hue City, Vietnam: A Comprehensive Analysis. Med. Mycol. 2024, 62, myae088. [Google Scholar] [CrossRef]
  53. Nosratabadi, M.; Akhtari, J.; Jaafari, M.R.; Yahyazadeh, Z.; Shokohi, T.; Haghani, I.; Farmani, P.; Barough, R.E.; Badali, H.; Abastabar, M. In Vitro Activity of Nanoliposomal Amphotericin B against Terbinafine-Resistant Trichophyton indotineae Isolates. Int. Microbiol. 2024. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
  54. Oğuz, I.D.; Direkel; Akşan, B.; Kulakli, S.; Aksoy, S. In Vitro Antifungal Susceptibility of the Dermatophytes: A Single Center Study from Eastern Black Sea Region of Turkey. Eur. Rev. Med. Pharmacol. Sci. 2024, 28, 2144–2154. [Google Scholar] [CrossRef]
  55. Oladzad, V.; Nasrollahi Omran, A.; Haghani, I.; Nabili, M.; Seyedmousavi, S.; Hedayati, M.T. Multi-Drug Resistance Trichophyton indotineae in a Stray Dog. Res. Vet. Sci. 2024, 166, 105105. [Google Scholar] [CrossRef]
  56. Oliveira, T.F.; Valeriano, C.A.T.; Buonafina-Paz, M.D.S.; Souza-Motta, C.M.; Machado, A.R.; Neves, R.P.; Bezerra, J.D.P.; Arantes, T.D.; de Hoog, S.; Magalhães, O.M.C. Molecular Verification of Trichophyton in the Brazilian URM Culture Collection. Mycopathologia 2024, 189, 2. [Google Scholar] [CrossRef]
  57. Pattini, V.C.; Polaquini, C.R.; Lemes, T.H.; Brizzotti-Mazuchi, N.S.; de Cássia Orlandi Sardi, J.; Paziani, M.H.; von Zeska Kress, M.R.; de Almeida, M.T.G.; Regasini, L.O. Antifungal Activity of 3,3′-Dimethoxycurcumin (DMC) against Dermatophytes and Candida Species. Lett. Appl. Microbiol. 2024, 77, ovae019. [Google Scholar] [CrossRef]
  58. Sacheli, R.; Egrek, S.; El Moussaoui, K.; Darfouf, R.; Adjetey, A.B.; Hayette, M.P. Evaluation of Currently Available Laboratory Methods to Detect Terbinafine Resistant Dermatophytes Including a Gradient Strip for Terbinafine, EUCAST Microdilution E.Def 11.0, a Commercial Real-Time PCR Assay, Squalene Epoxidase Sequencing and Whole Genome Sequencing. Mycoses 2024, 67, e70005. [Google Scholar] [CrossRef]
  59. Saini, S.; Balhara, M.; Dutta, D.; Chaudhuri, S.; Ghosh, S.; Sardana, K. Synergistic Effect of Punica granatum Derived Antifungals on Strains with Clinical Failure to Terbinafine and Azoles Drugs. Adv. Tradit. Med. 2024, 24, 335–348. [Google Scholar] [CrossRef]
  60. Schaller, M.; Walker, B.; Nabhani, S.; Odon, A.; Riel, S.; Jäckel, A. Activity of Amorolfine or Ciclopirox in Combination with Terbinafine Against Pathogenic Fungi in Onychomycosis—Results of an In Vitro Investigation. Mycoses 2024, 67, e13710. [Google Scholar] [CrossRef]
  61. Schirmer, H.; Henriques, C.; Simões, H.; Veríssimo, C.; Sabino, R. Prevalence of T. rubrum and T. interdigitale Exhibiting High MICs to Terbinafine in Clinical Samples Analyzed in the Portuguese Mycology Reference Laboratory. Pathogens 2025, 14, 115. [Google Scholar] [CrossRef] [PubMed]
  62. Shao, Y.; Shao, J.; de Hoog, S.; Verweij, P.; Bai, L.; Richardson, R.; Richardson, M.; Wan, Z.; Li, R.; Yu, J.; et al. Emerging Antifungal Resistance in Trichophyton mentagrophytes: Insights from Susceptibility Profiling and Genetic Mutation Analysis. Emerg. Microbes Infect. 2025, 14, 2450026. [Google Scholar] [CrossRef] [PubMed]
  63. Shaw, D.; Dogra, S.; Singh, S.; Shah, S.; Narang, T.; Kaur, H.; Walia, K.; Ghosh, A.; Handa, S.; Chakrabarti, A.; et al. Prolonged Treatment of Dermatophytosis Caused by Trichophyton indotinea with Terbinafine or Itraconazole Impacts Better Outcomes Irrespective of Mutation in the Squalene Epoxidase Gene. Mycoses 2024, 67, e13778. [Google Scholar] [CrossRef] [PubMed]
  64. Singh, A.; Prasad, A.; Singh, G.; Hazarika, N.; Gupta, P.; Kaistha, N. Comparative Analysis of Antifungal Susceptibility in Trichophyton Species Using Broth Microdilution Assay: A Cross-Sectional Study. Cureus 2025, 17, e77113. [Google Scholar] [CrossRef]
