Hospital Wastewater as a Reservoir of Contaminants of Emerging Concern: A Study Report from South America, Chile
Abstract
1. Introduction
2. Results
2.1. Microbial Pathogens and Virulence Potential in Wastewater
2.2. Antimicrobial Resistances in Wastewater
2.3. Physicochemical and Pharmaceutical Detection in Hospital Wastewater
3. Discussion
4. Materials and Methods
4.1. Wastewater Sample Collection and Microbial Isolation
4.2. Microbial Characterization
4.3. Antimicrobial Susceptibility Assay
4.4. DNA Isolation, Shotgun Sequencing, and Metagenomic Analysis
4.5. Physicochemical Analysis of Wastewater
4.6. Pharmaceutical Analysis by HPLC-DAD
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater Biodiversity: Importance, Threats, Status and Conservation Challenges. Biol. Rev. Camb. Philos. Soc. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Yang, H.; Xu, X. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Von Sperling, M. Wastewater Characteristics, Treatment and Disposal; IWA Publishing: London, UK, 2015; Volume 6. [Google Scholar] [CrossRef]
- Kelly, S.A.; O’Connell, N.H.; Thompson, T.P.; Dillon, L.; Wu, J.; Creevey, C.; Kiely, P.; Slevin, B.; Powell, J.; Gilmore, B.F.; et al. Large-Scale Characterization of Hospital Wastewater System Microbiomes and Clinical Isolates from Infected Patients: Profiling of Multi-Drug-Resistant Microbial Species. J. Hosp. Infect. 2023, 141, 152–166. [Google Scholar] [CrossRef] [PubMed]
- Mackull’ak, T.; Cverenkárová, K.; Stanová, A.; Fehér, M.; Tamás, M.; Škulcová, A.; Gál, M.; Naumowicz, M.; Špalkov, V.; Bírošová, L. Hospital Wastewater—Source of Specific Micropollutants. Antibiotics 2021, 10, 1070. [Google Scholar] [CrossRef]
- McCarthy, B.; Apori, S.O.; Giltrap, M.; Bhat, A.; Curtin, J.; Tian, F. Hospital Effluents and Wastewater Treatment Plants: A Source of Oxytetracycline and Antimicrobial--resistant Bacteria in Seafood. Sustainability 2021, 13, 3967. [Google Scholar] [CrossRef]
- Evoung Chandja, W.B.; Onanga, R.; Mbehang Nguema, P.P.; Lendamba, R.W.; Mouanga-Ndzime, Y.; Mavoungou, J.F.; Godreuil, S. Emergence of Antibiotic Residues and Antibiotic-Resistant Bacteria in Hospital Wastewater: A Potential Route of Spread to African Streams and Rivers, a Review. Water 2024, 16, 3179. [Google Scholar] [CrossRef]
- Nolasco-Rojas, A.E.; Cruz-Del-Agua, E.; Cruz-Cruz, C.; Loyola-Cruz, M.Á.; Ayil-Gutiérrez, B.A.; Tamayo-Ordóñez, M.C.; Tamayo-Ordoñez, Y.d.J.; Rojas-Bernabé, A.; Tamayo-Ordoñez, F.A.; Durán-Manuel, E.M.; et al. Microbiological Risks to Health Associated with the Release of Antibiotic-Resistant Bacteria and β-Lactam Antibiotics Through Hospital Wastewater. Pathogens 2025, 14, 402. [Google Scholar] [CrossRef]
- La Rosa, M.C.; Maugeri, A.; Favara, G.; La Mastra, C.; Magnano San Lio, R.; Barchitta, M.; Agodi, A. The Impact of Wastewater on Antimicrobial Resistance: A Scoping Review of Transmission Pathways and Contributing Factors. Antibiotics 2025, 14, 131. [Google Scholar] [CrossRef]
- Cruz-Cruz, C.; Gaytán-Cervantes, J.; González-Torres, C.; Nolasco-Rojas, A.E.; Loyola-Cruz, M.Á.; Delgado-Balbuena, L.; Delgado-Balbuena, J.; Paredes-Mendoza, M.; Tamayo-Ordóñez, M.C.; Tamayo-Ordoñez, Y.d.J.; et al. Profiling of Bacterial Communities of Hospital Wastewater Reveals Clinically Relevant Genera and Antimicrobial Resistance Genes. Microorganisms 2025, 13, 1316. [Google Scholar] [CrossRef]