  65. Spivack, S.; Gold, J.A.W.; Lockhart, S.R.; Anand, P.; Quilter, L.A.S.; Smith, D.J.; Bowen, B.; Gould, J.M.; Eltokhy, A.; Gamal, A.; et al. Potential Sexual Transmission of Antifungal-Resistant Trichophyton indotineae. Emerg. Infect. Dis. 2024, 30, 807–809. [Google Scholar] [CrossRef]
  66. Uhrlaß, S.; Mey, S.; Koch, D.; Mütze, H.; Krüger, C.; Monod, M.; Nenoff, P. Dermatophytes and Skin Dermatophytoses in Southeast Asia—First Epidemiological Survey from Cambodia. Mycoses 2024, 67, e13718. [Google Scholar] [CrossRef]
  67. Vishnoi, S.; Rajput, M.S. Species Identification and Differentiation of Dermatophytes, Antifungal Susceptibility Profile from a Tertiary Care Centre in Central India. J. Popul. Ther. Clin. Pharmacol. 2024, 31, 1131–1136. [Google Scholar]
  68. Yadav, S.P.; Kumar, M.; Seema, K.; Kumar, A.; Boipai, M.; Kumar, P.; Sharma, A.K. Antifungal Patterns of Dermatophytes: A Pathway to Antifungal Stewardship in Eastern India. Cureus 2024, 16, 6–13. [Google Scholar] [CrossRef]
  69. Zhang, R.; Song, Z.; Su, X.; Li, T.; Xu, J.; He, X.; Yang, Y.; Chang, B.; Kang, Y. Molecular Epidemiology and Antifungal Susceptibility of Dermatophytes and Candida Isolates in Superficial Fungal Infections at a Grade A Tertiary Hospital in Northern China. Med. Mycol. 2024, 62, myae087. [Google Scholar] [CrossRef]
  70. Cañete-Gibas, C.F.; Mele, J.; Patterson, H.P.; Sanders, C.J.; Ferrer, D.; Garcia, V.; Fan, H.; David, M.; Wiederhold, N.P. Terbinafine-Resistant Dermatophytes and the Presence of Trichophyton indotineae in North America. J. Clin. Microbiol. 2023, 61, e0056223. [Google Scholar] [CrossRef]
  71. Ghannoum, M.A.; Rice, L.B. Antifungal Agents: Mode of Action, Mechanisms of Resistance, and Correlation of These Mechanisms with Bacterial Resistance. Clin. Microbiol. Rev. 1999, 12, 501–517. [Google Scholar] [CrossRef] [PubMed]
  72. Singh, A.; Masih, A.; Khurana, A.; Singh, P.K.; Gupta, M.; Hagen, F.; Meis, J.F.; Chowdhary, A. High Terbinafine Resistance in Trichophyton Interdigitale Isolates in Delhi, India Harbouring Mutations in the Squalene Epoxidase Gene. Mycoses 2018, 61, 477–484. [Google Scholar] [CrossRef] [PubMed]
  73. Kruithoff, C.; Gamal, A.; McCormick, T.S.; Ghannoum, M.A. Dermatophyte Infections Worldwide: Increase in Incidence and Associated Antifungal Resistance. Life 2023, 14, 1. [Google Scholar] [CrossRef] [PubMed]
  74. Yamada, T.; Maeda, M.; Alshahni, M.M.; Tanaka, R.; Yaguchi, T.; Bontems, O.; Salamin, K.; Fratti, M.; Monod, M. Terbinafine Resistance of Trichophyton Clinical Isolates Caused by Specific Point Mutations in the Squalene Epoxidase Gene. Antimicrob. Agents Chemother. 2017, 61, e00115-17. [Google Scholar] [CrossRef]
  75. Martinez-Rossi, N.M.; Bitencourt, T.A.; Peres, N.T.A.; Lang, E.A.S.; Gomes, E.V.; Quaresemin, N.R.; Martins, M.P.; Lopes, L.; Rossi, A. Dermatophyte Resistance to Antifungal Drugs: Mechanisms and Prospectus. Front. Microbiol. 2018, 9, 374718. [Google Scholar] [CrossRef]
  76. Thakur, S.; Spruijtenburg, B.; Abhishek; Shaw, D.; de Groot, T.; Meijer, E.F.J.; Narang, T.; Dogra, S.; Chakrabarti, A.; Meis, J.F.; et al. Whole Genome Sequence Analysis of Terbinafine Resistant and Susceptible Trichophyton Isolates from Human and Animal Origin. Mycopathologia 2025, 190, 13. [Google Scholar] [CrossRef]
  77. Tamimi, P.; Fattahi, M.; Ghaderi, A.; Firooz, A.; Shirvani, F.; Alkhen, A.; Zamani, S. Terbinafine-resistant T. Indotineae Due to F397L/L393S or F397L/L393F Mutation among Corticoid-related Tinea Incognita Patients. JDDG J. Dtsch. Dermatol. Ges. 2024, 22, 922–934. [Google Scholar] [CrossRef]