- Lan, L.; Wang, Y.; Chen, Y.; Wang, T.; Zhang, J.; Tan, B. A Review on the Prevalence and Treatment of Antibiotic Resistance Genes in Hospital Wastewater. Toxics 2025, 13, 263. [Google Scholar] [CrossRef]
- Bairán, G.; Rebollar-Pérez, G.; Chávez-Bravo, E.; Torres, E. Treatment Processes for Microbial Resistance Mitigation: The Technological Contribution to Tackle the Problem of Antibiotic Resistance. Int. J. Environ. Res. Public Health 2020, 17, 8866. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, E.; Perrodin, Y.; Keck, G.; Blanchard, J.M.; Vermande, P. Ecotoxicological Risk Assessment of Hospital Wastewater: A Proposed Framework for Raw Effluents Discharging into Urban Sewer Network. J. Hazard. Mater. 2005, 117, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Murcia Mesa, J.J.; Arias Bolivar, L.G.; Sarmiento, H.A.R.; Martínez, E.G.Á.; Páez, C.J.; Lara, M.A.; Santos, J.A.N.; del Carmen Hidalgo López, M. Urban Wastewater Treatment by Using Ag/ZnO and Pt/TiO2 Photocatalysts. Environ. Sci. Pollut. Res. 2019, 26, 4171–4179. [Google Scholar] [CrossRef] [PubMed]
- Azuma, T.; Katagiri, M.; Yamamoto, T.; Kuroda, M. Effectiveness of Implementing Hospital Wastewater Treatment Systems as a Measure to Mitigate the Microbial and Antimicrobial Burden on the Environment. Antibiotics 2025, 14, 807. [Google Scholar] [CrossRef]
- Ugrina, M.; Milojković, J. Advances in Wastewater Treatment, 2024. Energies 2024, 17, 1400. [Google Scholar] [CrossRef]
- Martelo, J.; Lara, J. Floating Macrophytes on the Wastewater Treatment: A State of the Art Review. Ing. Cienc. 2012, 8, 221–243. [Google Scholar] [CrossRef]
- Bhandari, G.; Chaudhary, P.; Gangola, S.; Gupta, S.; Gupta, A.; Rafatullah, M.; Chen, S. A Review on Hospital Wastewater Treatment Technologies: Current Management Practices and Future Prospects. J. Water Process Eng. 2023, 56, 104516. [Google Scholar] [CrossRef]
- Xue, Z.; Han, Y.; Tian, W.; Zhang, W. Metagenome Sequencing and 103 Microbial Genomes from Ballast Water and Sediments. Sci. Data 2023, 10, 536. [Google Scholar] [CrossRef]
- Donchev, D.; Ivanov, I.N.; Stoikov, I.; Ivanova, M. Metagenomic Investigation of the Short-Term Temporal and Spatial Dynamics of the Bacterial Microbiome and the Resistome Downstream of a Wastewater Treatment Plant in the Iskar River in Bulgaria. Microorganisms 2024, 12, 1250. [Google Scholar] [CrossRef]
- Chile, M.d.O.P.d. Decreto 609; Biblioteca del Congreso Nacional de Chile/BCN: Santiago, Chile, 1998. [Google Scholar]
- Khan, M.T.; Shah, I.A.; Ihsanullah, I.; Naushad, M.; Ali, S.; Shah, S.H.A.; Mohammad, A.W. Hospital Wastewater as a Source of Environmental Contamination: An Overview of Management Practices, Environmental Risks, and Treatment Processes. J. Water Process Eng. 2021, 41, 101990. [Google Scholar] [CrossRef]
- Herrera Martínez, T.; Santander Rigollet, S.; Contreras Cerda, P. Plan Nacional Contra La Resistencia a Los Antimicrobianos Chile 2021–2025; Ministerio de Salud (MINSAL): Santiago, Chile, 2021. [Google Scholar]
- Galarde-López, M.; Velazquez-Meza, M.E.; Godoy-Lozano, E.E.; Carrillo-Quiroz, B.A.; Cornejo-Juárez, P.; Sassoé-González, A.; Ponce-de-León, A.; Saturno-Hernández, P.; Alpuche-Aranda, C.M. Presence and Persistence of ESKAPEE Bacteria before and after Hospital Wastewater Treatment. Microorganisms 2024, 12, 1231. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, M.; Praise, S.; Tsurumaki, K.; Baba, H.; Kanamori, H.; Watanabe, T. Prevalence of Antibiotic-Resistant Bacteria ESKAPE among Healthy People Estimated by Monitoring of Municipal Wastewater. Antibiotics 2021, 10, 495. [Google Scholar] [CrossRef] [PubMed]