  78. Veasey, J.V.; Gonçalves, R.D.J.; Valinoto, G.C.J.; Carvalho, G.d.S.M.; Celestrino, G.A.; Reis, A.P.C.; Lima, A.P.C.; Costa, A.C.d.; Melhem, M.d.S.C.; Benard, G.; et al. First Case of Trichophyton indotineae in Brazil: Clinical and Mycological Criteria and Genetic Identification of Terbinafine Resistance. An. Bras. Dermatol. 2025, in press. [Google Scholar] [CrossRef]
  79. Mohseni, S.; Abou-Chakra, N.; Oldberg, K.; Chryssanthou, E.; Young, E. Terbinafine Resistant Trichophyton indotineae in Sweden. Acta Derm.-Venereol. 2025, 105, adv42089. [Google Scholar] [CrossRef]
  80. Galili, E.; Lubitz, I.; Shemer, A.; Astman, N.; Pevzner, K.; Gazit, Z.; Segal, O.; Lyakhovitsky, A.; Halevi, S.; Baum, S.; et al. First Reported Cases of Terbinafine-Resistant Trichophyton indotineae Isolates in Israel: Epidemiology, Clinical Characteristics and Response to Treatment. Mycoses 2024, 67, e13812. [Google Scholar] [CrossRef]
  81. Moreno-Sabater, A.; Normand, A.C.; Bidaud, A.L.; Cremer, G.; Foulet, F.; Brun, S.; Bonnal, C.; Aït-Ammar, N.; Jabet, A.; Ayachi, A.; et al. Terbinafine Resistance in Dermatophytes: A French Multicenter Prospective Study. J. Fungi 2022, 8, 220. [Google Scholar] [CrossRef] [PubMed]
  82. Saunte, D.M.L.; Hare, R.K.; Jørgensen, K.M.; Jørgensen, R.; Deleuran, M.; Zachariae, C.O.; Thomsen, S.F.; Bjørnskov-Halkier, L.; Kofoed, K.; Arendrup, M.C. Emerging Terbinafine Resistance in Trichophyton: Clinical Characteristics, Squalene Epoxidase Gene Mutations, and a Reliable EUCAST Method for Detection. Antimicrob. Agents Chemother. 2019, 63, e01126-19. [Google Scholar] [CrossRef] [PubMed]
  83. Kong, X.; Tang, C.; Singh, A.; Ahmed, S.A.; Al-Hatmi, A.M.S.; Chowdhary, A.; Nenoff, P.; Gräser, Y.; Hainsworth, S.; Zhan, P.; et al. Antifungal Susceptibility and Mutations in the Squalene Epoxidase Gene in Dermatophytes of the Trichophyton mentagrophytes Species Complex. Antimicrob. Agents Chemother. 2021, 65, e0005621. [Google Scholar] [CrossRef] [PubMed]
  84. Jabet, A.; Brun, S.; Normand, A.C.; Imbert, S.; Akhoundi, M.; Dannaoui, E.; Audiffred, L.; Chasset, F.; Izri, A.; Laroche, L.; et al. Extensive Dermatophytosis Caused by Terbinafine-Resistant Trichophyton indotineae, France. Emerg. Infect. Dis. 2022, 28, 229–233. [Google Scholar] [CrossRef]
  85. Ebert, A.; Monod, M.; Salamin, K.; Burmester, A.; Uhrlaß, S.; Wiegand, C.; Hipler, U.C.; Krüger, C.; Koch, D.; Wittig, F.; et al. Alarming India-Wide Phenomenon of Antifungal Resistance in Dermatophytes: A Multicentre Study. Mycoses 2020, 63, 717–728. [Google Scholar] [CrossRef]
  86. Dellière, S.; Joannard, B.; Benderdouche, M.; Mingui, A.; Gits-Muselli, M.; Hamane, S.; Alanio, A.; Petit, A.; Gabison, G.; Bagot, M.; et al. Emergence of Difficult-to-Treat Tinea Corporis Caused by Trichophyton mentagrophytes Complex Isolates, Paris, France. Emerg. Infect. Dis. 2022, 28, 224–228. [Google Scholar] [CrossRef]
  87. Taghipour, S.; Shamsizadeh, F.; Pchelin, I.M.; Rezaei-Matehhkolaei, A.; Mahmoudabadi, A.Z.; Valadan, R.; Ansari, S.; Katiraee, F.; Pakshir, K.; Zomorodian, K.; et al. Emergence of Terbinafine Resistant Trichophyton mentagrophytes in Iran, Harboring Mutations in the Squalene Epoxidase (SQLE) Gene. Infect. Drug Resist. 2020, 13, 845–850. [Google Scholar] [CrossRef]
  88. Martins, M.P.; Franceschini, A.C.C.; Jacob, T.R.; Rossi, A.; Martinez-Rossi, N.M. Compensatory Expression of Multidrug-Resistance Genes Encoding ABC Transporters in Dermatophytes. J. Med. Microbiol. 2016, 65, 605–610. [Google Scholar] [CrossRef]
  89. Gupta, A.K.; Mann, A.; Polla Ravi, S.; Wang, T. An Update on Antifungal Resistance in Dermatophytosis. Expert Opin. Pharmacother. 2024, 25, 511–519. [Google Scholar] [CrossRef]
  90. Kano, R.; Hsiao, Y.H.; Han, H.S.; Chen, C.; Hasegawa, A.; Kamata, H. Resistance Mechanism in a Terbinafine-Resistant Strain of Microsporum Canis. Mycopathologia 2018, 183, 623–627. [Google Scholar] [CrossRef]
  91. Cowen, L.E.; Steinbach, W.J. Stress, Drugs, and Evolution: The Role of Cellular Signaling in Fungal Drug Resistance. Eukaryot. Cell 2008, 7, 747–764. [Google Scholar] [CrossRef] [PubMed]
  92. MMartinez-Rossi, N.M.; Jacob, T.R.; Sanches, P.R.; Peres, N.T.; Lang, E.A.; Martins, M.P.; Rossi, A. Heat Shock Proteins in Dermatophytes: Current Advances and Perspectives. Curr. Genom. 2016, 17, 99. [Google Scholar] [CrossRef] [PubMed]
  93. Fachin, A.L.; Ferreira-Nozawa, M.S.; Maccheroni, W.; Martinez-Rossi, N.M. Role of the ABC Transporter TruMDR2 in Terbinafine, 4-Nitroquinoline N-Oxide and Ethidium Bromide Susceptibility in Trichophyton rubrum. J. Med. Microbiol. 2006, 55, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
  94. Verma, S.B.; Panda, S.; Nenoff, P.; Singal, A.; Rudramurthy, S.M.; Uhrlass, S.; Das, A.; Bisherwal, K.; Shaw, D.; Vasani, R.; et al. The Unprecedented Epidemic-like Scenario of Dermatophytosis in India: III. Antifungal Resistance and Treatment Options. Indian J. Dermatol. Venereol. Leprol. 2021, 87, 468–482. [Google Scholar] [CrossRef]
  95. Pereira, F.D.O. A Review of Recent Research on Antifungal Agents against Dermatophyte Biofilms. Med. Mycol. 2021, 59, 313–326. [Google Scholar] [CrossRef]
  96. Garcia, L.M.; Costa-Orlandi, C.B.; Bila, N.M.; Vaso, C.O.; Gonçalves, L.N.C.; Fusco-Almeida, A.M.; Mendes-Giannini, M.J.S. A Two-Way Road: Antagonistic Interaction Between Dual-Species Biofilms Formed by Candida albicans/Candida parapsilosis and Trichophyton rubrum. Front. Microbiol. 2020, 11, 534005. [Google Scholar] [CrossRef]
  97. Toukabri, N.; Corpologno, S.; Bougnoux, M.-E.; Dalenda, I.; Euch, E.; Sadfi-Zouaoui, N.; Simonetti, G. In Vitro Biofilms and Antifungal Susceptibility of Dermatophyte and Non-Dermatophyte Moulds Involved in Foot Mycosis. Mycoses 2017, 61, 79–87. [Google Scholar] [CrossRef]
  98. Yazdanpanah, S.; Sasanipoor, F.; Khodadadi, H.; Rezaei-Matehkolaei, A.; Jowkar, F.; Zomorodian, K.; Kharazi, M.; Mohammadi, T.; Nouripour-Sisakht, S.; Nasr, R.; et al. Quantitative Analysis of In Vitro Biofilm Formation by Clinical Isolates of Dermatophyte and Antibiofilm Activity of Common Antifungal Drugs. Int. J. Dermatol. 2023, 62, 120–127. [Google Scholar] [CrossRef]
  99. Brilhante, R.S.N.; Correia, E.E.M.; Guedes, G.M.d.M.; de Oliveira, J.S.; Castelo-Branco, D.d.S.C.M.; Cordeiro, R.d.A.; Pinheiro, A.d.Q.; Chaves, L.J.Q.; Pereira Neto, W.d.A.; Sidrim, J.J.C.; et al. In Vitro Activity of Azole Derivatives and Griseofulvin against Planktonic and Biofilm Growth of Clinical Isolates of Dermatophytes. Mycoses 2018, 61, 449–454. [Google Scholar] [CrossRef]
  100. Castelo-Branco, D.d.S.C.M.; Aguiar, L.d.; Araújo, G.d.S.; Lopes, R.G.P.; Sales, J.d.A.; Pereira-Neto, W.A.; Pinheiro, A.d.Q.; Paixão, G.C.; Cordeiro, R.d.A.; Sidrim, J.J.C.; et al. In Vitro and Ex Vivo Biofilms of Dermatophytes: A New Panorama for the Study of Antifungal Drugs. Biofouling 2020, 36, 783–791. [Google Scholar] [CrossRef]
  101. Jacob, T.R.; Peres, N.T.A.; Martins, M.P.; Lang, E.A.S.; Sanches, P.R.; Rossi, A.; Martinez-Rossi, N.M. Heat Shock Protein 90 (Hsp90) as a Molecular Target for the Development of Novel Drugs against the Dermatophyte Trichophyton rubrum. Front. Microbiol. 2015, 6, 166626. [Google Scholar] [CrossRef] [PubMed]
  102. Lafayette, S.L.; Collins, C.; Zaas, A.K.; Schell, W.A.; Betancourt-Quiroz, M.; Leslie Gunatilaka, A.A.; Perfect, J.R.; Cowen, L.E. PKC Signaling Regulates Drug Resistance of the Fungal Pathogen Candida albicans via Circuitry Comprised of Mkc1, Calcineurin, and Hsp90. PLoS Pathog. 2010, 6, e1001069. [Google Scholar] [CrossRef] [PubMed]