- Bouteiller, M.; Dupont, C.; Bourigault, Y.; Latour, X.; Barbey, C.; Konto-Ghiorghi, Y.; Merieau, A. Pseudomonas Flagella: Generalities and Specificities. Int. J. Mol. Sci. 2021, 22, 3337. [Google Scholar] [CrossRef]
- Dechathai, T.; Singkhamanan, K.; Yaikhan, T.; Chusri, S.; Pomwised, R.; Wonglapsuwan, M.; Surachat, K. Comprehensive Genomic Analysis of Pseudomonas Aeruginosa PSU9449 Isolated from a Clinical Case in Thailand. Antibiotics 2025, 14, 530. [Google Scholar] [CrossRef] [PubMed]
- Addae-Nuku, D.S.; Kotey, F.C.N.; Dayie, N.T.K.D.; Osei, M.-M.; Tette, E.M.A.; Debrah, P.; Donkor, E.S. Multidrug-Resistant Bacteria in Hospital Wastewater of the Korle Bu Teaching Hospital in Accra, Ghana. Environ. Health Insights 2022, 16, 11786302221130613. [Google Scholar] [CrossRef]
- Govender, R.; Amoah, I.D.; Adegoke, A.A.; Singh, G.; Kumari, S.; Swalaha, F.M.; Bux, F.; Stenström, T.A. Identification, Antibiotic Resistance, and Virulence Profiling of Aeromonas and Pseudomonas Species from Wastewater and Surface Water. Environ. Monit. Assess. 2021, 193, 294. [Google Scholar] [CrossRef]
- Vincent, A.T.; Fernández-Bravo, A.; Sanchis, M.; Mayayo, E.; Figueras, M.J.; Charette, S.J. Investigation of the Virulence and Genomics of Aeromonas Salmonicida Strains Isolated from Human Patients. Infect. Genet. Evol. 2019, 68, 1–9. [Google Scholar] [CrossRef]
- Drk, S.; Puljko, A.; Dželalija, M.; Udiković-Kolić, N. Characterization of Third Generation Cephalosporin- and Carbapenem-Resistant Aeromonas Isolates from Municipal and Hospital Wastewater. Antibiotics 2023, 12, 513. [Google Scholar] [CrossRef]
- Leanza, C.; Mascellino, M.T.; Volpicelli, L.; Covino, S.; Falletta, A.; Cancelli, F.; Franchi, C.; Carnevalini, M.; Mastroianni, C.M.; Oliva, A. Real-World Use of Imipenem/Cilastatin/Relebactam for the Treatment of KPC-Producing Klebsiella Pneumoniae Complex and Difficult-to-Treat Resistance (DTR) Pseudomonas Aeruginosa Infections: A Single-Center Preliminary Experience. Front. Microbiol. 2024, 15, 1432296. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Suzuki, M.; Kobayashi, S.; Hirahara, Y.; Kurushima, J.; Hirakawa, H.; Nomura, T.; Tanimoto, K.; Tomita, H. Enterococcal Linear Plasmids Adapt to Enterococcus Faecium and Spread within Multidrug-Resistant Clades. Antimicrob. Agents Chemother. 2023, 67, e01619-22. [Google Scholar] [CrossRef]
- Lombardi, A.; Ripabelli, G.; Sammarco, M.L.; Tamburro, M. Enterococcus Faecium as an Emerging Pathogen: Molecular Epidemiology and Antimicrobial Resistance in Clinical Strains. Pathogens 2025, 14, 483. [Google Scholar] [CrossRef]
- Karami-Zarandi, M.; Rahdar, H.A.; Esmaeili, H.; Ranjbar, R. Klebsiella pneumoniae: An Update on Antibiotic Resistance Mechanisms. Future Microbiol. 2023, 18, 65–81. [Google Scholar] [CrossRef]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella Pneumoniae: A Major Worldwide Source and Shuttle for Antibiotic Resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef]
- Morales-León, F.; Matus-Köhler, M.; Araya-Vega, P.; Aguilera, F.; Torres, I.; Vera, R.; Ibarra, C.; Venegas, S.; Bello-Toledo, H.; González-Rocha, G.; et al. Molecular Characterization of the Convergent Carbapenem-Resistant and Hypervirulent Klebsiella Pneumoniae Strain K1-ST23, Collected in Chile during the COVID-19 Pandemic. Microbiol. Spectr. 2023, 11, e00540-23. [Google Scholar] [CrossRef] [PubMed]