  103. Cowen, L.E. The Evolution of Fungal Drug Resistance: Modulating the Trajectory from Genotype to Phenotype. Nat. Rev. Microbiol. 2008, 6, 187–198. [Google Scholar] [CrossRef]
  104. Juvvadi, P.R.; Lee, S.C.; Heitman, J.; Steinbach, W.J. Calcineurin in Fungal Virulence and Drug Resistance: Prospects for Harnessing Targeted Inhibition of Calcineurin for an Antifungal Therapeutic Approach. Virulence 2017, 8, 186–197. [Google Scholar] [CrossRef]
  105. Cowen, L.E.; Lindquist, S. Cell Biology: Hsp90 Potentiates the Rapid Evolution of New Traits: Drug Resistance in Diverse Fungi. Science 2005, 309, 2185–2189. [Google Scholar] [CrossRef]
  106. Stie, J.; Fox, D. Calcineurin Regulation in Fungi and Beyond. Eukaryot. Cell 2008, 7, 177–186. [Google Scholar] [CrossRef]
  107. Graminha, M.A.S.; Rocha, E.M.F.; Prade, R.A.; Martinez-Rossi, N.M. Terbinafine Resistance Mediated by Salicylate 1-Monooxygenase in Aspergillus Nidulans. Antimicrob. Agents Chemother. 2004, 48, 3530–3535. [Google Scholar] [CrossRef]
  108. Martinez-Rossi, N.M.; Peres, N.T.A.; Bitencourt, T.A.; Martins, M.P.; Rossi, A. State-of-the-Art Dermatophyte Infections: Epidemiology Aspects, Pathophysiology, and Resistance Mechanisms. J. Fungi 2021, 7, 629. [Google Scholar] [CrossRef]
  109. Peres, N.T.; Sanches, P.R.; Falco, J.P.; Silveira, H.C.; Paião, F.G.; Maranhão, F.C.; Gras, D.E.; Segato, F.; Cazzaniga, R.A.; Mazucato, M.; et al. Transcriptional Profiling Reveals the Expression of Novel Genes in Response to Various Stimuli in the Human Dermatophyte Trichophyton rubrum. BMC Microbiol. 2010, 10, 39. [Google Scholar] [CrossRef]
  110. Santos, H.L.; Lang, E.A.S.; Segato, F.; Rossi, A.; Martinez-Rossi, N.M. Terbinafine Resistance Conferred by Multiple Copies of the Salicylate 1-Monooxygenase Gene in Trichophyton rubrum. Med. Mycol. 2018, 56, 378–381. [Google Scholar] [CrossRef]
  111. Khurana, A.; Sharath, S.; Sardana, K.; Chowdhary, A.; Panesar, S. Therapeutic Updates on the Management of Tinea Corporis or Cruris in the Era of Trichophyton indotineae: Separating Evidence from Hype—A Narrative Review. Indian J. Dermatol. 2023, 68, 525. [Google Scholar] [CrossRef] [PubMed]
  112. Crotti, S.; Cruciani, D.; Spina, S.; Piscioneri, V.; Natalini, Y.; Pezzotti, G.; Sabbatucci, M.; Papini, M. A Terbinafine Sensitive Trichophyton indotineae Strain in Italy: The First Clinical Case of Tinea Corporis and Onychomycosis. J. Fungi 2023, 9, 865. [Google Scholar] [CrossRef]
  113. Brasch, J.; Gräser, Y.; Beck-Jendroscheck, V.; Voss, K.; Torz, K.; Walther, G.; Schwarz, T. “Indian” Strains of Trichophyton mentagrophytes with Reduced Itraconazole Susceptibility in Germany. JDDG J. Ger. Soc. Dermatol. 2021, 19, 1723–1727. [Google Scholar] [CrossRef] [PubMed]
  114. Bohn, M.; Kraemer, K.T. Dermatopharmacology of Ciclopirox Nail Lacquer Topical Solution 8% in the Treatment of Onychomycosis. J. Am. Acad. Dermatol. 2000, 43, S57–S69. [Google Scholar] [CrossRef] [PubMed]
  115. Tan, T.Y.; Wang, Y.S.; Wong, X.Y.A.; Rajandran, P.; Tan, M.G.; Tan, A.L.; Tan, Y.E. First Reported Case of Trichophyton indotineae Dermatophytosis in Singapore. Pathology 2024, 56, 909–913. [Google Scholar] [CrossRef]
  116. Thakur, R.; Kushwaha, P.; Kalsi, A.S. Tinea Universalis Due to Trichophyton indotineae in an Adult Male. Indian J. Med. Microbiol. 2023, 46, 100476. [Google Scholar] [CrossRef]
  117. Jia, S.; Long, X.; Hu, W.; Zhu, J.; Jiang, Y.; Ahmed, S.; de Hoog, G.S.; Liu, W.; Jiang, Y. The Epidemic of the Multiresistant Dermatophyte Trichophyton indotineae Has Reached China. Front. Immunol. 2023, 13, 1113065. [Google Scholar] [CrossRef]
  118. Pavlović, M.D.; Marzouk, S.; Bećiri, L. Widespread Dermatophytosis in a Healthy Adolescent: The First Report of Multidrug-Resistant Trichophyton indotineae Infection in the UAE. Acta Dermatovenerol. Alp. Pannonica Adriat. 2024, 33, 53–55. [Google Scholar] [CrossRef]
  119. Bui, T.S.; Chan, J.B.; Katz, K.A. Extensive Multidrug-Resistant Dermatophytosis From Trichophyton indotineae. Cutis 2024, 113, E20–E23. [Google Scholar] [CrossRef]
  120. Cowen, L.E.; Sanglard, D.; Howard, S.J.; Rogers, P.D.; Perlin, D.S. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb. Perspect. Med. 2015, 5, a019752. [Google Scholar] [CrossRef]
  121. Dastghaib, L.; Azizzadeh, M.; Jafari, P. Therapeutic Options for the Treatment of Tinea Capitis: Griseofulvin versus Fluconazole. J. Dermatol. Treat. 2005, 16, 43–46. [Google Scholar] [CrossRef] [PubMed]
  122. Hassaan, Z.R.A.A.; Mohamed, H.A.K.; Eldahshan, R.M.; Elsaie, M.L. Comparison between the Efficacy of Terbinafine and Itraconazole Orally vs. the Combination of the Two Drugs in Treating Recalcitrant Dermatophytosis. Sci. Rep. 2023, 13, 19037. [Google Scholar] [CrossRef] [PubMed]
  123. Jiang, L.; Lin, Z.; Liu, Y.; Zhai, S.; Waleed Taher, K. Voriconazole: A Review of Adjustment Programs Guided by Therapeutic Drug Monitoring. Front. Pharmacol. 2024, 15, 1439586. [Google Scholar] [CrossRef] [PubMed]
  124. Lockhart, S.R.; Smith, D.J.; Gold, J.A.W. Trichophyton indotineae and Other Terbinafine-Resistant Dermatophytes in North America. J. Clin. Microbiol. 2023, 61, e00903-23. [Google Scholar] [CrossRef]
  125. Yang, Y.L.; Xiang, Z.J.; Yang, J.H.; Wang, W.J.; Xu, Z.C.; Xiang, R.L. Adverse Effects Associated With Currently Commonly Used Antifungal Agents: A Network Meta-Analysis and Systematic Review. Front. Pharmacol. 2021, 12, 697330. [Google Scholar] [CrossRef]
  126. Khurana, A.; Agarwal, A.; Agrawal, D.; Panesar, S.; Ghadlinge, M.; Sardana, K.; Sethia, K.; Malhotra, S.; Chauhan, A.; Mehta, N. Effect of Different Itraconazole Dosing Regimens on Cure Rates, Treatment Duration, Safety, and Relapse Rates in Adult Patients with Tinea Corporis/Cruris: A Randomized Clinical Trial. JAMA Dermatol. 2022, 158, 1269. [Google Scholar] [CrossRef]
  127. Sabatelli, F.; Patel, R.; Mann, P.A.; Mendrick, C.A.; Norris, C.C.; Hare, R.; Loebenberg, D.; Black, T.A.; McNicholas, P.M. In Vitro Activities of Posaconazole, Fluconazole, Itraconazole, Voriconazole, and Amphotericin B against a Large Collection of Clinically Important Molds and Yeasts. Antimicrob. Agents Chemother. 2006, 50, 2009–2015. [Google Scholar] [CrossRef]
  128. Caplan, A.S.; Gold, J.A.W.; Smith, D.J.; Lipner, S.R.; Pappas, P.G.; Elewski, B. Improving Antifungal Stewardship in Dermatology in an Era of Emerging Dermatophyte Resistance. JAAD Int. 2024, 15, 168–169. [Google Scholar] [CrossRef]
  129. Miller, R.A. A Case for Antifungal Stewardship. Curr. Fungal Infect. Rep. 2018, 12, 33–43. [Google Scholar] [CrossRef]
  130. Rodríguez Stewart, R.M.; Gold, J.A.W.; Chiller, T.; Sexton, D.J.; Lockhart, S.R. Will Invasive Fungal Infections Be The Last of Us? The Importance of Surveillance, Public-Health Interventions, and Antifungal Stewardship. Expert Rev. Anti-Infect. Ther. 2023, 21, 787–790. [Google Scholar] [CrossRef]
  131. Pathania, Y.S.; Cds, K.; Kumar, A. Comparing Emollient Use with Topical Luliconazole (Azole) in the Maintenance of Remission of Chronic and Recurrent Dermatophytosis. An Open-Label, Randomized Prospective Active-Controlled Non-Inferiority Study. Mycoses 2024, 67, e13659. [Google Scholar] [CrossRef] [PubMed]
  132. Gupta, A.K.; Cooper, E.A. Safety and Efficacy of a 48-Month Efinaconazole 10% Solution Treatment/Maintenance Regimen: 24-Month Daily Use Followed by 24-Month Intermittent Use. Infect. Dis. Rep. 2025, 17, 7. [Google Scholar] [CrossRef] [PubMed]