- Villacís, J.E.; Castelán-Sánchez, H.G.; Rojas-Vargas, J.; Rodríguez-Cruz, U.E.; Albán, V.; Reyes, J.A.; Meza-Rodríguez, P.M.; Dávila-Ramos, S.; Villavicencio, F.; Galarza, M.; et al. Emergence of Raoultella ornithinolytica in Human Infections from Different Hospitals in Ecuador with OXA-48-Producing Resistance. Front. Microbiol. 2023, 14, 1216008. [Google Scholar] [CrossRef] [PubMed]
- Etani, T.; Kondo, S.; Yanase, T.; Morikawa, T.; Aoki, M.; Gonda, M.; Tomiyama, N.; Nagai, T.; Iida, K.; Iwatsuki, S.; et al. Clinical Characteristics of Raoultella ornithinolytica Bacteremia and Antimicrobial Susceptibility of Raoultella ornithinolytica. J. Infect. Chemother. 2023, 29, 554–557. [Google Scholar] [CrossRef] [PubMed]
- Gregova, G.; Kmet, V.; Szaboova, T. New Insight on Antibiotic Resistance and Virulence of Escherichia Coli from Municipal and Animal Wastewater. Antibiotics 2021, 10, 1111. [Google Scholar] [CrossRef]
- Campanini-Salinas, J.; Opitz-Ríos, C.; Sagredo-Mella, J.A.; Contreras-Sanchez, D.; Giménez, M.; Páez, P.; Tarifa, M.C.; Rubio, N.D.; Medina, D.A. Antimicrobial Resistance Elements in Coastal Water of Llanquihue Lake, Chile. Antibiotics 2024, 13, 679. [Google Scholar] [CrossRef]
- Opitz-Ríos, C.; Burgos-Pacheco, A.; Paredes-Cárcamo, F.; Campanini-Salinas, J.; Medina, D.A. Metagenomics Insight into Veterinary and Zoonotic Pathogens Identified in Urban Wetlands of Los Lagos, Chile. Pathogens 2024, 13, 788. [Google Scholar] [CrossRef]
- Yao, S.; Ye, J.; Yang, Q.; Hu, Y.; Zhang, T.; Jiang, L.; Munezero, S.; Lin, K.; Cui, C. Occurrence and Removal of Antibiotics, Antibiotic Resistance Genes, and Bacterial Communities in Hospital Wastewater. Environ. Sci. Pollut. Res. 2021, 28, 57321–57333. [Google Scholar] [CrossRef]
- Cai, M.; Wang, Z.; Gu, H.; Dong, H.; Zhang, X.; Cui, N.; Zhou, L.; Chen, G.; Zou, G. Occurrence and Temporal Variation of Antibiotics and Antibiotic Resistance Genes in Hospital Inpatient Department Wastewater: Impacts of Daily Schedule of Inpatients and Wastewater Treatment Process. Chemosphere 2022, 292, 133405. [Google Scholar] [CrossRef] [PubMed]
- Talat, A.; Blake, K.S.; Dantas, G.; Khan, A.U. Metagenomic Insight into Microbiome and Antibiotic Resistance Genes of High Clinical Concern in Urban and Rural Hospital Wastewater of Northern India Origin: A Major Reservoir of Antimicrobial Resistance. Microbiol. Spectr. 2023, 11, e04102-22. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Yuan, L.; Shuai, X.-Y.; Lin, Z.-J.; Sun, Y.-J.; Zhou, Z.-C.; Meng, L.-X.; Ju, F.; Chen, H. Deciphering Basic and Key Traits of Antibiotic Resistome in Influent and Effluent of Hospital Wastewater Treatment Systems. Water Res. 2023, 231, 119614. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, N.; Lei, C.; Chen, B.; Wang, T.; Ma, Y.; Lu, T.; Penuelas, J.; Gillings, M.; Zhu, Y.G.; et al. Metagenomic Insight into The Global Dissemination of The Antibiotic Resistome. Adv. Sci. 2023, 10, 2303925. [Google Scholar] [CrossRef]
- Daouk, S.; Chèvre, N.; Vernaz, N.; Widmer, C.; Daali, Y.; Fleury-Souverain, S. Dynamics of Active Pharmaceutical Ingredients Loads in a Swiss University Hospital Wastewaters and Prediction of the Related Environmental Risk for the Aquatic Ecosystems. Sci. Total Environ. 2016, 547, 244–253. [Google Scholar] [CrossRef]
- Gönder, Z.B.; Kara, E.M.; Celik, B.O.; Vergili, I.; Kaya, Y.; Altinkum, S.M.; Bagdatli, Y.; Yilmaz, G. Detailed Characterization, Antibiotic Resistance and Seasonal Variation of Hospital Wastewater. Environ. Sci. Pollut. Res. 2021, 28, 16380–16393. [Google Scholar] [CrossRef]
- Agarwal, N. Paracetamol—A Contaminant of High Concern: Existence in Environment and Adverse Effect. Pharm. Drug Regul. Aff. J. 2022, 5, 000128. [Google Scholar] [CrossRef]
- Sha’aba, R.I.; Chia, M.A.; Alhassan, A.B.; Gana, Y.A.; Gadzama, I.M.K. Single and Combined Effects of Diclofenac, Ibuprofen, and Paracetamol on Phytoplankton Community Structure and Dynamics. J. Appl. Phycol. 2025, 37, 2455–2467. [Google Scholar] [CrossRef]
- Domínguez-Montero, L.; De La Cruz Burelo, E.; Viveros, A.P.; Poggi-Varaldo, H. Working Toward an Environmental Risk Assessment of Emerging Contaminants in Wastewater: The Case of Amoxicillin. Water Air Soil. Pollut. 2025, 236, 366. [Google Scholar] [CrossRef]
- Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban Wastewater Treatment Plants as Hotspots for Antibiotic Resistant Bacteria and Genes Spread into the Environment: A Review. Sci. Total Environ. 2013, 447, 345–360. [Google Scholar] [CrossRef]
- Radjenović, J.; Petrović, M.; Barceló, D. Fate and Distribution of Pharmaceuticals in Wastewater and Sewage Sludge of the Conventional Activated Sludge (CAS) and Advanced Membrane Bioreactor (MBR) Treatment. Water Res. 2009, 43, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, L.; Fiorentino, A.; Anselmo, A. Advanced Treatment of Urban Wastewater by UV Radiation: Effect on Antibiotics and Antibiotic-Resistant E. coli Strains. Chemosphere 2013, 92, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S Ribosomal DNA Amplification for Phylogenetic Study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Lewis, J.S.; Mathers, A.J.; Bobenchik, A.M.; Bryson, A.L.; Campeau, S.; Cullen, S.K.; Dingle, T. M100Ed34|Performance Standards for Antimicrobial Susceptibility Testing, 34th ed.; A CLSI Supplement for Global Application; Clinical and Laboratory Standards Institute’s (CLSI): Wayne, PA, USA, 2024; Available online: https://clsi.org/shop/standards/m100/ (accessed on 25 October 2024).
- Humphries, R.M.; Ambler, J.; Mitchell, S.L.; Castanheira, M.; Dingle, T.; Hindler, J.A.; Koeth, L.; Sei, K. CLSI Methods Development and Standardization Working Group Best Practices for Evaluation of Antimicrobial Susceptibility Tests. J. Clin. Microbiol. 2018, 56, 10–1128. [Google Scholar] [CrossRef]
- Rocha, J.D.; Opitz, C.; Cárdenas, V.; Mella, C.; Medina, D.A. Identification of Potentially Harmful Bacterial Genera of Veterinary Relevance in the Llanquihue Urban Wetlands. Austral J. Vet. Sci. 2024, 56, 47–54. [Google Scholar] [CrossRef]
- Andrews, S. FastQC. Babraham Bioinformatics. 2010. Available online: https://github.com/s-andrews/FastQC (accessed on 5 May 2025).
- Bolger, A.M.; Lohse, M.; Usadel, B. Genome Analysis Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S. Bowtie2. Nat. Methods 2013, 9, 357–359. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.M.; Luo, R.; Sadakane, K.; Lam, T.W. MEGAHIT: An Ultra-Fast Single-Node Solution for Large and Complex Metagenomics Assembly via Succinct de Bruijn Graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved Metagenomic Analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast Metagenomic Sequence Classification Using Exact Alignments. Genome Biol. 2014, 15, R46. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Abricate. Available online: https://github.com/tseemann/abricate (accessed on 23 March 2025).
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded Curation, Support for Machine Learning, and Resistome Prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and Refined Dataset for Big Data Analysis—10 Years On. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Liu, B.; Zheng, D.; Chen, L.; Yang, J. VFDB 2025: An Int Egr at Ed Resour Ce f or Exploring Anti-Virulence Compounds. Nucleic Acids Res. 2025, 53, 871–877. [Google Scholar] [CrossRef]
- R Core Team R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; ISBN 3-900051-07-0. Available online: http://www.R-project.org/ (accessed on 4 April 2025).
- Ginestet, C. Ggplot2: Elegant Graphics for Data Analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 2011, 174, 245–246. [Google Scholar] [CrossRef]



| Microbial Genus | BLAST Identity | Strain Number |
|---|---|---|
| Aeromonas | 93.3% | BOL465 |
| Aeromonas | 91.6% | BOL546 |
| Aeromonas | 89.8% | BOL550 |
| Aeromonas | 88.1% | BOL551 |
| Aeromonas | 89.1% | BOL469 |
| Aeromonas | 93.9% | BOL552 |
| Aeromonas. | 90.3% | BOL545 |
| Enterococcus | 94.6% | BOL547 |
| Escherichia | 91.8% | BOL540 |
| Klebsiella | 96.3% | BOL500 |
| Klebsiella | 94.4% | BOL503 |
| Klebsiella | 95.0% | BOL508 |
| Pseudomonas. | 91.6% | BOL509 |
| Raoultella | 96.5% | BOL548 |
| Gene Family | Subtype | Bacteria | Description |
|---|---|---|---|
| alg | C, R, W, U, Z | P. aeruginosa | Biofilm formation, flagellar biogenesis, motility |
| fle | N, Q | P. aeruginosa, A. hydrophyla | Biofilm formation, flagellar biogenesis, motility |
| flg | C, G, H, L | P. aeruginosa, A. hydrophyla, A. salmonicida | Biofilm formation, flagellar biogenesis, motility |
| flh | A | P. aeruginosa, A. hydrophyla, A. salmonicida | Flagellar biogenesis |
| fli | A, E, G, I, M, P, Q | P. aeruginosa, A. hydrophyla, A. salmonicida | Flagellar assembly and biogenesis |
| mot | A | A. hydrophyla, A. salmonicida | Bacterial flagelar motility |
| pil | G, H, J, M, R, T, U | A. baumannii, P. aeruginosa | Pili biogenesis regulation |
| ykg | K | K. pneumoniae | Transcriptional regulator |
| ent | A, B | K. pneumoniae | Iron uptake |
| gsp | G, H, J, M, R, T, U | A. baumannii, K. pneumoniae | Extracellular transport |
| omp | A | A. baumannii, A. hydrophyla, A. salmonicida, K. pneumoniae | Adhesion, pore formation, immune evasion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Rangel, E.J.; Paredes-Cárcamo, F.; Andrade, M.D.; Contreras-Sánchez, D.; Rain-Medina, V.; Campanini-Salinas, J.; Medina, D.A. Hospital Wastewater as a Reservoir of Contaminants of Emerging Concern: A Study Report from South America, Chile. Antibiotics 2025, 14, 1111. https://doi.org/10.3390/antibiotics14111111
Aguilar-Rangel EJ, Paredes-Cárcamo F, Andrade MD, Contreras-Sánchez D, Rain-Medina V, Campanini-Salinas J, Medina DA. Hospital Wastewater as a Reservoir of Contaminants of Emerging Concern: A Study Report from South America, Chile. Antibiotics. 2025; 14(11):1111. https://doi.org/10.3390/antibiotics14111111
Chicago/Turabian StyleAguilar-Rangel, Eduardo J., Francisca Paredes-Cárcamo, Maikol D. Andrade, Danilo Contreras-Sánchez, Vanessa Rain-Medina, Javier Campanini-Salinas, and Daniel A. Medina. 2025. "Hospital Wastewater as a Reservoir of Contaminants of Emerging Concern: A Study Report from South America, Chile" Antibiotics 14, no. 11: 1111. https://doi.org/10.3390/antibiotics14111111
APA StyleAguilar-Rangel, E. J., Paredes-Cárcamo, F., Andrade, M. D., Contreras-Sánchez, D., Rain-Medina, V., Campanini-Salinas, J., & Medina, D. A. (2025). Hospital Wastewater as a Reservoir of Contaminants of Emerging Concern: A Study Report from South America, Chile. Antibiotics, 14(11), 1111. https://doi.org/10.3390/antibiotics14111111