  133. Shenoy, M.M.; Rengasamy, M.; Dogra, S.; Kaur, T.; Asokan, N.; Sarveswari, K.N.; Poojary, S.; Arora, D.; Patil, S.; Das, A.; et al. A Multicentric Clinical and Epidemiological Study of Chronic and Recurrent Dermatophytosis in India. Mycoses 2022, 65, 13–23. [Google Scholar] [CrossRef] [PubMed]
  134. Bertagnolio, S.; Dobreva, Z.; Centner, C.M.; Olaru, I.D.; Donà, D.; Burzo, S.; Huttner, B.D.; Chaillon, A.; Gebreselassie, N.; Wi, T.; et al. WHO Global Research Priorities for Antimicrobial Resistance in Human Health. Lancet Microbe 2024, 5, 100902. [Google Scholar] [CrossRef]
  135. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action. Available online: https://www.who.int/publications/i/item/9789240060241 (accessed on 8 April 2025).
  136. Ray, A.; Das, A.; Panda, S. Antifungal Stewardship: What We Need to Know. Indian J. Dermatol. Venereol. Leprol. 2023, 89, 5–11. [Google Scholar] [CrossRef]
  137. Valerio, M.; Muñoz, P.; Rodríguez, C.G.; Caliz, B.; Padilla, B.; Fernández-Cruz, A.; Sánchez-Somolinos, M.; Gijón, P.; Peral, J.; Gayoso, J.; et al. Antifungal Stewardship in a Tertiary-Care Institution: A Bedside Intervention. Clin. Microbiol. Infect. 2015, 21, e1–e492. [Google Scholar] [CrossRef]
  138. Crotti, S.; Cruciani, D.; Sabbatucci, M.; Spina, S.; Piscioneri, V.; Torricelli, M.; Calcaterra, R.; Farina, C.; Pisano, L.; Papini, M. Terbinafine Resistance in Trichophyton Strains Isolated from Humans and Animals: A Retrospective Cohort Study in Italy, 2016 to May 2024. J. Clin. Med. 2024, 13, 5493. [Google Scholar] [CrossRef]
  139. Gupta, A.K.; Versteeg, S.G. The Role of Shoe and Sock Sanitization in the Management of Superficial Fungal Infections of the Feet. J. Am. Podiatr. Med. Assoc. 2019, 109, 141–149. [Google Scholar] [CrossRef]
  140. Skaastrup, K.N.; Astvad, K.M.T.; Arendrup, M.C.; Jemec, G.B.E.; Saunte, D.M.L. Disinfection Trials with Terbinafine-Susceptible and Terbinafine-Resistant Dermatophytes. Mycoses 2022, 65, 741–746. [Google Scholar] [CrossRef]
  141. Akhoundi, M.; Nasrallah, J.; Marteau, A.; Chebbah, D.; Izri, A.; Brun, S. Effect of Household Laundering, Heat Drying, and Freezing on the Survival of Dermatophyte Conidia. J. Fungi 2022, 8, 546. [Google Scholar] [CrossRef]
  142. Hammer, T.R.; Mucha, H.; Hoefer, D. Dermatophyte Susceptibility Varies towards Antimicrobial Textiles. Mycoses 2012, 55, 344–351. [Google Scholar] [CrossRef] [PubMed]
  143. Ghannoum, M.A.; Isham, N.; Long, L. Optimization of an Infected Shoe Model for the Evaluation of an Ultraviolet Shoe Sanitizer Device. J. Am. Podiatr. Med. Assoc. 2012, 102, 309–313. [Google Scholar] [CrossRef] [PubMed]
  144. Goodyear, N. Effectiveness of Five-Day-Old 10% Bleach in a Student Microbiology Laboratory Setting. Am. Soc. Clin. Lab. Sci. 2012, 25, 219–223. [Google Scholar] [CrossRef]
Figure 1. PRISMA flow diagram illustrating the selection process for studies included in the review. Literature searches were performed in PubMed, Embase (Ovid), and Web of Science. The retrieved records (n = 1122) were deduplicated with 398 duplicates removed (124 manually and 274 by Covidence). Then, 641 studies were filtered through critical inclusion criteria, resulting in 83 studies selected.
Figure 1. PRISMA flow diagram illustrating the selection process for studies included in the review. Literature searches were performed in PubMed, Embase (Ovid), and Web of Science. The retrieved records (n = 1122) were deduplicated with 398 duplicates removed (124 manually and 274 by Covidence). Then, 641 studies were filtered through critical inclusion criteria, resulting in 83 studies selected.
Antibiotics 14 00472 g001
Figure 2. Terbinafine susceptibility patterns of T. indotineae and T. rubrum [25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69]. Terbinafine resistance studies reporting MIC values for 50% (MIC50) and 90% (MIC90) inhibition of isolate growth, respectively, under CLSI (green: MIC50; blue: MIC90) and EUCAST protocols (yellow: MIC50).
Figure 2. Terbinafine susceptibility patterns of T. indotineae and T. rubrum [25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69]. Terbinafine resistance studies reporting MIC values for 50% (MIC50) and 90% (MIC90) inhibition of isolate growth, respectively, under CLSI (green: MIC50; blue: MIC90) and EUCAST protocols (yellow: MIC50).
Antibiotics 14 00472 g002
Figure 3. Mechanisms of terbinafine resistance in dermatophytes, encompassing disruption of terbinafine binding to squalene epoxidase (1), overexpression of efflux channel (2), biofilm production (3), heat shock proteins (4), and target degradation via the salA gene (5).
Figure 3. Mechanisms of terbinafine resistance in dermatophytes, encompassing disruption of terbinafine binding to squalene epoxidase (1), overexpression of efflux channel (2), biofilm production (3), heat shock proteins (4), and target degradation via the salA gene (5).
Antibiotics 14 00472 g003
Figure 4. SQLE gene mutation distribution (in percentage) in T. rubrum (top panel, 24 isolates) vs. T. indotineae (bottom panel, 212 isolates) [28,29,30,31,34,36,37,39,42,44,45,50,51,52,55,61,62,66,76,77,78,79,80]. SNVs are indicated on the y-axis; isolate proportions are indicated on the x-axis.
Figure 4. SQLE gene mutation distribution (in percentage) in T. rubrum (top panel, 24 isolates) vs. T. indotineae (bottom panel, 212 isolates) [28,29,30,31,34,36,37,39,42,44,45,50,51,52,55,61,62,66,76,77,78,79,80]. SNVs are indicated on the y-axis; isolate proportions are indicated on the x-axis.
Antibiotics 14 00472 g004
Figure 5. Critical Strategies for Antifungal Stewardship.
Figure 5. Critical Strategies for Antifungal Stewardship.
Antibiotics 14 00472 g005
Table 1. Clinical characteristics of T. rubrum and T. indotineae infections.
Table 1. Clinical characteristics of T. rubrum and T. indotineae infections.
Trichophyton rubrumTrichophyton indotineae
SummaryCurrently the most prominent
dermatophyte worldwide.
Distinguishing morphological
features in KOH and culture
Terbinafine-resistant Trichophyton mentagrophytes with ITS genotype VIII
May be indistinguishable from
Trichophyton mentagrophytes/interdigitale complex unless sequenced
Common lesion sitesTinea pedis
Tinea corporis
Tinea cruris
Onychomycosis
Tinea corporis
Tinea cruris
Tinea faciei
Lesion characteristicsAnnular, scaly plaques with
central clearing
Dry scaling on soles: tinea pedis
Chronic, mild progression
Common nail infection: thickened, discolored, brittle nails
Scalp involvement uncommon
Intense pruritus
Erythematous, scaly plaques
Multiple concentric ring-on-ring patterns
Severe, chronic, and recalcitrant
lesions
Nail involvement uncommon
Scalp involvement uncommon
Response to
terbinafine
Generally, responds to terbinafine, although squalene epoxidase (SQLE) mutations have been reported in resistant casesHighly resistant to terbinafine
Exhibit squalene epoxidase (SQLE) mutations and resistance to terbinafine
Itraconazole or combination therapies (oral plus topical) may be required
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Gupta, A.K.; Susmita; Nguyen, H.C.; Liddy, A.; Economopoulos, V.; Wang, T. Terbinafine Resistance in Trichophyton rubrum and Trichophyton indotineae: A Literature Review. Antibiotics 2025, 14, 472. https://doi.org/10.3390/antibiotics14050472

AMA Style

Gupta AK, Susmita, Nguyen HC, Liddy A, Economopoulos V, Wang T. Terbinafine Resistance in Trichophyton rubrum and Trichophyton indotineae: A Literature Review. Antibiotics. 2025; 14(5):472. https://doi.org/10.3390/antibiotics14050472

Chicago/Turabian Style

Gupta, Aditya K., Susmita, Hien C. Nguyen, Amanda Liddy, Vasiliki Economopoulos, and Tong Wang. 2025. "Terbinafine Resistance in Trichophyton rubrum and Trichophyton indotineae: A Literature Review" Antibiotics 14, no. 5: 472. https://doi.org/10.3390/antibiotics14050472

APA Style

Gupta, A. K., Susmita, Nguyen, H. C., Liddy, A., Economopoulos, V., & Wang, T. (2025). Terbinafine Resistance in Trichophyton rubrum and Trichophyton indotineae: A Literature Review. Antibiotics, 14(5), 472. https://doi.org/10.3390/antibiotics14050472

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop