Cathelicidins: Opportunities and Challenges in Skin Therapeutics and Clinical Translation
Abstract
:1. Introduction
2. Cathelicidins
2.1. Antimicrobial Activity of Cathelicidins
2.2. Immunomodulatory Activity of Cathelicidins
2.3. Wound Healing Properties and Administration of Cathelicidins to the Skin
3. Clinical Applications and Trials
3.1. Clinical Trials of Cathelicidin-Based Therapies
3.2. Clinical Trials Focused on the Modification of Endogenous LL-37 Levels
4. Challenges for Implementing Cathelicidin-Based Therapies in Clinics
4.1. Challenges Associated with the Production and Formulation of Cathelicidins
4.1.1. Alternatives for the Production of Cathelicidins
4.1.2. Strategies for Microbial Production
4.1.3. Strategies for Plant-Based Production
4.1.4. The Development of Target-Specific and Extended-Release Formulations
4.1.5. The Development of Stable and Effective Peptide Formulations
4.2. Challenges Associated with the Microbial Resistance Mechanisms to Cathelicidins
4.2.1. Resistance Mediated by Cell Surface Modifications
4.2.2. Resistance Mediated by Proteolytic Cleavage
4.2.3. Resistance Mediated by Complexation Mechanisms
4.2.4. Resistance Mediated by Energy-Dependent Export
4.2.5. Resistance Mediated by Alteration of Host AMP Production
4.2.6. Resistance Mediated by Bacterial Regulatory Systems
5. Overview and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
AI Statement
References
- Antimicrobial Peptide Database. Available online: https://aps.unmc.edu/home (accessed on 16 December 2024).
- Bhattacharjya, S.; Zhang, Z.; Ramamoorthy, A. LL-37: Structures, antimicrobial activity, and influence on amyloid-related diseases. Biomolecules 2024, 14, 320. [Google Scholar] [CrossRef] [PubMed]
- Kościuczuk, E.M.; Lisowski, P.; Jarczak, J.; Strzałkowska, N.; Jóźwik, A.; Horbańczuk, J.; Krzyżewski, J.; Zwierzchowski, L.; Bagnicka, E. Cathelicidins: Family of antimicrobial peptides. A review. Mol. Biol. Rep. 2012, 39, 10957–10970. [Google Scholar] [CrossRef] [PubMed]
- Alencar-Silva, T.; Braga, M.C.; Santana, G.O.S.; Saldanha-Araujo, F.; Pogue, R.; Dias, S.C.; Franco, O.L.; Carvalho, J.L. Breaking the frontiers of cosmetology with antimicrobial peptides. Biotechnol. Adv. 2018, 36, 2019–2031. [Google Scholar] [CrossRef] [PubMed]
- Dijksteel, G.S.; Ulrich, M.M.W.; Middelkoop, E.; Boekema, B.K.H.L. Review: Lessons learned from clinical trials using antimicrobial peptides (AMPs). Front. Microbiol. 2021, 12, 61697. [Google Scholar] [CrossRef] [PubMed]
- Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; et al. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front. Cell. Infect. Microbiol. 2021, 11, 668632. [Google Scholar] [CrossRef] [PubMed]
- Aghazadeh, H.; Memariani, H.; Ranjbar, R.; Pooshang Bagheri, K. The activity and action mechanism of novel short selective LL-37-derived anticancer peptides against clinical isolates of Escherichia coli. Chem. Biol. Drug Des. 2019, 93, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, M.; Gennaro, R.; Romeo, D. Cathelicidins: A novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 1995, 374, 1–5. [Google Scholar] [CrossRef]
- Scheenstra, M.R.; van Harten, R.M.; Veldhuizen, E.J.A.; Haagsman, H.P.; Coorens, M. Cathelicidins modulate TLR-activation and inflammation. Front. Immunol. 2020, 11, 1137. [Google Scholar] [CrossRef] [PubMed]
- Leite, M.L.; Duque, H.M.; Rodrigues, G.R.; da Cunha, N.B.; Franco, O.L. The LL-37 domain: A clue to cathelicidin immunomodulatory response? Peptides 2023, 165, 171011. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Brock, R.; Luh, F.; Chou, P.J.; Larrick, J.W.; Huang, R.F.; Huang, T.H. The solution structure of the active domain of CAP18—A lipopolysaccharide binding protein from rabbit leukocytes. FEBS Lett. 1995, 370, 46–52. [Google Scholar] [CrossRef]
- Wang, G.; Narayana, J.L.; Mishra, B.; Zhang, Y.; Wang, F.; Wang, C.; Zarena, D.; Lushnikova, T.; Wang, X. Design of antimicrobial peptides: Progress made with human cathelicidin LL-37. Adv. Exp. Med. Biol. 2019, 1117, 215–240. [Google Scholar] [CrossRef] [PubMed]
- Wang, G. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J. Biol. Chem. 2008, 283, 32637–32643. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Mishra, B.; Epand, R.F.; Epand, R.M. High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. Biochim. Biophys. Acta 2014, 1838, 2160–2172. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Elliott, M.; Cogen, A.L.; Ezell, E.L.; Gallo, R.L.; Hancock, R.E. Structure, dynamics, and antimicrobial and immune modulatory activities of human LL-23 and its single-residue variants mutated on the basis of homologous primate cathelicidins. Biochemistry 2012, 51, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Xhindoli, D.; Pacor, S.; Benincasa, M.; Scocchi, M.; Gennaro, R.; Tossi, A. The human cathelicidin LL-37—A pore-forming antibacterial peptide and host-cell modulator. Biochim. Biophys. Acta 2016, 1858, 546–566. [Google Scholar] [CrossRef] [PubMed]
- Baumann, A.; Kiener, M.S.; Haigh, B.; Perreten, V.; Summerfield, A. Differential ability of bovine antimicrobial cathelicidins to mediate nucleic acid sensing by epithelial cells. Front. Immunol. 2017, 8, 59. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, G.H.; Agerberth, B.; Odeberg, J.; Bergman, T.; Olsson, B.; Salcedo, R. The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur. J. Biochem. 1996, 238, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, O.E.; Gram, L.; Johnsen, A.H.; Andersson, E.; Bangsbøll, S.; Tjabringa, G.S.; Hiemstra, P.S.; Malm, J.; Egesten, A.; Borregaard, N. Processing of seminal plasma hCAP-18 to ALL-38 by gastricsin: A novel mechanism of generating antimicrobial peptides in vagina. J. Biol. Chem. 2003, 278, 28540–28546, Erratum in J. Biol. Chem. 2006, 281, 12999.. [Google Scholar] [CrossRef]
- Yamasaki, K.; Schauber, J.; Coda, A.; Lin, H.; Dorschner, R.A.; Schechter, N.M.; Bonnart, C.; Descargues, P.; Hovnanian, A.; Gallo, R.L. Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J. 2006, 20, 2068–2080. [Google Scholar] [CrossRef]
- Murakami, M.; Lopez-Garcia, B.; Braff, M.; Dorschner, R.A.; Gallo, R.L. Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J. Immunol. 2004, 172, 3070–3077. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Kameda, K.; Tsumoto, H.; Tsuda, T.; Masuda, K.; Utsunomiya, R.; Mori, H.; Miura, Y.; Sayama, K. TLN-58, an additional hCAP18 processing form, found in the lesion vesicle of palmoplantar pustulosis in the skin. J. Investig. Dermatol. 2017, 137, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Zelezetsky, I.; Pontillo, A.; Puzzi, L.; Antcheva, N.; Segat, L.; Pacor, S.; Crovella, S.; Tossi, A. Evolution of the primate cathelicidin. Correlation between structural variations and antimicrobial activity. J. Biol. Chem. 2006, 281, 19861–19871. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Nguyen, T.; Boo, L.M.; Hong, T.; Espiritu, C.; Orlov, D.; Wang, W.; Waring, A.; Lehrer, R.I. RL-37, an alpha-helical antimicrobial peptide of the rhesus monkey. Antimicrob. Agents Chemother. 2001, 45, 2695–2702. [Google Scholar] [CrossRef]
- Romeo, D.; Skerlavaj, B.; Bolognesi, M.; Gennaro, R. Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J. Biol. Chem. 1988, 263, 9573–9575. [Google Scholar] [CrossRef] [PubMed]
- Gennaro, R.; Skerlavaj, B.; Romeo, D. Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect. Immun. 1989, 57, 3142–3146. [Google Scholar] [CrossRef] [PubMed]
- Skerlavaj, B.; Gennaro, R.; Bagella, L.; Merluzzi, L.; Risso, A.; Zanetti, M. Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities. J. Biol. Chem. 1996, 271, 28375–28381. [Google Scholar] [CrossRef] [PubMed]
- Scocchi, M.; Wang, S.; Zanetti, M. Structural organization of the bovine cathelicidin gene family and identification of a novel member. FEBS Lett. 1997, 417, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Selsted, M.E.; Novotny, M.J.; Morris, W.L.; Tang, Y.Q.; Smith, W.; Cullor, J.S. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem. 1992, 267, 4292–4295. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.C.; Yu, P.L. Isolation and characterisation of proline/arginine-rich cathelicidin peptides from ovine neutrophils. Biochem. Biophys. Res. Commun. 2003, 312, 1139–1146, Erratum in Biochem. Biophys. Res. Commun. 2004, 315, 246. [Google Scholar] [CrossRef]
- Yang, L.; Hang, B.L.; Xu, Y.Z.; Wang, L.; Xia, X.J.; Dong, M.M. Biological activity of a novel bovine-borne antimicrobial peptide BSN-37. Chin. J. Vet. Sci. 2018, 38, 2088–2093. (In Chinese) [Google Scholar]
- Brahma, B.; Patra, M.C.; Karri, S.; Chopra, M.; Mishra, P.; De, B.C.; Kumar, S.; Mahaty, S.; Thakur, K.; Poluri, K.M.; et al. Diversity, antimicrobial action and structure-activity relationship of buffalo cathelicidins. PLoS ONE 2015, 10, e0144741. [Google Scholar] [CrossRef] [PubMed]
- Scocchi, M.; Bontempo, D.; Boscolo, S.; Tomasinsig, L.; Giulotto, E.; Zanetti, M. Novel cathelicidins in horse leukocytes. FEBS Lett. 1999, 457, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Wang, Y.; Zhai, L.; Che, Q.; Wang, H.; Du, S.; Wang, D.; Feng, F.; Liu, J.; Lai, R.; et al. Novel cathelicidin-derived antimicrobial peptides from Equus asinus. FEBS J. 2010, 277, 2329–2339. [Google Scholar] [CrossRef] [PubMed]
- Lawyer, C.; Pai, S.; Watabe, M.; Borgia, P.; Mashimo, T.; Eagleton, L.; Watabe, K. Antimicrobial activity of a 13 amino acid tryptophan-rich peptide derived from a putative porcine precursor protein of a novel family of antibacterial peptides. FEBS Lett. 1996, 390, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Tamamura, H.; Murakami, T.; Horiuchi, S.; Sugihara, K.; Otaka, A.; Takada, W.; Ibuka, T.; Waki, M.; Yamamoto, N.; Fuji, N. Synthesis of protegrin-related peptides and their antibacterial and anti-human immunodeficiency virus activity. Chem. Pharm. Bull. 1995, 43, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Storici, P.; Zanetti, M. A novel cDNA sequence encoding a pig leukocyte antimicrobial peptide with a cathelin-like pro-sequence. Biochem. Biophys. Res. Commun. 1993, 196, 1363–1368. [Google Scholar] [CrossRef] [PubMed]
- Kokryakov, V.N.; Harwig, S.S.; Panyutich, E.A.; Shevchenko, A.A.; Aleshina, G.M.; Shamova, O.V.; Korneva, H.A.; Lehrer, R.I. Protegrins: Leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett. 1993, 327, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Liu, L.; Lehrer, R.I. Identification of a new member of the protegrin family by cDNA cloning. FEBS Lett. 1994, 346, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Ganz, T.; Lehrer, R.I. The structure of porcine protegrin genes. FEBS Lett. 1995, 368, 197–202. [Google Scholar] [CrossRef]
- Zanetti, M.; Storici, P.; Tossi, A.; Scocchi, M.; Gennaro, R. Molecular cloning and chemical synthesis of a novel antibacterial peptide derived from pig myeloid cells. J. Biol. Chem. 1994, 269, 7855–7858. [Google Scholar] [CrossRef]
- Tossi, A.; Scocchi, M.; Zanetti, M.; Storici, P.; Gennaro, R. PMAP-37, a novel antibacterial peptide from pig myeloid cells. cDNA cloning, chemical synthesis and activity. Eur. J. Biochem. 1995, 228, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Agerberth, B.; Lee, J.Y.; Bergman, T.; Carlquist, M.; Boman, H.G.; Mutt, V.; Jörnvall, H. Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur. J. Biochem. 1991, 202, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Harwig, S.S.; Kokryakov, V.N.; Swiderek, K.M.; Aleshina, G.M.; Zhao, C.; Lehrer, R.I. Prophenin-1, an exceptionally proline-rich antimicrobial peptide from porcine leukocytes. FEBS Lett. 1995, 362, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Ganz, T.; Lehrer, R.I. Structures of genes for two cathelin-associated antimicrobial peptides: Prophenin-2 and PR-39. FEBS Lett. 1995, 376, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.; Le, M.T.; Ahn, B.; Cho, H.S.; Le, V.C.Q.; Yum, J.; Hong, K.; Kim, J.H.; Song, H.; Park, C. Copy number variation of PR-39 cathelicidin, and identification of PR-35, a natural variant of PR-39 with reduced mammalian cytotoxicity. Gene 2019, 692, 88–93. [Google Scholar] [CrossRef]
- Bagella, L.; Scocchi, M.; Zanetti, M. cDNA sequences of three sheep myeloid cathelicidins. FEBS Lett. 1995, 376, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, M.M.; Lee, A.Y.; Brezinski-Caliguri, D.J.; Huttner, K.M. Molecular analysis of the sheep cathelin family reveals a novel antimicrobial peptide. FEBS Lett. 1995, 377, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Travis, S.M.; Anderson, N.N.; Forsyth, W.R.; Espiritu, C.; Conway, B.D.; Greenberg, E.P.; McCray, P.B., Jr.; Lehrer, R.I.; Welsh, M.J.; Tack, B.F. Bactericidal activity of mammalian cathelicidin-derived peptides. Infect. Immun. 2000, 68, 2748–2755. [Google Scholar] [CrossRef] [PubMed]
- Huttner, K.M.; Lambeth, M.R.; Burkin, H.R.; Burkin, D.J.; Broad, T.E. Localization and genomic organization of sheep antimicrobial peptide genes. Gene 1998, 206, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Shamova, O.V.; Orlov, D.S.; Zharkova, M.S.; Balandin, S.V.; Yamschikova, E.V.; Knappe, D.; Hoffman, R.; Kokryakov, V.N.; Ovchinnikova, T.V. Minibactenecins ChBac7.Nα and ChBac7.Nβ—Antimicrobial peptides from leukocytes of the goat Capra hircus. Acta Naturae 2016, 8, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Shamova, O.; Orlov, D.; Stegemann, C.; Czihal, P.; Hoffmann, R.; Brogden, K.; Kolodkin, N.; Sakuta, G.; Tossi, A.; Sahl, H.G.; et al. ChBac3.4: A novel proline-rich antimicrobial peptide from goat leukocytes. Int. J. Pept. Res. Ther. 2009, 15, 31–42. [Google Scholar] [CrossRef]
- Shamova, O.; Brogden, K.A.; Zhao, C.; Nguyen, T.; Kokryakov, V.N.; Lehrer, R.I. Purification and properties of proline-rich antimicrobial peptides from sheep and goat leukocytes. Infect. Immun. 1999, 67, 4106–4111. [Google Scholar] [CrossRef] [PubMed]
- Panteleev, P.V.; Safronova, V.N.; Kruglikov, R.N.; Bolosov, I.A.; Bogdanov, I.V.; Ovchinnikova, T.V. A novel proline-rich cathelicidin from the Alpaca vicugna pacos with potency to combat antibiotic-resistant bacteria: Mechanism of action and the functional role of the C-terminal region. Membranes 2022, 12, 515. [Google Scholar] [CrossRef] [PubMed]
- Treffers, C.; Chen, L.; Anderson, R.C.; Yu, P.L. Isolation and characterisation of antimicrobial peptides from deer neutrophils. Int. J. Antimicrob. Agents 2005, 26, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhong, J.; Liu, H.; Liu, C.; Zhang, K.; Lai, R. The cathelicidin-like peptide derived from panda genome is a potential antimicrobial peptide. Gene 2012, 492, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Sang, Y.; Ortega, M.T.; Rune, K.; Xiau, W.; Zhang, G.; Soulages, J.L.; Lushington, G.H.; Fang, J.; Williams, T.D.; Blecha, F.; et al. Canine cathelicidin (K9CATH): Gene cloning, expression, and biochemical activity of a novel pro-myeloid antimicrobial peptide. Dev. Comp. Immunol. 2007, 31, 1278–1296. [Google Scholar] [CrossRef]
- Peel, E.; Cheng, Y.; Djordjevic, J.T.; Fox, S.; Sorrell, T.C.; Belov, K. Cathelicidins in the tasmanian devil (Sarcophilus harrisii). Sci. Rep. 2016, 6, 35019. [Google Scholar] [CrossRef] [PubMed]
- Leonard, B.C.; Chu, H.; Johns, J.L.; Gallo, R.L.; Moore, P.F.; Marks, S.L.; Bevins, C.L. Expression and activity of a novel cathelicidin from domestic cats. PLoS ONE 2011, 6, e18756. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wong, E.S.; Whitley, J.C.; Li, J.; Stringer, J.M.; Short, K.R.; Renfree, M.B.; Belov, K.; Cocks, B.G. Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options. PLoS ONE 2011, 6, e24030. [Google Scholar] [CrossRef] [PubMed]
- Peel, E.; Cheng, Y.; Djordjevic, J.T.; Kuhn, M.; Sorrell, T.; Belov, K. Marsupial and monotreme cathelicidins display antimicrobial activity, including against methicillin-resistant Staphylococcus aureus. Microbiology 2017, 163, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.S.; Yum, J.; Larivière, A.; Lévêque, N.; Le, Q.V.C.; Ahn, B.; Jeon, H.; Hong, K.; Soundrarajan, N.; Kim, J.H.; et al. Opossum cathelicidins exhibit antimicrobial activity against a broad spectrum of pathogens including west Nile virus. Front. Immunol. 2020, 11, 347. [Google Scholar] [CrossRef]
- Peel, E.; Cheng, Y.; Djordjevic, J.T.; O’Meally, D.; Thomas, M.; Kuhn, M.; Sorrell, T.C.; Huston, W.M.; Belov, K. Koala cathelicidin PhciCath5 has antimicrobial activity, including against Chlamydia pecorum. PLoS ONE 2021, 16, e0249658. [Google Scholar] [CrossRef]
- Choi, M.; Cho, H.S.; Ahn, B.; Prathap, S.; Nagasundarapandian, S.; Park, C. Genomewide analysis and biological characterization of cathelicidins with potent antimicrobial activity and low cytotoxicity from three bat species. Antibiotics 2022, 11, 989. [Google Scholar] [CrossRef] [PubMed]
- Otazo-Pérez, A.; Asensio-Calavia, P.; González-Acosta, S.; Baca-González, V.; López, M.R.; Morales-delaNuez, A.; Pérez de la Lastra, J.M. Antimicrobial activity of cathelicidin-derived peptide from the iberian mole Talpa occidentalis. Vaccines 2022, 10, 1105. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.S.; Soundrarajan, N.; Le Van Chanh, Q.; Jeon, H.; Cha, S.Y.; Kang, M.; Ahn, B.Y.; Hong, K.; Song, H.; Kim, J.H.; et al. The novel cathelicidin of naked mole rats, Hg-CATH, showed potent antimicrobial activity and low cytotoxicity. Gene 2018, 676, 164–170. [Google Scholar] [CrossRef]
- Pestonjamasp, V.K.; Huttner, K.H.; Gallo, R.L. Processing site and gene structure for the murine antimicrobial peptide CRAMP. Peptides 2001, 22, 1643–1650. [Google Scholar] [CrossRef]
- Larrick, J.W.; Hirata, M.; Shimomoura, Y.; Yoshida, M.; Zheng, H.; Zhong, J.; Wright, S.C. Antimicrobial activity of rabbit CAP18-derived peptides. Antimicrob. Agents Chemother. 1993, 37, 2534–2539. [Google Scholar] [CrossRef]
- Li, C.; Cai, Y.; Luo, L.; Tian, G.; Wang, X.; Yan, A.; Wang, L.; Wu, S.; Wu, Z.; Zhang, T.; et al. TC-14, a cathelicidin-derived antimicrobial peptide with broad-spectrum antibacterial activity and high safety profile. iScience 2024, 27, 110404. [Google Scholar] [CrossRef]
- Yomogida, S.; Nagaoka, I.; Yamashita, T. Comparative studies on the extracellular release and biological activity of guinea pig neutrophil cationic antibacterial polypeptide of 11 kDa (CAP11) and defensins. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1997, 116, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, M.; Li, C.; Liu, M.; Qi, Y.; Xie, X.; Zhou, C.; Ma, L. A novel cathelicidin TS-CATH derived from Thamnophis sirtalis combats drug-resistant gram-negative bacteria in vitro and in vivo. Comput. Struct. Biotechnol. J. 2024, 23, 2388–2406. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Cai, Y.; Bommineni, Y.R.; Fernando, S.C.; Prakash, O.; Gilliland, S.E.; Zhang, G. Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity. J. Biol. Chem. 2006, 281, 2858–2867. [Google Scholar] [CrossRef]
- van Dijk, A.; Veldhuizen, E.J.; van Asten, A.J.; Haagsman, H.P. CMAP27, a novel chicken cathelicidin-like antimicrobial protein. Vet. Immunol. Immunopathol. 2005, 106, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Goitsuka, R.; Chen, C.L.; Benyon, L.; Asano, Y.; Kitamura, D.; Cooper, M.D. Chicken cathelicidin-B1, an antimicrobial guardian at the mucosal M cell gateway. Proc. Natl. Acad. Sci. USA 2007, 104, 15063–15068. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Lu, Y.; Qiao, X.; Wei, L.; Fu, T.; Cai, S.; Wang, C.; Liu, X.; Zhong, S.; Wang, Y. Novel cathelicidins from pigeon highlights evolutionary convergence in avain cathelicidins and functions in modulation of innate immunity. Sci. Rep. 2015, 5, 11082. [Google Scholar] [CrossRef]
- Gao, W.; Xing, L.; Qu, P.; Tan, T.; Yang, N.; Li, D.; Chen, H.; Feng, X. Identification of a novel cathelicidin antimicrobial peptide from ducks and determination of its functional activity and antibacterial mechanism. Sci. Rep. 2015, 5, 17260. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, Z.; Feng, F.; Zhu, W.; Guang, H.; Liu, J.; He, W.; Chi, L.; Li, W.; Yu, H. Molecular cloning and characterization of novel cathelicidin-derived myeloid antimicrobial peptide from Phasianus colchicus. Dev. Comp. Immunol. 2011, 35, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Chen, C.; Zhu, W.; He, W.; Guang, H.; Li, Z.; Wang, D.; Liu, J.; Chen, M.; Wang, Y.; et al. Gene cloning, expression and characterization of avian cathelicidin orthologs, Cc-CATHs, from Coturnix coturnix. FEBS J. 2011, 278, 1573–1584. [Google Scholar] [CrossRef] [PubMed]
- Kannoth, S.; Ali, N.; Prasanth, G.K.; Arvind, K.; Mohany, M.; Hembrom, P.S.; Sadanandan, S.; Vasu, D.A.; Grace, T. Transcriptome analysis of Corvus splendens reveals a repertoire of antimicrobial peptides. Sci. Rep. 2023, 13, 18728. [Google Scholar] [CrossRef]
- Broekman, D.C.; Frei, D.M.; Gylfason, G.A.; Steinarsson, A.; Jörnvall, H.; Agerberth, B.; Gudmundsson, G.H.; Maier, V.H. Cod cathelicidin: Isolation of the mature peptide, cleavage site characterisation and developmental expression. Dev. Comp. Immunol. 2011, 35, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.J.; Chen, J.; Huang, Z.A.; Shi, Y.H.; Lu, J.N. Identification and characterization of a novel cathelicidin from ayu, Plecoglossus altivelis. Fish Shellfish Immunol. 2011, 31, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, S.; Gao, J.; Guang, H.; Tian, Y.; Zhao, Z.; Wang, Y.; Yu, H. Structural and functional characterization of CATH_BRALE, the defense molecule in the ancient salmonoid, Brachymystax lenok. Fish Shellfish Immunol. 2013, 34, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Uzzell, T.; Stolzenberg, E.D.; Shinnar, A.E.; Zasloff, M. Hagfish intestinal antimicrobial peptides are ancient cathelicidins. Peptides 2003, 24, 1655–1667. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.I.; Pleguezuelos, O.; Zhang, Y.A.; Zou, J.; Secombes, C.J. Identification of a novel cathelicidin gene in the rainbow trout, Oncorhynchus mykiss. Infect. Immun. 2005, 73, 5053–5064. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.J.; Zhang, X.Y.; Zhang, N.; Guo, X.; Peng, K.S.; Wu, H.; Lu, L.F.; Wu, N.; Chen, D.D.; Li, S.; et al. Distinctive structural hallmarks and biological activities of the multiple cathelicidin antimicrobial peptides in a primitive teleost fish. J. Immunol. 2015, 194, 4974–4987. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Gan, T.X.; Liu, X.D.; Jin, Y.; Lee, W.H.; Shen, J.H.; Zhang, Y. Identification and characterization of novel reptile cathelicidins from elapid snakes. Peptides 2008, 29, 1685–1691. [Google Scholar] [CrossRef]
- Wei, L.; Gao, J.; Zhang, S.; Wu, S.; Xie, Z.; Ling, G.; Kuang, Y.Q.; Yang, Y.; Yu, H.; Wang, Y. Identification and characterization of the first cathelicidin from sea snakes with potent antimicrobial and anti-inflammatory activity and special mechanism. J. Biol. Chem. 2015, 290, 16633–16652. [Google Scholar] [CrossRef] [PubMed]
- Falcao, C.B.; de La Torre, B.G.; Pérez-Peinado, C.; Barron, A.E.; Andreu, D.; Rádis-Baptista, G. Vipericidins: A novel family of cathelicidin-related peptides from the venom gland of South American pit vipers. Amino Acids 2014, 46, 2561–2571. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hong, J.; Liu, X.; Yang, H.; Liu, R.; Wu, J.; Wang, A.; Lin, D.; Lai, R. Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics. PLoS ONE 2008, 3, e3217. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Qiao, X.; Feng, L.; Shi, N.; Wang, H.; Yang, H.; Guo, Z.; Wang, M.; Chen, Y.; Wang, Y.; et al. Python cathelicidin CATHPb1 protects against multidrug-resistant staphylococcal infections by antimicrobial-immunomodulatory duality. J. Med. Chem. 2018, 61, 2075–2086. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Zhang, F.; Guo, Z.; Chen, Y.; Zhang, M.; Yu, H.; Wang, Y. Characterization of a cathelicidin from the colubrinae snake, Sinonatrix annularis. Zool. Sci. 2019, 36, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Arvizu, E.E.; Silis-Moreno, T.M.; García-Arredondo, J.A.; Rodríguez-Torres, A.; Cervantes-Chávez, J.A.; Mosqueda, J. Aquiluscidin, a cathelicidin from Crotalus aquilus, and the Vcn-23 derivative peptide, have anti-microbial activity against gram-negative and gram-positive bacteria. Microorganisms 2023, 11, 2778. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Wang, X.; Zhang, T.; Yan, A.; Luo, L.; Li, C.; Tian, G.; Wu, Z.; Wang, X.; Shen, D.; et al. Rational design of a potent antimicrobial peptide based on the active region of a gecko cathelicidin. ACS Infect. Dis. 2024, 10, 951–960. [Google Scholar] [CrossRef]
- Cai, S.; Meng, K.; Liu, P.; Cao, X.; Wang, G. Suppressive effects of gecko cathelicidin on biofilm formation and cariogenic virulence factors of Streptococcus mutans. Arch. Oral Biol. 2021, 129, 105205. [Google Scholar] [CrossRef]
- Shi, N.; Cai, S.; Gao, J.; Qiao, X.; Yang, H.; Wang, Y.; Yu, H. Roles of polymorphic cathelicidins in innate immunity of soft-shell turtle, Pelodiscus sinensis. Dev. Comp. Immunol. 2019, 92, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Yang, H.; Gao, J.; Zhang, F.; Chu, P.; Yang, Y.; Zhang, M.; Wang, Y.; Yu, H. Diversity, immunoregulatory action and structure-activity relationship of green sea turtle cathelicidins. Dev. Comp. Immunol. 2019, 98, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cai, S.; Qiao, X.; Wu, M.; Guo, Z.; Wang, R.; Kuang, Y.Q.; Yu, H.; Wang, Y. As-CATH1-6, novel cathelicidins with potent antimicrobial and immunomodulatory properties from Alligator sinensis, play pivotal roles in host antimicrobial immune responses. Biochem. J. 2017, 474, 2861–2885. [Google Scholar] [CrossRef]
- Santana, F.L.; Estrada, K.; Alford, M.A.; Wu, B.C.; Dostert, M.; Pedraz, L.; Akhoundsadegh, N.; Kalsi, P.; Haney, E.F.; Straus, S.K.; et al. Novel alligator cathelicidin As-CATH8 demonstrates anti-infective activity against clinically relevant and crocodylian bacterial pathogens. Antibiotics 2022, 11, 1603. [Google Scholar] [CrossRef]
- Barksdale, S.M.; Hrifko, E.J.; van Hoek, M.L. Cathelicidin antimicrobial peptide from Alligator mississippiensis has antibacterial activity against multi-drug resistant Acinetobacter baumanii and Klebsiella pneumoniae. Dev. Comp. Immunol. 2017, 70, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Yang, H.; Wei, L.; Yang, S.; Zhu, W.; Ma, D.; Yu, H.; Lai, R. Amphibian cathelicidin fills the evolutionary gap of cathelicidin in vertebrate. Amino Acids 2012, 43, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Yang, J.; He, X.; Mo, G.; Hong, J.; Yan, X.; Lin, D.; Lai, R. Structure and function of a potent lipopolysaccharide-binding antimicrobial and anti-inflammatory peptide. J. Med. Chem. 2013, 56, 3546–3556. [Google Scholar] [CrossRef]
- Yu, H.; Cai, S.; Gao, J.; Zhang, S.; Lu, Y.; Qiao, X.; Yang, H.; Wang, Y. Identification and polymorphism discovery of the cathelicidins, Lf-CATHs in ranid amphibian (Limnonectes fragilis). FEBS J. 2013, 280, 6022–6032. [Google Scholar] [CrossRef] [PubMed]
- Ling, G.; Gao, J.; Zhang, S.; Xie, Z.; Wei, L.; Yu, H.; Wang, Y. Cathelicidins from the bullfrog Rana catesbeiana provides novel template for peptide antibiotic design. PLoS ONE 2014, 9, e93216. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Zhan, B.; Gao, Y. A novel cathelicidin from Bufo bufo gargarizans Cantor showed specific activity to its habitat bacteria. Gene 2015, 571, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Mu, L.; Zhou, L.; Yang, J.; Zhuang, L.; Tang, J.; Liu, T.; Wu, J.; Yang, H. The first identified cathelicidin from tree frogs possesses anti-inflammatory and partial LPS neutralization activities. Amino Acids 2017, 49, 1571–1585. [Google Scholar] [CrossRef]
- Qi, R.H.; Chen, Y.; Guo, Z.L.; Zhang, F.; Fang, Z.; Huang, K.; Yu, H.N.; Wang, X.P. Identification and characterization of two novel cathelicidins from the frog Odorrana livida. Zool. Res. 2019, 40, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lin, Y.F.; Chen, J.H.; Chen, X.; Lin, Z.H. Molecular characterization of cathelicidin in tiger frog (Hoplobatrachus rugulosus): Antimicrobial activity and immunomodulatory activity. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 247, 109072. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Chen, X.; Ye, T.; Zeng, B.; Zeng, Q.; Wu, J.; Kascakova, B.; Martins, L.A.; Prudnikova, T.; Smatanova, I.K.; et al. Characterization and functional analysis of cathelicidin-MH, a novel frog-derived peptide with anti-septicemic properties. eLife 2021, 10, e64411. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ouyang, J.; Luo, X.; Zhang, M.; Jiang, Y.; Zhang, F.; Zhou, J.; Wang, Y. Identification and characterization of novel bi-functional cathelicidins from the black-spotted frog (Pelophylax nigromaculata) with both anti-infective and antioxidant activities. Dev. Comp. Immunol. 2021, 116, 103928. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Deng, H.; Yin, M.; Chen, C.; Zhou, J. Novel cathelicidin antimicrobial peptides from Paa robertingeri. Ann. Res. Rev. Biol. 2019, 32, 1–10. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, C.Y.; Wang, Y.; Zhang, L.; Seah, R.W.X.; Ma, L.; Ding, G.H. Discovery of Ll-CATH: A novel cathelicidin from the Chong’an Moustache Toad (Leptobrachium liui) with antibacterial and immunomodulatory activity. BMC Vet. Res. 2024, 20, 343. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.C.; Cheng, X.Y.; Tao, Y.H.; Mao, Y.S.; Lu, C.P.; Lin, Z.H.; Chen, J. Assessment of the antimicrobial and immunomodulatory activity of QS-CATH, a promising therapeutic agent isolated from the Chinese spiny frogs (Quasipaa spinosa). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2024, 283, 109943. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yang, J.; Wang, X.; Wei, L.; Mi, K.; Shen, Y.; Liu, T.; Yang, H.; Mu, L. A frog cathelicidin peptide effectively promotes cutaneous wound healing in mice. Biochem. J. 2018, 475, 2785–2799. [Google Scholar] [CrossRef]
- Shi, J.; Wu, J.; Chen, Q.; Shen, Y.; Mi, K.; Yang, H.; Mu, L. A frog-derived cathelicidin peptide with dual antimicrobial and immunomodulatory activities effectively ameliorates Staphylococcus aureus-induced peritonitis in mice. ACS Infect. Dis. 2022, 8, 2464–2479. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Shen, Y.; Feng, X.; Ruan, S.; Zhao, Y.; Mu, L.; Wu, J.; Yang, H. Tree frog-derived cathelicidin protects mice against bacterial infection through its antimicrobial and anti-inflammatory activities and regulatory effect on phagocytes. ACS Infect. Dis. 2023, 9, 2252–2268. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Li, C.; Wang, M.; Chen, Z.; Luo, Y.; Xia, X.S.; Song, Y.; Sun, Y.; Zhang, A.M. Cathelicidin-DM is an antimicrobial peptide from Duttaphrynus melanostictus and has wound-healing therapeutic potential. ACS Omega 2020, 5, 9301–9310. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Xu, W.F.; Tang, L.P.; Wang, M.M.; Wang, X.J.; Qian, Y.C. Characteristics of cathelicidin-Bg, a novel gene expressed in the ear-side gland of Bufo gargarizans. Genet. Mol. Res. 2016, 15, gmr.15038481. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Lu, B.; Zhou, D.; Zhao, L.; Song, W.; Wang, L. Identification of the first cathelicidin gene from skin of chinese giant salamanders Andrias davidianus with its potent antimicrobial activity. Dev. Comp. Immunol. 2017, 77, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Eissa, A.; Amodeo, V.; Smith, C.R.; Diamandis, E.P. Kallikrein-related peptidase-8 (KLK8) is an active serine protease in human epidermis and sweat and is involved in a skin barrier proteolytic cascade. J. Biol. Chem. 2011, 286, 687–706. [Google Scholar] [CrossRef]
- Sørensen, O.E.; Follin, P.; Johnsen, A.H.; Calafat, J.; Tjabringa, G.S.; Hiemstra, P.S.; Borregaard, N. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 2001, 97, 3951–3959. [Google Scholar] [CrossRef] [PubMed]
- Matus, C.E.; Ehrenfeld, P.; Figueroa, C.D. The family of kallikrein-related peptidases and kinin peptides as modulators of epidermal homeostasis. Am. J. Physiol. Cell Physiol. 2022, 323, C1070–C1087. [Google Scholar] [CrossRef]
- Niyonsaba, F.; Kiatsurayanon, C.; Chieosilapatham, P.; Ogawa, H. Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp. Dermatol. 2017, 26, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Suwanchote, S.; Waitayangkoon, P.; Chancheewa, B.; Inthanachai, T.; Niwetbowornchai, N.; Edwards, S.W.; Virakul, S.; Thammahong, A.; Kiatsurayanon, C.; Rerknimitr, P.; et al. Role of antimicrobial peptides in atopic dermatitis. Int. J. Dermatol. 2022, 61, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Y.; Yan, Z.B.; Meng, Y.M.; Hong, X.Y.; Shao, G.; Ma, J.J.; Cheng, X.R.; Liu, J.; Kang, J.; Fu, C.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021, 8, 48. [Google Scholar] [CrossRef]
- Lin, T.Y.; Weibel, D.B. Organization and function of anionic phospholipids in bacteria. Appl. Microbiol. Biotechnol. 2016, 100, 4255–4267. [Google Scholar] [CrossRef] [PubMed]
- Renne, M.F.; de Kroon, A.I.P.M. The role of phospholipid molecular species in determining the physical properties of yeast membranes. FEBS Lett. 2018, 592, 1330–1345. [Google Scholar] [CrossRef]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zuo, S.; Wang, B.; Zhang, K.; Wang, Y. Antimicrobial mechanisms and clinical application prospects of antimicrobial peptides. Molecules 2022, 27, 2675. [Google Scholar] [CrossRef] [PubMed]
- Langham, A.A.; Ahmad, A.S.; Kaznessis, Y.N. On the nature of antimicrobial activity: A model for protegrin-1 pores. J. Am. Chem. Soc. 2008, 130, 4338–4346. [Google Scholar] [CrossRef] [PubMed]
- Bolintineanu, D.S.; Vivcharuk, V.; Kaznessis, Y.N. Multiscale models of the antimicrobial peptide protegrin-1 on gram-negative bacteria membranes. Int. J. Mol. Sci. 2012, 13, 11000–11011. [Google Scholar] [CrossRef] [PubMed]
- Lipkin, R.B.; Lazaridis, T. Implicit membrane investigation of the stability of antimicrobial peptide β-barrels and arcs. J. Membr. Biol. 2015, 248, 469–486. [Google Scholar] [CrossRef] [PubMed]
- Hale, J.D.; Hancock, R.E. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti-Infect. Ther. 2007, 5, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Mookherjee, N.; Anderson, M.A.; Haagsman, H.P.; Davidson, D.J. Antimicrobial host defense peptides: Functions and clinical potential. Nat. Rev. Drug Discov. 2020, 19, 311–332. [Google Scholar] [CrossRef] [PubMed]
- Majewska, M.; Zamlynny, V.; Pieta, I.S.; Nowakowski, R.; Pieta, P. Interaction of LL-37 human cathelicidin peptide with a model microbial-like lipid membrane. Bioelectrochemistry 2021, 141, 107842. [Google Scholar] [CrossRef]
- Shenkarev, Z.O.; Balandin, S.V.; Trunov, K.I.; Paramonov, A.S.; Sukhanov, S.V.; Barsukov, L.I.; Arseniev, A.S.; Ovchinnikova, T.V. Molecular mechanism of action of β-hairpin antimicrobial peptide arenicin: Oligomeric structure in dodecylphosphocholine micelles and pore formation in planar lipid bilayers. Biochemistry 2011, 50, 6255–6265. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, J.A.F.; Evangelista, A.G.; Nazareth, T.D.M.; Luciano, F.B. Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia 2019, 8, 100494. [Google Scholar] [CrossRef]
- Cardoso, M.H.; Meneguetti, B.T.; Costa, B.O.; Buccini, D.F.; Oshiro, K.G.N.; Preza, S.L.E.; Carvalho, C.M.E.; Migliolo, L.; Franco, O.L. Non-lytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets. Int. J. Mol. Sci. 2019, 20, 4877. [Google Scholar] [CrossRef] [PubMed]
- Mardirossian, M.; Barrière, Q.; Timchenko, T.; Müller, C.; Pacor, S.; Mergaert, P.; Scocchi, M.; Wilson, D.N. Fragments of the nonlytic proline-rich antimicrobial peptide Bac5 kill Escherichia coli cells by inhibiting protein synthesis. Antimicrob. Agents Chemother. 2018, 62, e00534-18. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Fu, J.; Zhao, Y.; Shi, H.; Hu, H.; Wang, H. Escherichia coli PagP enzyme-based de novo design and in vitro activity of antibacterial peptide LL-37. Med. Sci. Monit. 2017, 23, 2558–2564. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Verma, A.; Kim, E.J.; White, M.R.; Hartshorn, K.L. LL-37 modulates human neutrophil responses to influenza A virus. J. Leukoc. Biol. 2014, 96, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Brice, D.C.; Toth, Z.; Diamond, G. LL-37 disrupts the Kaposi’s sarcoma-associated herpesvirus envelope and inhibits infection in oral epithelial cells. Antivir. Res. 2018, 158, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Sousa, F.H.; Casanova, V.; Findlay, F.; Stevens, C.; Svoboda, P.; Pohl, J.; Proudfoot, L.; Barlow, P.G. Cathelicidins display conserved direct antiviral activity towards rhinovirus. Peptides 2017, 95, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Ordonez, S.R.; Amarullah, I.H.; Wubbolts, R.W.; Veldhuizen, E.J.; Haagsman, H.P. Fungicidal mechanisms of cathelicidins LL-37 and CATH-2 revealed by live-cell imaging. Antimicrob. Agents Chemother. 2014, 58, 2240–2248. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.Y.; Mookherjee, N. Multiple immune-modulatory functions of cathelicidin host defense peptides. Front. Immunol. 2012, 3, 149. [Google Scholar] [CrossRef] [PubMed]
- Agier, J.; Efenberger, M.; Brzezińska-Błaszczyk, E. Cathelicidin impact on inflammatory cells. Cent. Eur. J. Immunol. 2015, 40, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Hancock, R.E.; Haney, E.F.; Gill, E.E. The immunology of host defense peptides: Beyond antimicrobial activity. Nat. Rev. Immunol. 2016, 16, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Mookherjee, N.; Lippert, D.N.; Hamill, P.; Falsafi, R.; Nijnik, A.; Kindrachuk, J.; Pistolic, J.; Gardy, J.; Miri, P.; Naseer, M.; et al. Intracellular receptor for human host defense peptide LL-37 in monocytes. J. Immunol. 2009, 183, 2688–2696. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cherryholmes, G.; Chang, F.; Rose, D.M.; Schraufstatter, I.; Shively, J.E. Evidence that cathelicidin peptide LL-37 may act as a functional ligand for CXCR2 on human neutrophils. Eur. J. Immunol. 2009, 39, 3181–3194. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Niyonsaba, F.; Ushio, H.; Nagaoka, I.; Ikeda, S.; Okumura, K.; Ogawa, H. Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human alpha-defensins from neutrophils. Br. J. Dermatol. 2007, 157, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, P.E.; McHugh, B.; Findlay, E.G.; Mackellar, A.; Mackenzie, K.J.; Gallo, R.L.; Govan, J.R.W.; Simpson, A.J.; Davidson, D.J. Cathelicidin host defence peptide augments clearance of pulmonary Pseudomonas aeruginosa infection by its influence on neutrophil function in vivo. PLoS ONE 2014, 9, e99029. [Google Scholar] [CrossRef]
- Davidson, D.J.; Currie, A.J.; Reid, G.S.; Bowdish, D.M.; MacDonald, K.L.; Ma, R.C.; Hancock, R.E.W.; Speert, D.P. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol. 2004, 172, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- Findlay, E.G.; Currie, A.J.; Zhang, A.; Ovciarikova, J.; Young, L.; Stevens, H.; McHugh, B.J.; Canel, M.; Gray, M.; Milling, S.W.F.; et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology 2019, 8, 1608106. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kim, Y.N.; Jang, Y.S. Cutting edge: LL-37-mediated formyl peptide receptor-2 signaling in follicular dendritic cells contributes to B cell activation in Peyer’s patch germinal centers. J. Immunol. 2017, 198, 629–633. [Google Scholar] [CrossRef]
- Putsep, K.; Carlsson, G.; Boman, H.G.; Andersson, M. Deficiency of antibacterial peptides in patients with morbus Kostmann: An observation study. Lancet 2002, 360, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.; Ariga, S.K.; Barbeiro, H.V.; de Lima, T.M.; de Paula Silva, E.; Barbeiro, D.F.; Machado, M.C.C.; Nizet, V.; da Silva, F.P. Cathelicidin-deficient mice exhibit increased survival and upregulation of key inflammatory response genes following cecal ligation and puncture. J. Mol. Med. 2017, 95, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Niyonsaba, F.; Suzuki, A.; Ushio, H.; Nagaoka, I.; Ogawa, H.; Okumura, K. The human antimicrobial peptide dermcidin activates normal human keratinocytes. Br. J. Dermatol. 2009, 160, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Kahlenberg, J.M.; Kaplan, M.J. Little peptide, big effects: The role of LL-37 in inflammation and autoimmune disease. J. Immunol. 2013, 191, 4895–4901. [Google Scholar] [CrossRef] [PubMed]
- Dombrowski, Y.; Peric, M.; Koglin, S.; Kammerbauer, C.; Göss, C.; Anz, D.; Simanski, M.; Gläser, R.; Harder, J.; Hornung, V.; et al. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci. Transl. Med. 2011, 3, 82ra38. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Niyonsaba, F.; Ushio, H.; Nagaoka, I.; Ikeda, S.; Okumura, K.; Ogawa, H. Human cathelicidin LL-37 increases vascular permeability in the skin via mast cell activation, and phosphorylates MAP kinases p38 and ERK in mast cells. J. Dermatol. Sci. 2006, 43, 63–66. [Google Scholar] [CrossRef]
- Niyonsaba, F.; Ushio, H.; Hara, M.; Yokoi, H.; Tominaga, M.; Takamori, K.; Kajiwara, N.; Saito, H.; Nagaoka, I.; Ogawa, H.; et al. Antimicrobial peptides human beta-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells. J. Immunol. 2010, 184, 3526–3534. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, D.; Chamilos, G.; Lande, R.; Gregorio, J.; Meller, S.; Facchinetti, V.; Homey, B.; Barrat, F.J.; Zal, T.; Gilliet, M. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J. Exp. Med. 2009, 206, 1983–1994. [Google Scholar] [CrossRef] [PubMed]
- Morizane, S.; Yamasaki, K.; Mühleisen, B.; Kotol, P.F.; Murakami, M.; Aoyama, Y.; Iwatsuki, K.; Hata, T.; Gallo, R.L. Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR9 ligands. J. Investig. Dermatol. 2012, 132, 135–143. [Google Scholar] [CrossRef]
- Smithrithee, R.; Niyonsaba, F.; Kiatsurayanon, C.; Ushio, H.; Ikeda, S.; Okumura, K.; Ogawa, H. Human β-defensin-3 increases the expression of interleukin-37 through CCR6 in human keratinocytes. J. Dermatol. Sci. 2015, 77, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, K.; Di Nardo, A.; Bardan, A.; Murakami, M.; Ohtake, T.; Coda, A.; Dorschner, R.A.; Bonnart, C.; Descargues, P.; Hovnanian, A.; et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat. Med. 2007, 13, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, K.; Kanada, K.; Macleod, D.T.; Borkowski, A.W.; Morizane, S.; Nakatsuji, T.; Cogen, A.L.; Gallo, R.L. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J. Investig. Dermatol. 2011, 131, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Diegelmann, R.F.; Evans, M.C. Wound healing: An overview of acute, fibrotic and delayed healing. Front. Biosci. 2004, 9, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Cho, D.H.; Kim, H.J. Collagen synthesis is suppressed in dermal fibroblasts by the human antimicrobial peptide LL-37. J. Investig. Dermatol. 2009, 129, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Ramos, R.; Silva, J.P.; Rodrigues, A.C.; Costa, R.; Guardão, L.; Schmitt, F.; Raquel Soares, R.; Vilanova, M.; Domingues, L.; Gama, M. Wound healing activity of the human antimicrobial peptide LL37. Peptides 2011, 32, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Elbe-Bürger, A. Skin architecture and function. In Handbook of Burns: Reconstruction and Rehabilitation Volume 2; Kamolz, L.P., Jeschke, M.G., Horch, R.E., Küntscher, M., Brychta, P., Eds.; Springer: Vienna, Austria, 2012; pp. 29–46. [Google Scholar] [CrossRef]
- Biondo, N.E.; Argenta, F.D.; Rauber, S.G.; Caon, T. How to define the experimental conditions of skin permeation assays for drugs presenting biopharmaceutical limitations? The experience with testosterone. Int. J. Pharm. 2021, 607, 120987. [Google Scholar] [CrossRef]
- Laurent, A.; Mistretta, F.; Bottigioli, D.; Dahel, K.; Goujon, C.; Nicolas, J.F.; Hennino, A.; Laurent, P.E. Echographic measurement of skin thickness in adults by high frequency ultrasound to assess the appropriate microneedle length for intradermal delivery of vaccines. Vaccine 2007, 25, 6423–6430. [Google Scholar] [CrossRef]
- Granieri, G.; Oranges, T.; Morganti, R.; Janowska, A.; Romanelli, M.; Manni, E.; Dini, V. Ultra-high frequency ultrasound detection of the dermo-epidermal junction: Its potential role in dermatology. Exp. Dermatol. 2022, 31, 1863–1871. [Google Scholar] [CrossRef] [PubMed]
- Cinotti, E.; Bovi, C.; Tonini, G.; Labeille, B.; Heusèle, C.; Nizard, C.; Schnebert, S.; Aubailly, S.; Barthélémy, J.C.; Cambazard, F.; et al. Structural skin changes in elderly people investigated by reflectance confocal microscopy. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 2652–2658. [Google Scholar] [CrossRef] [PubMed]
- Van Mulder, T.J.S.; Van Nuffel, D.; Demolder, M.; De Meyer, G.; Moens, S.; Beyers, K.C.L. Skin thickness measurements for optimal intradermal injections in children. Vaccine 2020, 38, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Firooz, A.; Rajabi-Estarabadi, A.; Zartab, H.; Pazhohi, N.; Fanian, F.; Janani, L. The influence of gender and age on the thickness and echo-density of skin. Skin Res. Technol. 2017, 23, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Ashcroft, G.S.; Mills, S.J. Androgen receptor-mediated inhibition of cutaneous wound healing. J. Clin. Investig. 2002, 110, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Jacobi, U.; Kaiser, M.; Toll, R.; Mangelsdorf, S.; Audring, H.; Otberg, N.; Sterry, W.; Lademann, J. Porcine ear skin: An in vitro model for human skin. Skin Res. Technol. 2007, 13, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Calabro, K.; Curtis, A.; Galarneau, J.R.; Krucker, T.; Bigio, I.J. Gender variations in the optical properties of skin in murine animal models. J. Biomed. Opt. 2011, 16, 011008. [Google Scholar] [CrossRef]
- Otberg, N.; Richter, H.; Schaefer, H.; Blume-Peytavi, U.; Sterry, W.; Lademann, R.J. Variations of hair follicle size and distribution in different body sites. J. Investig. Dermatol. 2004, 122, 14–19. [Google Scholar] [CrossRef]
- Mangelsdorf, S.; Vergou, T.; Sterry, W.; Lademann, J.; Patzelt, A. Comparative study of hair follicle morphology in eight mammalian species and humans. Skin Res. Technol. 2014, 20, 147–154. [Google Scholar] [CrossRef] [PubMed]
- van Smeden, J.; Janssens, M.; Gooris, G.S.; Bouwstra, J.A. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim. Biophys. Acta 2014, 1841, 295–313. [Google Scholar] [CrossRef] [PubMed]
- Menon, G.K.; Cleary, G.W.; Lane, M.E. The structure and function of the stratum corneum. Int. J. Pharm. 2012, 435, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Alexander, A.; Dwivedi, S.; Ajazuddin; Giri, T.K.; Saraf, S.; Saraf, S.; Tripathi, D.K. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J. Control. Release 2012, 164, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Caselli, L.; Malmsten, M. Skin and wound delivery systems for antimicrobial peptides. Curr. Opin. Colloid Interface Sci. 2023, 65, 101701. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, Z.; Liu, W.; Wu, X.; He, H.; Lu, Y.; Wu, W.; Qi, J. Novel pharmaceutical strategies for enhancing skin penetration of biomacromolecules. Pharmaceuticals 2022, 15, 877. [Google Scholar] [CrossRef] [PubMed]
- Kanaujia, K.A.; Mishra, N.; Rajinikanth, P.S.; Saraf, S.A. Antimicrobial peptides as antimicrobials for wound care management: A comprehensive review. J. Drug Deliv. Sci. Technol. 2024, 95, 105570. [Google Scholar] [CrossRef]
- Nauroy, P.; Nyström, A. Kallikreins: Essential epidermal messengers for regulation of the skin microenvironment during homeostasis, repair and disease. Matrix Biol. Plus 2020, 6–7, 100019. [Google Scholar] [CrossRef] [PubMed]
- Eissa, A.; Diamandis, E.P. Human tissue kallikreins as promiscuous modulators of homeostatic skin barrier functions. Biol. Chem. 2008, 389, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Zhu, Z.; Sun, X.; Fu, X. Functional hair follicle regeneration: An updated review. Signal Transduct. Target. Ther. 2021, 6, 66. [Google Scholar] [CrossRef] [PubMed]
- WHO. The Clinical Trials Search Portal. Available online: https://trialsearch.who.int/Default.aspx (accessed on 16 December 2024).
- Miranda, E.; Bramono, K.; Yunir, E.; Reksodiputro, M.H.; Suwarsa, O.; Rengganis, I.; Harahap, A.R.; Subekti, D.; Suwarto, S.; Hayun, H.; et al. Efficacy of LL-37 cream in enhancing healing of diabetic foot ulcer: A randomized double-blind controlled trial. Arch. Dermatol. Res. 2023, 315, 2623–2633. [Google Scholar] [CrossRef] [PubMed]
- Peek, N.F.A.W.; Nell, M.J.; Brand, R.; Jansen-Werkhoven, T.; van Hoogdalem, E.J.; Verrijk, R.; Vonk, M.J.; Wafelman, A.R.; Valentijn, A.R.P.M.; Frijns, J.H.M.; et al. Ototopical drops containing a novel antibacterial synthetic peptide: Safety and efficacy in adults with chronic suppurative otitis media. PLoS ONE 2020, 15, e0231573. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, H.; Zhao, Z.; Liu, F.; Dong, M.; Chen, L.; Shen, M.; Luan, Z.; Zhang, H.; Wu, J.; et al. Efficacy and safety of oral LL-37 against the omicron BA.5.1.3 variant of SARS-CoV-2: A randomized trial. J. Med. Virol. 2023, 95, e29035. [Google Scholar] [CrossRef] [PubMed]
- Grönberg, A.; Mahlapuu, M.; Ståhle, M.; Whately-Smith, C.; Rollman, O. Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: A randomized, placebo-controlled clinical trial. Wound Rep. Reg. 2014, 22, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Mahlapuu, M.; Sidorowicz, A.; Mikosinski, J.; Krzyżanowski, M.; Orleanski, J.; Twardowska-Saucha, K.; Nykaza, M.D.A.; Dyaczynski, M.D.M.; Belz-Lagoda, M.D.B.; Dziwiszek, M.D.G.; et al. Evaluation of LL-37 in healing of hard-to-heal venous leg ulcers: A multicentric prospective randomized placebo-controlled clinical trial. Wound Rep. Reg. 2021, 29, 938–950. [Google Scholar] [CrossRef] [PubMed]
- Rousel, J.; Saghari, M.; Pagan, L.; Nădăban, A.; Gambrah, T.; Theelen, B.; de Kam, M.D.; Haakman, J.; van der Wall, H.V.D.; Feiss, G.; et al. Treatment with the topical antimicrobial peptide omiganan in mild-to-moderate facial seborrheic dermatitis versus ketoconazole and placebo: Results of a randomized controlled proof-of-concept trial. Int. J. Mol. Sci. 2023, 24, 14315. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer-van der Kolk, T.; Buters, T.P.; Krouwels, L.; Boltjes, J.; de Kam, M.L.; van der Wall, H.; van Alewijk, D.C.J.G.; van den Munckhof, E.H.A.; Becker, M.J.; Feiss, G.; et al. Topical antimicrobial peptide omiganan recovers cutaneous dysbiosis but does not improve clinical symptoms in patients with mild to moderate atopic dermatitis in a phase 2 randomized controlled trial. J. Am. Acad. Dermatol. 2022, 86, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer-van der Kolk, T.; van der Wall, H.; Hogendoorn, G.K.; Rijneveld, R.; Luijten, S.; van Alewijk, D.C.J.G.; van den Munckhof, E.H.A.; de Kam, M.L.; Feiss, G.L.; Prens, E.P.; et al. Pharmacodynamic effects of topical omiganan in patients with mild to moderate atopic dermatitis in a randomized, placebo-controlled, Phase II trial. Clin. Transl. Sci. 2020, 13, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Isaacson, R.E. MBI-226. Micrologix/Fujisawa. Curr. Opin. Investig. Drugs 2003, 4, 999–1003. [Google Scholar]
- Niemeyer-van der Kolk, T.; Assil, S.; Buters, T.P.; Rijsbergen, M.; Klaassen, E.S.; Feiss, G.; Florencia, E.; Prens, E.P.; Burggraaf, J.; van Doorn, M.B.A.; et al. Omiganan enhances imiquimod-induced inflammatory responses in skin of healthy volunteers. Clin. Transl. Sci. 2020, 13, 573–579. [Google Scholar] [CrossRef]
- Rijsbergen, M.; Rijneveld, R.; Todd, M.; Feiss, G.L.; Kouwenhoven, S.T.P.; Quint, K.D.; van Alewijk, D.C.J.G.; de Koning, M.N.C.; Klaassen, E.S.; Burggraaf, J.; et al. Results of phase 2 trials exploring the safety and efficacy of omiganan in patients with human papillomavirus-induced genital lesions. Br. J. Clin. Pharmacol. 2020, 86, 2133–2143. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Sonis, S.T. Comparisons of successful and failed Phase III trials of drugs and biologicals tested for mitigation of oral mucositis in patients being treated with radiotherapy with or without concomitant chemotherapy for cancers of the head and neck. Drug Dev. Res. 2024, 85, e22188. [Google Scholar] [CrossRef]
- Soligenix, Inc. Available online: https://www.soligenix.com/clinical-trials/ (accessed on 20 August 2024).
- Dale, G.E.; Halabi, A.; Petersen-Sylla, M.; Wach, A.; Zwingelstein, C. Pharmacokinetics, tolerability, and safety of murepavadin, a novel antipseudomonal antibiotic, in subjects with mild, moderate, or severe renal function impairment. Antimicrob. Agents Chemother. 2018, 62, e00490-18. [Google Scholar] [CrossRef]
- Wach, A.; Dembowsky, K.; Dale, G.E. Pharmacokinetics and safety of intravenous murepavadin infusion in healthy adult subjects administered single and multiple ascending doses. Antimicrob. Agents Chemother. 2018, 62, e02355-17. [Google Scholar] [CrossRef] [PubMed]
- Kollef, M.; Pittet, D.; Sánchez García, M.; Chastre, J.; Fagon, J.Y.; Bonten, M.; Hyzy, R.; Fleming, T.R.; Fuchs, H.; Bellm, L.; et al. A randomized double-blind trial of iseganan in prevention of ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 2006, 173, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Giles, F.J.; Rodriguez, R.; Weisdorf, D.; Wingard, J.R.; Martin, P.J.; Fleming, T.R.; Goldberg, S.L.; Anaissie, E.J.; Bolwell, B.J.; Chao, N.J.; et al. A phase III, randomized, double-blind, placebo-controlled, study of iseganan for the reduction of stomatitis in patients receiving stomatotoxic chemotherapy. Leuk. Res. 2004, 28, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Haisma, E.M.; Göblyös, A.; Ravensbergen, B.; Adriaans, A.E.; Cordfunke, R.A.; Schrumpf, J.; Limpens, R.W.A.L.; Schimmel, K.J.M.; den Hartigh, J.; Hiemstra, P.S.; et al. Antimicrobial peptide P60.4Ac-containing creams and gel for eradication of methicillin-resistant Staphylococcus aureus from cultured skin and airway epithelial surfaces. Antimicrob. Agents Chemother. 2016, 60, 4063–4072. [Google Scholar] [CrossRef] [PubMed]
- de Breij, A.; Riool, M.; Cordfunke, R.A.; Malanovic, N.; de Boer, L.; Koning, R.I.; Ravensbergen, E.; Franken, M.; van der Heijde, T.; Boekema, B.K.; et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci. Transl. Med. 2018, 10, eaan4044, Erratum in Sci. Transl. Med. 2018, 10, eaat5731. [Google Scholar] [CrossRef] [PubMed]
- Woodburn, K.W.; Jaynes, J.M.; Clemens, L.E. Evaluation of the antimicrobial peptide, RP557, for the broad-spectrum treatment of wound pathogens and biofilm. Front. Microbiol. 2019, 10, 1688. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, Y.; Guo, Q.; He, S.; Fan, J.; Xu, L.; Zhang, Z.; Wu, W.; Chu, H. Antibacterial peptide RP557 increases the antibiotic sensitivity of Mycobacterium abscessus by inhibiting biofilm formation. Sci. Total Environ. 2022, 807, 151855. [Google Scholar] [CrossRef]
- Soligenix. Available online: https://www.soligenix.com/pipeline-programs/ (accessed on 21 May 2024).
- North, J.R.; Takenaka, S.; Rozek, A.; Kielczewska, A.; Opal, S.; Morici, L.A.; Finlay, B.B.; Schaber, C.J.; Straube, R.; Donini, O. A novel approach for emerging and antibiotic-resistant infections: Innate defense regulators as an agnostic therapy. J. Biotechnol. 2016, 226, 24–34. [Google Scholar] [CrossRef]
- Fritsche, T.R.; Rhomberg, P.R.; Sader, H.S.; Jones, R.N. Antimicrobial activity of omiganan pentahydrochloride tested against contemporary bacterial pathogens commonly responsible for catheter-associated infections. J. Antimicrob. Chemother. 2008, 61, 1092–1098. [Google Scholar] [CrossRef] [PubMed]
- Toney, J.H. Iseganan (IntraBiotics pharmaceuticals). Curr. Opin. Investig. Drugs. 2002, 3, 225–228. [Google Scholar] [PubMed]
- Trotti, A.; Garden, A.; Warde, P.; Symonds, P.; Langer, C.; Redman, R.; Pajak, T.F.; Fleming, T.R.; Henke, M.; Bourhis, J.; et al. A multinational, randomized phase III trial of iseganan HCl oral solution for reducing the severity of oral mucositis in patients receiving radiotherapy for head-and-neck malignancy. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.P.; Bellm, L.A.; Epstein, J.B.; Sonis, S.T.; Symonds, R.P. Antimicrobial therapy to prevent or treat oral mucositis. Lancet Infect. Dis. 2003, 3, 405–412, Erratum in Lancet Infect. Dis. 2003, 3, 598. [Google Scholar] [CrossRef] [PubMed]
- BioSpace. Polyphor Temporarily Halts Enrollment in the Phase III Studies of Murepavadin for the Treatment of Patients with Nosocomial Pneumonia. Available online: https://www.biospace.com/article/polyphor-temporarily-halts-enrollment-in-the-phase-iii-studies-of-murepavadin-for-the-treatment-of-patients-with-nosocomial-pneumonia/ (accessed on 10 June 2024).
- Wang, T.T.; Nestel, F.P.; Bourdeau, V.; Nagai, Y.; Wang, Q.; Liao, J.; Tavera-Mendoza, L.; Lin, R.; Hanrahan, J.W.; Mader, S.; et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol. 2004, 173, 2909–2912, Erratum in J. Immunol. 2004, 173, 6490. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.; Heilborn, J.D.; Chamorro Jimenez, C.I.; Hammarsjo, A.; Törmä, H.; Stahle, M. Vitamin D induces the antimicrobial protein hCAP18 in human skin. J. Investig. Dermatol. 2005, 124, 1080–1082. [Google Scholar] [CrossRef]
- Albenali, L.H.; Danby, S.; Moustafa, M.; Brown, K.; Chittock, J.; Shackley, F.; Cork, M.J. Vitamin D and antimicrobial peptide levels in patients with atopic dermatitis and atopic dermatitis complicated by eczema herpeticum: A pilot study. J. Allergy Clin. Immunol. 2016, 138, 1715–1719.e4. [Google Scholar] [CrossRef] [PubMed]
- Hata, T.R.; Kotol, P.; Jackson, M.; Nguyen, M.; Paik, A.; Udall, D.; Kanada, K.; Yamasaki, K.; Alexandrescu, D.; Gallo, R.L. Administration of oral vitamin D induces cathelicidin production in atopic individuals. J. Allergy Clin. Immunol. 2008, 122, 829–831. [Google Scholar] [CrossRef]
- Chen, X.; Zou, X.; Qi, G.; Tang, Y.; Guo, Y.; Si, J.; Liang, L. Roles and mechanisms of human cathelicidin LL-37 in cancer. Cell. Physiol. Biochem. 2018, 47, 1060–1073. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.T.; Stenger, S.; Li, H.; Wenzel, L.; Tan, B.H.; Krutzik, S.R.; Ochoa, M.T.; Schauber, J.; Wu, K.; Meinken, C.; et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006, 311, 1770–1773. [Google Scholar] [CrossRef] [PubMed]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef] [PubMed]
- Yamshchikov, A.V.; Kurbatova, E.V.; Kumari, M.; Blumberg, H.M.; Ziegler, T.R.; Ray, S.M.; Tangpricha, V. Vitamin D status and antimicrobial peptide cathelicidin (LL-37) concentrations in patients with active pulmonary tuberculosis. Am. J. Clin. Nutr. 2010, 92, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Kordi, M.; Talkhounche, P.G.; Vahedi, H.; Farrokhi, N.; Tabarzad, M. Heterologous production of antimicrobial peptides: Notes to consider. Protein J. 2024, 43, 129–158. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Jiang, C. Antimicrobial peptides: Structure, mechanism, and modification. Eur. J. Med. Chem. 2023, 255, 115377. [Google Scholar] [CrossRef] [PubMed]
- Roca-Pinilla, R.; Lisowski, L.; Arís, A.; Garcia-Fruitós, E. The future of recombinant host defense peptides. Microb. Cell Factories 2022, 21, 267. [Google Scholar] [CrossRef] [PubMed]
- Wibowo, D.; Zhao, C.X. Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides. Appl. Microbiol. Biotechnol. 2019, 103, 659–671. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.; Ali, Z.; Mahfouz, M. Molecular farming for sustainable production of clinical-grade antimicrobial peptides. Plant Biotechnol. J. 2024, 22, 2282–2300. [Google Scholar] [CrossRef] [PubMed]
- Deo, S.; Turton, K.L.; Kainth, T.; Kumar, A.; Wieden, H.J. Strategies for improving antimicrobial peptide production. Biotechnol. Adv. 2022, 59, 107968. [Google Scholar] [CrossRef]
- Vieira Gomes, A.M.; Souza Carmo, T.; Silva Carvalho, L.; Mendonça Bahia, F.; Parachin, N.S. Comparison of yeasts as hosts for recombinant protein production. Microorganisms 2018, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. A novel protocol for the production of recombinant LL-37 expressed as a thioredoxin fusion protein. Protein Expr. Purif. 2012, 81, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Production of human antimicrobial peptide LL-37 in Escherichia coli using a thioredoxin-SUMO dual fusion system. Protein Expr. Purif. 2013, 87, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Colomina-Alfaro, L.; Marchesan, S.; Stamboulis, A.; Bandiera, A. Smart tools for antimicrobial peptides expression and application: The elastic perspective. Biotechnol. Bioeng. 2023, 120, 323–332. [Google Scholar] [CrossRef]
- Zhao, C.X.; Dwyer, M.D.; Yu, A.L.; Wu, Y.; Fang, S.; Middelberg, A.P. A simple and low-cost platform technology for producing pexiganan antimicrobial peptide in E. coli. Biotechnol. Bioeng. 2015, 112, 957–964. [Google Scholar] [CrossRef]
- Dwyer, M.D.; Brech, M.; Yu, L.; Middelberg, A.P.J. Intensified expression and purification of a recombinant biosurfactant protein. Chem. Eng. Sci. 2014, 105, 12–21. [Google Scholar] [CrossRef]
- Sun, B.; Wibowo, D.; Middelberg, A.P.J.; Zhao, C.X. Cost-effective downstream processing of recombinantly produced pexiganan peptide and its antimicrobial activity. AMB Express 2018, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Sousa, D.A.; Mulder, K.C.L.; Nobre, K.S.; Parachin, N.S.; Franco, O.L. Production of a polar fish antimicrobial peptide in Escherichia coli using an ELP-intein tag. J. Biotechnol. 2016, 234, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Colomina-Alfaro, L.; Sist, P.; Marchesan, S.; Urbani, R.; Stamboulis, A.; Bandiera, A. A versatile elastin-like carrier for bioactive antimicrobial peptide production and delivery. Macromol. Biosci. 2024, 24, e2300236. [Google Scholar] [CrossRef]
- Holásková, E.; Galuszka, P.; Mičúchová, A.; Šebela, M.; Öz, M.T.; Frébort, I. Molecular farming in barley: Development of a novel production platform to produce human antimicrobial peptide LL-37. Biotechnol. J. 2018, 13, 1700628. [Google Scholar] [CrossRef] [PubMed]
- Pane, K.; Durante, L.; Pizzo, E.; Varcamonti, M.; Zanfardino, A.; Sgambati, V.; Di Maro, A.; Carpentieri, A.; Izzo, V.; Di Donato, A.; et al. Rational design of a carrier protein for the production of recombinant toxic peptides in Escherichia coli. PLoS ONE 2016, 11, e0146552. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Fu, A.; Li, T. Expression and one-step purification of the antimicrobial peptide cathelicidin-BF using the intein system in Bacillus subtilis. J. Ind. Microbiol. Biotechnol. 2015, 42, 647–653. [Google Scholar] [CrossRef]
- Zhou, N.; An, T.; Zhang, Y.; Zhao, G.; Wei, C.; Shen, X.; Li, F.; Wang, X. Improving photocleavage efficiency of photocleavable protein for antimicrobial peptide histatin 1 expression. Protein Pept. Lett. 2024, 31, 141–152. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Wang, G. Cloning, expression, isotope labeling, and purification of human antimicrobial peptide LL-37 in Escherichia coli for NMR studies. Protein Expr. Purif. 2006, 47, 498–505. [Google Scholar] [CrossRef]
- Wei, X.; Wu, R.; Zhang, L.; Ahmad, B.; Si, D.; Zhang, R. Expression, purification, and characterization of a novel hybrid peptide with potent antibacterial activity. Molecules 2018, 23, 1491. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Ge, H.; He, H.; Liu, Y.; Zhai, C.; Feng, L.; Yi, L. The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Expr. Purif. 2017, 140, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Morin, K.M.; Arcidiacono, S.; Beckwitt, R.; Mello, C.M. Recombinant expression of indolicidin concatamers in Escherichia coli. Appl. Microbiol. Biotechnol. 2006, 70, 698–704. [Google Scholar] [CrossRef]
- Xiao, S.; Gao, Y.; Wang, X.; Shen, W.; Wang, J.; Zhou, X.; Cai, M.; Zhang, Y. Peroxisome-targeted and tandem repeat multimer expressions of human antimicrobial peptide LL37 in Pichia pastoris. Prep. Biochem. Biotechnol. 2017, 47, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Shan, H.; Wang, S.; Jiang, Z.; Wang, S.; Qin, Z. High expression of antimicrobial peptides cathelicidin-BF in Pichia pastoris and verification of its activity. Front. Microbiol. 2023, 14, 1153365. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.B.; Wu, R.J.; Si, D.Y.; Liao, X.D.; Zhang, L.L.; Zhang, R.J. Novel hybrid peptide cecropin A (1-8)-LL37 (17-30) with potential antibacterial activity. Int. J. Mol. Sci. 2016, 17, 983. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.; Behmard, E.; Yousefi, M.H.; Shekarforoush, S.S.; Mahmoodi, S. Expression, purification and investigation of antibacterial activity of a novel hybrid peptide LL37/hBD-129 by applied comprehensive computational and experimental approaches. Arch. Microbiol. 2023, 205, 199. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, L.; Hu, M.; Fang, Y.; Dong, N.; Shan, A. Heterologous expression of the novel dimeric antimicrobial peptide LIG in Pichia pastoris. J. Biotechnol. 2024, 381, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Roca-Pinilla, R.; López-Cano, A.; Saubi, C.; Garcia-Fruitós, E.; Arís, A. A new generation of recombinant polypeptides combines multiple protein domains for effective antimicrobial activity. Microb. Cell Factories 2020, 19, 122. [Google Scholar] [CrossRef] [PubMed]
- Holásková, E.; Galuszka, P.; Frébort, I.; Oz, M.T. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol. Adv. 2015, 33, 1005–1023. [Google Scholar] [CrossRef] [PubMed]
- Shanmugaraj, B.; Bulaon, C.J.I.; Malla, A.; Phoolcharoen, W. Biotechnological insights on the expression and production of antimicrobial peptides in plants. Molecules 2021, 26, 4032. [Google Scholar] [CrossRef] [PubMed]
- Gerszberg, A.; Hnatuszko-Konka, K. Compendium on food crop plants as a platform for pharmaceutical protein production. Int. J. Mol. Sci. 2022, 23, 3236. [Google Scholar] [CrossRef] [PubMed]
- Morassutti, C.; De Amicis, F.; Skerlavaj, B.; Zanetti, M.; Marchetti, S. Production of a recombinant antimicrobial peptide in transgenic plants using a modified VMA intein expression system. FEBS Lett. 2002, 519, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.J.; Lee, S.Y.; Moon, Y.S.; Kang, K.K. Enhanced resistance to bacterial and fungal pathogens by overexpression of a human cathelicidin antimicrobial peptide (hCAP18/LL-37) in Chinese cabbage. Plant Biotechnol. Rep. 2012, 6, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.J. Enhanced resistance to bacterial pathogen in transgenic tomato plants expressing cathelicidin antimicrobial peptide. Biotechnol. Bioprocess Eng. 2013, 18, 615–624. [Google Scholar] [CrossRef]
- Lee, I.H.; Jung, Y.J.; Cho, Y.G.; Nou, I.S.; Huq, M.A.; Nogoy, F.M.; Kang, K.K. SP-LL-37, human antimicrobial peptide, enhances disease resistance in transgenic rice. PLoS ONE 2017, 12, e0172936. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Li, B.; Jin, S.; Daniell, H. Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol. J. 2011, 9, 100–115. [Google Scholar] [CrossRef]
- Patiño-Rodríguez, O.; Ortega-Berlanga, B.; Llamas-González, Y.Y.; Mario, A.; Flores-Valdez, M.A.; Herrera-Díaz, A.; Montes-de-Octa-Luna, R.; Korban, S.; Alpuche-Solís, A. Transient expression and characterization of the antimicrobial peptide protegrin-1 in Nicotiana tabacum for control of bacterial and fungal mammalian pathogens. Plant Cell Tissue Organ Cult. 2013, 115, 99–106. [Google Scholar] [CrossRef]
- Lau, O.S.; Sun, S.S. Plant seeds as bioreactors for recombinant protein production. Biotechnol. Adv. 2009, 27, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Mirzaee, M.; Holásková, E.; Mičúchová, A.; Kopečný, D.J.; Osmani, Z.; Frébort, I. Long-lasting stable expression of human LL-37 antimicrobial peptide in transgenic barley plants. Antibiotics 2021, 10, 898. [Google Scholar] [CrossRef] [PubMed]
- Bundó, M.; Shi, X.; Vernet, M.; Marcos, J.F.; López-García, B.; Coca, M. Rice seeds as biofactories of rationally designed and cell-penetrating antifungal PAF peptides. Front. Plant Sci. 2019, 10, 731. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.A.; Kozubowski, L.; Marcotte, W.R., Jr. Advances in plant-derived scaffold proteins. Front. Plant Sci. 2020, 11, 122. [Google Scholar] [CrossRef] [PubMed]
- Elmowafy, M. Skin penetration/permeation success determinants of nanocarriers: Pursuit of a perfect formulation. Colloids Surf. B: Biointerfaces 2021, 203, 111748. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.E. Skin penetration enhancers. Int. J. Pharm. 2013, 447, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Gera, S.; Kankuri, E.; Kogermann, K. Antimicrobial peptides—Unleashing their therapeutic potential using nanotechnology. Pharmacol. Ther. 2022, 232, 107990. [Google Scholar] [CrossRef]
- Liu, T.; Chen, M.; Fu, J.; Sun, Y.; Lu, C.; Quan, G.; Pan, X.; Wu, C. Recent advances in microneedles-mediated transdermal delivery of protein and peptide drugs. Acta Pharm. Sin. B 2021, 11, 2326–2343. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.W. Electrical, magnetic, photomechanical and cavitational waves to overcome skin barrier for transdermal drug delivery. J. Control. Release 2014, 193, 257–269. [Google Scholar] [CrossRef]
- Fumakia, M.; Ho, E.A. Nanoparticles encapsulated with LL37 and serpin A1 promotes wound healing and synergistically enhances antibacterial activity. Mol. Pharm. 2016, 13, 2318–2331. [Google Scholar] [CrossRef]
- Gatti, J.W.; Smithgall, M.C.; Paranjape, S.M.; Rolfes, R.J.; Paranjape, M. Using electrospun poly(ethylene-oxide) nanofibers for improved retention and efficacy of bacteriolytic antibiotics. Biomed. Microdevices 2013, 15, 887–893. [Google Scholar] [CrossRef]
- Patzelt, A.; Lademann, J. The increasing importance of the hair follicle route in dermal and transdermal drug delivery. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Drug Manipulation Strategies and Vehicle Effects; Dragicevic, N., Maibach, H.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 43–53. [Google Scholar] [CrossRef]
- Schneider-Rauber, G.; Argenta, D.F.; Caon, T. Emerging technologies to target drug delivery to the skin—The role of crystals and carrier-based systems in the case study of dapsone. Pharm. Res. 2020, 37, 240. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.L.; Aljuffali, I.A.; Li, Y.C.; Fang, J.Y. Delivery and targeting of nanoparticles into hair follicles. Ther. Deliv. 2014, 5, 991–1006. [Google Scholar] [CrossRef] [PubMed]
- Lademann, J.; Richter, H.; Schanzer, S.; Knorr, F.; Meinke, M.; Sterry, W.; Patzelt, A. Penetration and storage of particles in human skin: Perspectives and safety aspects. Eur. J. Pharm. Biopharm. 2011, 77, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Pelikh, O.; Eckert, R.W.; Pinnapireddy, S.R.; Keck, C.M. Hair follicle targeting with curcumin nanocrystals: Influence of the formulation properties on the penetration efficacy. J. Control. Release 2021, 329, 598–613. [Google Scholar] [CrossRef] [PubMed]
- Chin, J.S.; Madden, L.; Chew, S.Y.; Becker, D.L. Drug therapies and delivery mechanisms to treat perturbed skin wound healing. Adv. Drug Deliv. Rev. 2019, 149–150, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Kopecki, Z. Development of next-generation antimicrobial hydrogel dressing to combat burn wound infection. Biosci. Rep. 2021, 41, BSR20203404. [Google Scholar] [CrossRef] [PubMed]
- Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. [Google Scholar] [CrossRef] [PubMed]
- Al Musaimi, O.; Lombardi, L.; Williams, D.R.; Albericio, F. Strategies for improving peptide stability and delivery. Pharmaceuticals 2022, 15, 1283. [Google Scholar] [CrossRef]
- Răileanu, M.; Borlan, R.; Campu, A.; Janosi, L.; Turcu, I.; Focsan, M.; Bacalum, M. No country for old antibiotics! Antimicrobial peptides (AMPs) as next-generation treatment for skin and soft tissue infection. Int. J. Pharm. 2023, 642, 123169. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, N.; Hamidabadi, H.G.; Khosravimelal, S.; Zahiri, M.; Ahovan, Z.A.; Bojnordi, M.N.; Eftekhari, B.S.; Hashemi, A.; Ganji, F.; Darabi, S.; et al. Antimicrobial peptides-loaded smart chitosan hydrogel: Release behavior and antibacterial potential against antibiotic resistant clinical isolates. Int. J. Biol. Macromol. 2020, 164, 855–862. [Google Scholar] [CrossRef]
- Silva, J.P.; Dhall, S.; Garcia, M.; Chan, A.; Costa, C.; Gama, M.; Martins-Green, M. Improved burn wound healing by the antimicrobial peptide LLKKK18 released from conjugates with dextrin embedded in a carbopol gel. Acta Biomater. 2015, 26, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Grek, C.L.; Prasad, G.M.; Viswanathan, V.; Armstrong, D.G.; Gourdie, R.G.; Ghatnekar, G.S. Topical administration of a connexin43-based peptide augments healing of chronic neuropathic diabetic foot ulcers: A multicenter, randomized trial. Wound Repair Regen. 2015, 23, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Laverty, G.; Gorman, S.P.; Gilmore, B.F. Antimicrobial peptide incorporated poly(2-hydroxyethyl methacrylate) hydrogels for the prevention of Staphylococcus epidermidis-associated biomaterial infections. J. Biomed. Mater. Res. A 2012, 100A, 1803–1814. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Li, P.; Qi, X.; Sharif, A.R.; Poon, Y.F.; Cao, Y.; Chang, M.W.; Leong, S.S.; Chan-Park, M.B. A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine. Biomaterials 2011, 32, 2704–2712. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fan, R.; Tong, A.; Yang, M.; Deng, J.; Zhou, L.; Zhang, X.; Guo, G. In situ gel-forming AP-57 peptide delivery system for cutaneous wound healing. Int. J. Pharm. 2015, 495, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Wang, H.; Mishra, B.; Lakshmaiah Narayana, J.; Jiang, J.; Reilly, D.A.; Hollins, R.R.; Carlson, M.A.; Wang, G.; Xie, J. Nanofiber dressings topically delivering molecularly engineered human cathelicidin peptides for the treatment of biofilms in chronic wounds. Mol. Pharm. 2019, 16, 2011–2020. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Fang, W.W.; Xue, J.; Sun, T.C.; Dong, L.; Zha, Z.; Qian, H.; Song, Y.H.; Zhang, M.; Gong, X.; et al. Thermoresponsive in situ forming hydrogel with sol-gel irreversibility for effective methicillin-resistant Staphylococcus aureus infected wound healing. ACS Nano 2019, 13, 10074–10084. [Google Scholar] [CrossRef] [PubMed]
- Sabzevari, R.; Roushandeh, A.M.; Mehdipour, A.; Alini, M.; Roudkenar, M.H. SA/G hydrogel containing hCAP-18/LL-37-engineered WJ-MSCs-derived conditioned medium promoted wound healing in rat model of excision injury. Life Sci. 2020, 261, 118381. [Google Scholar] [CrossRef] [PubMed]
- Patrulea, V.; Borchard, G.; Jordan, O. An update on antimicrobial peptides (AMPs) and their delivery strategies for wound infections. Pharmaceutics 2020, 12, 840. [Google Scholar] [CrossRef]
- Xia, X.; Song, S.; Zhang, S.; Wang, W.; Zhou, J.; Fan, B.; Li, L.; Dong, H.; Luo, C.; Li, B.; et al. The synergy of thanatin and cathelicidin-BF-15a3 combats Escherichia coli O157:H7. Int. J. Food Microbiol. 2023, 386, 110018. [Google Scholar] [CrossRef] [PubMed]
- Farzi, N.; Oloomi, M.; Bahramali, G.; Siadat, S.D.; Bouzari, S. Antibacterial properties and efficacy of LL-37 fragment GF-17D3 and scolopendin A2 peptides against resistant clinical strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii in vitro and in vivo model studies. Probiotics Antimicrob. Proteins 2024, 16, 796–814. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Sunkara, L.T.; Zeng, X.; Deng, Z.; Myers, S.M.; Zhang, G. Differential regulation of human cathelicidin LL-37 by free fatty acids and their analogs. Peptides 2013, 50, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Steinstraesser, L.; Lam, M.C.; Jacobsen, F.; Porporato, P.E.; Chereddy, K.K.; Becerikli, M.; Stricker, I.; Hancock, R.E.; Lehnhardt, M.; Sonveaux, P.; et al. Skin electroporation of a plasmid encoding hCAP-18/LL-37 host defense peptide promotes wound healing. Mol. Ther. 2014, 22, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Thomas-Virnig, C.L.; Centanni, J.M.; Johnston, C.E.; He, L.K.; Schlosser, S.J.; Van Winkle, K.F.; Chen, R.; Gibson, A.L.; Szilagyi, A.; Li, L.; et al. Inhibition of multidrug-resistant Acinetobacter baumannii by nonviral expression of hCAP-18 in a bioengineered human skin tissue. Mol. Ther. 2009, 17, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Mahlapuu, M.; Björn, C.; Ekblom, J. Antimicrobial peptides as therapeutic agents: Opportunities and challenges. Crit. Rev. Biotechnol. 2020, 40, 978–992. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 2018, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Maturana, P.; Martinez, M.; Noguera, M.E.; Santos, N.C.; Disalvo, E.A.; Semorile, L.; Maffia, P.C.; Hollmann, A. Lipid selectivity in novel antimicrobial peptides: Implication on antimicrobial and hemolytic activity. Colloids Surf. B Biointerfaces 2017, 153, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Lakshmaiah Narayana, J.; Lushnikova, T.; Zhang, Y.; Golla, R.M.; Zarena, D.; Wang, G. Sequence permutation generates peptides with different antimicrobial and antibiofilm activities. Pharmaceuticals 2020, 13, 271. [Google Scholar] [CrossRef]
- Wang, X.; Mishra, B.; Lushnikova, T.; Narayana, J.L.; Wang, G. Amino acid composition determines peptide activity spectrum and hot-spot-based design of merecidin. Adv. Biosyst. 2018, 2, 1700259. [Google Scholar] [CrossRef] [PubMed]
- Biondi, B.; de Pascale, L.; Mardirossian, M.; Di Stasi, A.; Favaro, M.; Scocchi, M.; Peggion, C. Structural and biological characterization of shortened derivatives of the cathelicidin PMAP-36. Sci. Rep. 2023, 13, 15132. [Google Scholar] [CrossRef] [PubMed]
- Strömstedt, A.A.; Pasupuleti, M.; Schmidtchen, A.; Malmsten, M. Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob. Agents Chemother. 2009, 53, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Jangpromma, N.; Konkchaiyaphum, M.; Punpad, A.; Sosiangdi, S.; Daduang, S.; Klaynongsruang, S.; Tankrathok, A. Rational design of RN15m4 cathelin domain-based peptides from siamese crocodile cathelicidin improves antimicrobial activity. Appl. Biochem. Biotechnol. 2023, 195, 1096–1108. [Google Scholar] [CrossRef]
- Gunasekera, S.; Muhammad, T.; Strömstedt, A.A.; Rosengren, K.J.; Göransson, U. Backbone cyclization and dimerization of LL-37-derived peptides enhance antimicrobial activity and proteolytic stability. Front. Microbiol. 2020, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Dean, S.N.; Bishop, B.M.; van Hoek, M.L. Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiol. 2011, 11, 114. [Google Scholar] [CrossRef]
- McClements, D.J. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Adv. Colloid Interface Sci. 2018, 253, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Chereddy, K.K.; Her, C.H.; Comune, M.; Moia, C.; Lopes, A.; Porporato, P.E.; Vanacker, J.; Lam, M.C.; Steinstraesser, L.; Sonveaux, P.; et al. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. J. Control. Release 2014, 194, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Zhan, B.; Zhang, W.; Qin, D.; Xia, G.; Zhang, H.; Peng, M.; Li, S.A.; Zhang, Y.; Gao, Y.; et al. Carboxymethyl chitosan nanoparticles loaded with bioactive peptide OH-CATH30 benefit nonscar wound healing. Int. J. Nanomed. 2018, 13, 5771–5786. [Google Scholar] [CrossRef] [PubMed]
- Lozeau, L.D.; Grosha, J.; Kole, D.; Prifti, F.; Dominko, T.; Camesano, T.A.; Rolle, M.W. Collagen tethering of synthetic human antimicrobial peptides cathelicidin LL37 and its effects on antimicrobial activity and cytotoxicity. Acta Biomater. 2017, 52, 9–20. [Google Scholar] [CrossRef]
- Boge, L.; Hallstensson, K.; Ringstad, L.; Johansson, J.; Andersson, T.; Davoudi, M.; Larsson, P.T.; Mahlapuu, M.; Håkansson, J.; Andersson, M. Cubosomes for topical delivery of the antimicrobial peptide LL-37. Eur. J. Pharm. Biopharm. 2019, 134, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Gontsarik, M.; Buhmann, M.T.; Yaghmur, A.; Ren, Q.; Maniura-Weber, K.; Salentinig, S. Antimicrobial peptide-driven colloidal transformations in liquid-crystalline nanocarriers. J. Phys. Chem. Lett. 2016, 7, 3482–3486. [Google Scholar] [CrossRef]
- Ricardo, F.; Pradilla, D.; Cruz, J.C.; Alvarez, O. Emerging emulsifiers: Conceptual basis for the identification and rational design of peptides with surface activity. Int. J. Mol. Sci. 2021, 22, 4615. [Google Scholar] [CrossRef]
- Bouwstra, J.A.; Honeywell-Nguyen, P.L.; Gooris, G.S.; Ponec, M. Structure of the skin barrier and its modulation by vesicular formulations. Prog. Lipid Res. 2003, 42, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Pierre, M.B.R.; dos Santos Miranda Costa, I. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch. Dermatol. Res. 2011, 303, 607–621. [Google Scholar] [CrossRef]
- Taylor, T.M.; Gaysinsky, S.; Davidson, P.M.; Bruce, B.D.; Weiss, J. Characterization of antimicrobial-bearing liposomes by ζ-potential, vesicle size, and encapsulation efficiency. Food Biophys. 2007, 2, 1–9. [Google Scholar] [CrossRef]
- Bilati, U.; Allémann, E.; Doelker, E. Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles. Eur. J. Pharm. Biopharm. 2005, 59, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Pham, N.B.; Meng, W.S. Protein aggregation and immunogenicity of biotherapeutics. Int. J. Pharm. 2020, 585, 119523. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, A.; Jaber, N.; Al-Remawi, M.; Abu-Salah, K. From cell factories to patients: Stability challenges in biopharmaceuticals manufacturing and administration with mitigation strategies. Int. J. Pharm. 2023, 645, 123360. [Google Scholar] [CrossRef] [PubMed]
- Solè, I.; Pey, C.M.; Maestro, A.; González, C.; Porras, M.; Solans, C.; Gutiérrez, J.M. Nano-emulsions prepared by the phase inversion composition method: Preparation variables and scale up. J. Colloid Interface Sci. 2010, 344, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Solans, C.; Solé, I. Nano-emulsions: Formation by low-energy methods. Curr. Opin. Colloid Interface Sci. 2012, 17, 246–254. [Google Scholar] [CrossRef]
- Solans, C.; Morales, D.; Homs, M. Spontaneous emulsification. Curr. Opin. Colloid Interface Sci. 2016, 22, 88–93. [Google Scholar] [CrossRef]
- Cole, J.N.; Nizet, V. Bacterial evasion of host antimicrobial peptide defenses. Microbiol. Spectr. 2016, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- LaRock, C.N.; Nizet, V. Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens. Biochim. Biophys. Acta Biomembr. 2015, 1848, 3047–3054. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, S.M.; Ernst, R.K.; Miller, S.I. PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to Lipid A. J. Bacteriol. 2004, 186, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Lysenko, E.S.; Gould, J.; Bals, R.; Wilson, J.M.; Weiser, J.N. Bacterial phosphorylcholine decreases susceptibility to the antimicrobial peptide LL-37/hCAP18 expressed in the upper respiratory tract. Infect. Immun. 2000, 68, 1664–1671. [Google Scholar] [CrossRef] [PubMed]
- Guina, T.; Yi, E.C.; Wang, H.; Hackett, M.; Miller, S.I. A PhoP-regulated outer membrane protease of Salmonella enterica serovar Typhimurium promotes resistance to alpha-helical antimicrobial peptides. J. Bacteriol. 2000, 182, 4077–4086. [Google Scholar] [CrossRef] [PubMed]
- Lewis, L.A.; Choudhury, B.; Balthazar, J.T.; Martin, L.E.; Ram, S.; Rice, P.A.; Stephens, D.S.; Carlson, R.; Shafer, W.M. Phosphoethanolamine substitution of lipid A and resistance of Neisseria gonorrhoeae to cationic antimicrobial peptides and complement-mediated killing by normal human serum. Infect. Immun. 2009, 77, 1112–1120. [Google Scholar] [CrossRef]
- Harper, M.; Wright, A.; Michael, F.S.; Li, J.; Lucas, D.D.; Ford, M.; Adler, B.; Cox, A.D.; Boyce, J.D. Characterization of two novel lipopolysaccharide phosphoethanolamine transferases in Pasteurella multocida and their role in resistance to cathelicidin-2. Infect. Immun. 2017, 85, e00557-17. [Google Scholar] [CrossRef] [PubMed]
- Falord, M.; Mäder, U.; Hiron, A.; Dbarbouillé, M.; Msadek, T. Investigation of the Staphylococcus aureus GraSR regulon reveals novel links to virulence, stress response and cell wall signal transduction pathways. PLoS ONE 2011, 6, e21323. [Google Scholar] [CrossRef] [PubMed]
- Falord, M.; Karimova, G.; Hiron, A.; Msadeka, T. GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 2012, 56, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Golla, R.M.; Mishra, B.; Dang, X.; Lakshmaiah Narayana, J.; Li, A.; Xu, L.; Wang, G. Resistome of Staphylococcus aureus in response to human cathelicidin LL-37 and its engineered antimicrobial peptides. ACS Infect. Dis. 2020, 6, 1866–1881. [Google Scholar] [CrossRef] [PubMed]
- Nishi, H.; Komatsuzawa, H.; Fujiwara, T.; McCallum, N.; Sugai, M. Reduced content of lysyl-phosphatidylglycerol in the cytoplasmic membrane affects susceptibility to moenomycin, as well as vancomycin, gentamicin, and antimicrobial peptides, in Staphylococcus aureus. Antimicrob. Agents Chemother. 2004, 48, 4800–4807. [Google Scholar] [CrossRef] [PubMed]
- Abachin, E.; Poyart, C.; Pellegrini, E.; Milohanic, E.; Fiedler, F.; Berche, P.; Trieu-Cuot, P. Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol. Microbiol. 2002, 43, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Poyart, C.; Pellegrini, E.; Marceau, M.; Baptista, M.; Jaubert, F.; Lamy, M.C.; Trieu-Cuot, P. Attenuated virulence of Streptococcus agalactiae deficient in D-alanyl-lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells. Mol. Microbiol. 2003, 49, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Helmann, J.D. The Bacillus subtilis extracytoplasmic-function σX factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J. Bacteriol. 2004, 186, 1136–1146. [Google Scholar] [CrossRef] [PubMed]
- Saar-Dover, R.; Bitler, A.; Nezer, R.; Shmuel-Galia, L.; Firon, A.; Shimoni, E.; Trieu-Cuot, P.; Shai, Y. D-alanylation of lipoteichoic acids confers resistance to cationic peptides in group B Streptococcus by increasing the cell wall density. PLoS Pathog. 2012, 8, e1002891. [Google Scholar] [CrossRef]
- Hamilton, A.; Popham, D.L.; Carl, D.J.; Lauth, X.; Nizet, V.; Jones, A.L. Penicillin-binding protein 1a promotes resistance of group B Streptococcus to antimicrobial peptides. Infect. Immun. 2006, 74, 6179–6187. [Google Scholar] [CrossRef]
- Meireles, D.; Pombinho, R.; Carvalho, F.; Sousa, S.; Cabanes, D. Listeria monocytogenes wall teichoic acid glycosylation promotes surface anchoring of virulence factors, resistance to antimicrobial peptides, and decreased susceptibility to antibiotics. Pathogens 2020, 9, 290. [Google Scholar] [CrossRef]
- Schmidtchen, A.; Frick, I.M.; Andersson, E.; Tapper, H.; Björck, L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol. 2002, 46, 157–168. [Google Scholar] [CrossRef]
- Barańska-Rybak, W.; Sonesson, A.; Nowicki, R.; Schmidtchen, A. Glycosaminoglycans inhibit the antibacterial activity of LL-37 in biological fluids. J. Antimicrob. Chemother. 2006, 57, 260–265. [Google Scholar] [CrossRef]
- Sieprawska-Lupa, M.; Mydel, P.; Krawczyk, K.; Wójcik, K.; Puklo, M.; Lupa, B.; Suder, P.; Silberring, J.; Reed, M.; Pohl, J.; et al. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob. Agents Chemother. 2004, 48, 4673–4679. [Google Scholar] [CrossRef]
- Shinnar, A.E.; Butler, K.L.; Park, H.J. Cathelicidin family of antimicrobial peptides: Proteolytic processing and protease resistance. Bioorg. Chem. 2003, 31, 425–436. [Google Scholar] [CrossRef]
- Braff, M.H.; Jones, A.L.; Skerrett, S.J.; Rubens, C.E. Staphylococcus aureus exploits cathelicidin antimicrobial peptides produced during early pneumonia to promote staphylokinase-dependent fibrinolysis. J. Infect. Dis. 2007, 195, 1365–1372. [Google Scholar] [CrossRef] [PubMed]
- Åkessont, P.; Sjöholm, A.G.; Björck, L. Protein SIC, a novel extracellular protein of Streptococcus pyogenes interfering with complement function. J. Biol. Chem. 1996, 271, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Frick, I.M.; Åkesson, P.; Rasmussen, M.; Schmidtchen, A.; Björck, L. SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J. Biol. Chem. 2003, 278, 16561–16566. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P. The nonideal coiled coil of M protein and its multifarious functions in pathogenesis. Adv. Exp. Med. Biol. 2011, 715, 197–211. [Google Scholar] [CrossRef]
- LaRock, C.N.; Döhrmann, S.; Todd, J.; Corriden, R.; Olson, J.; Johannssen, T.; Lepenies, B.; Gallo, R.L.; Ghosh, P.; Nizet, V. Group A streptococcal M1 protein sequesters cathelicidin to evade innate immune killing. Cell Host Microbe 2015, 18, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Keo, T.; Collins, J.; Kunwar, P.; Blaser, M.J.; Iovine, N.M. Campylobacter capsule and lipooligosaccharide confer resistance to serum and cationic antimicrobials. Virulence 2011, 2, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Spinosa, M.R.; Progida, C.; Talà, A.; Cogli, L.; Alifano, P.; Bucci, C. The Neisseria meningitidis capsule is important for intracellular survival in human cells. Infect. Immun. 2007, 75, 3594–3603. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.N.; Pence, M.A.; von Köckritz-Blickwede, M.; Hollands, A.; Gallo, R.L.; Walker, M.J.; Nizet, V. M protein and hyaluronic acid capsule are essential for in vivo selection of covRS mutations characteristic of invasive serotype M1T1 Group A Streptococcus. mBio 2010, 1, e00191-10. [Google Scholar] [CrossRef] [PubMed]
- Von Köckritz-Blickwede, M.; Nizet, V. Innate immunity turned inside-out: Antimicrobial defense by phagocyte extracellular traps. J. Mol. Med. 2009, 87, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.J.; Hollands, A.; Sanderson-Smith, M.L.; Cole, J.N.; Kirk, J.K.; Henningham, A.; McArthur, J.D.; Dinkla, K.; Aziz, R.K.; Kansal, R.G.; et al. DNase Sda1 provides selection pressure for a switch to invasive Group A streptococcal infection. Nat. Med. 2007, 13, 981–985. [Google Scholar] [CrossRef]
- Derré-Bobillot, A.; Cortes-Perez, N.G.; Yamamoto, Y.; Kharrat, P.; Couvé, E.; Da Cunha, V.; Decker, P.; Boissier, M.C.; Escartin, F.; Cesselin, B.; et al. Nuclease A (Gbs0661), an extracellular nuclease of Streptococcus agalactiae, attacks the neutrophil extracellular traps and is needed for full virulence. Mol. Microbiol. 2013, 89, 518–531. [Google Scholar] [CrossRef]
- Beiter, K.; Wartha, F.; Albiger, B.; Normark, S.; Zychlinsky, A.; Henriques-Normark, B. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr. Biol. 2006, 16, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Berends, E.T.M.; Horswill, A.R.; Haste, N.M.; Monestier, M.; Nizet, V.; Von Köckritz-Blickwede, M. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J. Innate Immun. 2010, 2, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Guilhelmelli, F.; Vilela, N.; Albuquerque, P.; Derengowski, L.S.; Silva-Pereira, I.; Kyaw, C.M. Antibiotic development challenges: The various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front. Microbiol. 2013, 4, 353. [Google Scholar] [CrossRef]
- Handing, J.W.; Ragland, S.A.; Bharathan, U.V.; Criss, A.K. The MtrCDE efflux pump contributes to survival of Neisseria gonorrhoeae from human neutrophils and their antimicrobial components. Front. Microbiol. 2018, 9, 2688. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, Y.L.; Ambrose, K.D.; Zughaier, S.; Zhou, X.; Miller, Y.K.; Shafer, W.M.; Stephens, D.S. Cationic antimicrobial peptide resistance in Neisseria meningitidis. J. Bacteriol. 2005, 187, 5387–5396. [Google Scholar] [CrossRef] [PubMed]
- Warner, D.M.; Shafer, W.M.; Jerse, A.E. Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE Efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol. Microbiol. 2008, 70, 462–478. [Google Scholar] [CrossRef] [PubMed]
- Rinker, S.D.; Trombley, M.P.; Gu, X.; Fortney, K.R.; Bauer, M.E. Deletion of mtrC in Haemophilus ducreyi increases sensitivity to human antimicrobial peptides and activates the CpxRA regulon. Infect. Immun. 2011, 79, 2324–2334. [Google Scholar] [CrossRef]
- Zähner, D.; Zhou, X.; Chancey, S.T.; Pohl, J.; Shafer, W.M.; Stephens, D.S. Human antimicrobial peptide LL-37 induces MefE/Mel-mediated macrolide resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 2010, 54, 3516–3519. [Google Scholar] [CrossRef] [PubMed]
- Doshi, R.; Gutmann, D.A.P.; Khoo, Y.S.K.; Fagg, L.A.; Van Veen, H.W. The choreography of multidrug export. Biochem. Soc. Trans. 2011, 39, 807–811. [Google Scholar] [CrossRef]
- Li, M.; Cha, D.J.; Lai, Y.; Villaruz, A.E.; Sturdevant, D.E.; Otto, M. The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol. Microbiol. 2007, 66, 1136–1147. [Google Scholar] [CrossRef] [PubMed]
- Sperandio, B.; Regnault, B.; Guo, J.; Zhang, Z.; Stanley, S.L.; Sansonetti, P.J.; Pédron, T. Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression. J. Exp. Med. 2008, 205, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, K.; Ghosh, S.; Koley, H.; Mukhopadhyay, A.K.; Ramamurthy, T.; Saha, D.R.; Mukhopadhyay, D.; Roychowdhury, S.; Hamabata, T.; Takeda, Y.; et al. Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human β-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell. Microbiol. 2008, 10, 2520–2537. [Google Scholar] [CrossRef] [PubMed]
- Bader, M.W.; Sanowar, S.; Daley, M.E.; Schneider, A.R.; Cho, U.; Xu, W.; Klevit, R.E.; Le Moual, H.; Miller, S.I. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 2005, 122, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Shprung, T.; Wani, N.A.; Wilmes, M.; Mangoni, M.L.; Bitler, A.; Shimoni, E.; Sahl, H.G.; Shai, Y. Opposing effects of PhoPQ and PmrAB on the properties of Salmonella enterica serovar Typhimurium: Implications on resistance to antimicrobial peptides. Biochemistry 2021, 60, 2943–2955. [Google Scholar] [CrossRef] [PubMed]
- Koprivnjak, T.; Peschel, A. Bacterial resistance mechanisms against host defense peptides. Cell. Mol. Life Sci. 2011, 68, 2243–2254. [Google Scholar] [CrossRef] [PubMed]
- McPhee, J.B.; Lewenza, S.; Hancock, R.E.W. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol. Microbiol. 2003, 50, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Groisman, E.A. The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol. 2001, 183, 1835–1842. [Google Scholar] [CrossRef] [PubMed]
- Martynowycz, M.W.; Rice, A.; Andreev, K.; Nobre, T.M.; Kuzmenko, I.; Wereszczynski, J.; Gidalevitz, D. Salmonella membrane structural remodeling increases resistance to antimicrobial peptide LL-37. ACS Infect. Dis. 2019, 5, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today 2010, 15, 40–56. [Google Scholar] [CrossRef]
- McGregor, D.P. Discovering and improving novel peptide therapeutics. Curr. Opin. Pharmacol. 2008, 8, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Guidance for Industry Chronic Cutaneous Ulcer and Burn Wounds—Developing Products for Treatment. Available online: https://www.fda.gov/files/drugs/published/Chronic-Cutaneous-Ulcer-and-Burn-Wounds----Developing-Products-for-Treatment.pdf (accessed on 24 May 2024).
- Fry, D.E. Antimicrobial Peptides. Surg. Infect. 2018, 19, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Limoli, D.H.; Rockel, A.B.; Host, K.M.; Jha, A.; Kopp, B.T.; Hollis, T.; Wozniak, D.J. Cationic antimicrobial peptides promote microbial mutagenesis and pathoadaptation in chronic infections. PLoS Pathog. 2014, 10, e1004083. [Google Scholar] [CrossRef]
- Dilek, F.; Gultepe, B.; Ozkaya, E.; Yazici, M.; Gedik, A.H.; Cakir, E. Beyond anti-microbial properties: The role of cathelicidin in allergic rhinitis. Allergol. Immunopathol. 2016, 44, 297–302. [Google Scholar] [CrossRef]
- Guryanova, S.V.; Ovchinnikova, T.V. Immunomodulatory and allergenic properties of antimicrobial peptides. Int. J. Mol. Sci. 2022, 23, 2499. [Google Scholar] [CrossRef]
- Piktel, E.; Niemirowicz, K.; Wnorowska, U.; Wątek, M.; Wollny, T.; Głuszek, K.; Góźdź, S.; Levental, I.; Bucki, R. The role of cathelicidin LL-37 in cancer development. Arch. Immunol. Ther. Exp. 2016, 64, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Kiatsurayanon, C.; Peng, G.; Niyonsaba, F. Opposing roles of antimicrobial peptides in skin cancers. Curr. Pharm. Des. 2021, 28, 248–258. [Google Scholar] [CrossRef] [PubMed]
- van Harten, R.M.; van Woudenbergh, E.; van Dijk, A.; Haagsman, H.P. Cathelicidins: Immunomodulatory antimicrobials. Vaccines 2018, 6, 63. [Google Scholar] [CrossRef] [PubMed]
- Ebbensgaard, A.; Mordhorst, H.; Overgaard, M.T.; Aarestrup, F.M.; Hansen, E.B. Dissection of the antimicrobial and hemolytic activity of Cap18: Generation of Cap18 derivatives with enhanced specificity. PLoS ONE 2018, 13, e0197742. [Google Scholar] [CrossRef] [PubMed]
- FDA. Category 2 of the Bulk Substances Nominated Under Sections 503A or 503B of the Federal Food, Drug, and Cosmetic Act. Available online: https://www.fda.gov/drugs/human-drug-compounding/safety-risks-associated-certain-bulk-drug-substances-nominated-use-compounding (accessed on 15 May 2024).
- FDA. Statement from FDA Commissioner Scott Gottlieb, M.D., on FDA’s Efforts to Foster Discovery and Development of New Tools to Fight Antimicrobial-Resistant Infections. Available online: https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-fdas-efforts-foster-discovery-and-development-new-tools (accessed on 13 May 2024).
Peptide | Source | Activity | Sequence | Reference |
---|---|---|---|---|
Mammals | ||||
LL-37 parent | Homo sapiens | Anti-gram+ and gram- antiviral, antifungal, candidacidal, antiparasitic, spermicidal, anti-HIV, chemotactic, anti-MRSA, enzyme inhibitor, anti-TB, anti-sepsis, synergistic AMPs, hemolytic, antibiofilm, wound healing, anticancer | LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES | [18] |
ALL-38 (alternatively cleaved form of human LL-37) | Homo sapiens | Anti-gram+ and gram- | ALLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES | [19] |
KS-27 (fragment of LL-37) | Homo sapiens | Anti-gram+ and gram- | KSKEKIGKEFKRIVQRIKDFLRNLVPR | [20] |
LL-29 (fragment of LL-37) | Homo sapiens | Anti-gram+ and gram- | LLGDFFRKSKEKIGKEFKRIVQRIKDFLR | [20] |
LL-23 (fragment of LL-37) | Homo sapiens | Anti-gram+ and gram-, antifungal | LLGDFFRKSKEKIGKEFKRIVQR | [20] |
KR-20 (fragment of LL-37) | Homo sapiens | Anti-gram+ and gram-, antifungal, candidacidal, antiparasitic | KRIVQRIKDFLRNLVPRTES | [21] |
KS-30 (fragment of LL-37) | Homo sapiens | Anti-gram+ and gram-, antifungal, candidacidal | KSKEKIGKEFKRIVQRIKDFLRNLVPRTES | [21] |
RK-31 (fragment of LL-37) | Homo sapiens | Anti-gram+ and gram-, antifungal, candidacidal, hemolytic | RKSKEKIGKEFKRIVQRIKDFLRNLVPRTES | [21] |
TLN-58 (alternatively cleaved form of LL-37) | Homo sapiens | Anti-gram+ | TLNQARGSFDISCDKDNKRFALLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES | [22] |
Organgutan ppyLL-37 | Pongo | Anti-gram+ and gram- | LLGDFFRKAREKIGEEFKRIVQRIKDFLRNLVPRTES | [23] |
Gibbon hmdSL-37 | Hylobatidae | Anti-gram+ and gram-, antifungal, candidacidal | SLGNFFRKARKKIGEEFKRIVQRIKDFLQHLIPRTEA | [23] |
pobRL-37 | Cercopithecidae | Anti-gram+ and gram-, antifungal, candidacidal | RLGNFFRKAKKKIGRGLKKIGQKIKDFLGNLVPRTES | [23] |
cjaRL-37 | New World monkeys | Anti-gram+ and gram- | RLGDILQKAREKIEGGLKKLVQKIKDFFGKFAPRTES | [23] |
RL-37 | Macaca mulatta | Anti-gram+ and gram- | RLGNFFRKVKEKIGGGLKKVGQKIKDFLGNLVPRTAS | [24] |
Bactenecin | Bos taurus | Anti-gram+, anti-gram-, synergistic AMPs, wound healing | RLCRIVVIRVCR | [25] |
Bactenecin 5 | Bos taurus | Anti-gram- | RFRPPIRRPPIRPPFYPPFRPPIRPPIFPPIRPPFRPPLGPFP | [26] |
Bactenecin 7 | Bos taurus | Anti-gram-, chemotactic, anti-sepsis | RRIRPRPPRLPRPRPRPLPFPRPGPRPIPRPLPFPRPGPRPIPRPLPFPRPGPRPIPRPL | [26] |
BMAP-27 | Bos taurus | Anti-gram+ and gram-, antifungal, candidacidal, anti-MRSA, hemolytic, antibiofilm, anticancer | GRFKRFRKKFKKLFKKLSPVIPLLHLG | [27] |
BMAP-28 | Bos taurus | Anti-gram+ and gram-, antiviral, antifungal, candidacidal, antiparasitic, anti-MRSA, hemolytic, antibiofilm, anticancer | GGLRSLGRKILRAWKKYGPIIVPIIRIG | [27] |
BMAP-34 | Bos taurus | Anti-gram+ and gram- | GLFRRLRDSIRRGQQKILEKARRIGERIKDIFRG | [28] |
Indolicidin | Bos taurus | Anti-gram+ and gram-, antiviral, antifungal, anti-HIV, anti-MRSA, hemolytic, antibiofilm, wound healing, anticancer | ILPWKWPWWPWRR | [29] |
Bac4 | Bos taurus | Anti-gram+ and gram- | RRLHPQHQRFPRERPWPKPLSLPLPRPGPRPWPKPL | [30] |
BSN-37 | Bos taurus | Anti-gram+ and gram- | FRPPIRRPPIRPPFYPPFRPPIRPPIFPPIRPPFRPP | [31] |
buCATHL4A | Bubalus bubalis | Anti-gram+ | GLPWILLRWLFFRG | [32] |
buCATHL4B | Bubalus bubalis | Anti-gram+ and gram- | AIPWIWIWRLLRKG | [32] |
buCATHL4C | Bubalus bubalis | Anti-gram+ and gram- | RIRFPWPWRWPWWRRVRG | [32] |
buCATHL4D | Bubalus bubalis | Anti-gram+ and gram- | RIRFPWPWRWPWWPPFRG | [32] |
buCATHL4E | Bubalus bubalis | Anti-gram+ and gram- | AIPWIWIWWLLRKG | [32] |
buCATHL4F | Bubalus bubalis | Anti-gram+ and gram- | AIPWSIWWRLLFKG | [32] |
buCATHL4G | Bubalus bubalis | Anti-gram+ and gram- | AIPWSIWWHLLFKG | [32] |
eCATH-1 | Equus asinus | Anti-gram+ and gram-, antifungal, antiparasitic, anti-MRSA | KRFGRLAKSFLRMRILLPRRKILLAS | [33] |
eCATH-2 | Equus asinus | Anti-gram+ and gram-, antifungal | KRRHWFPLSFQEFLEQLRRFRDQLPFP | [33] |
eCATH-3 | Equus asinus | Anti-gram+ and gram-, antifungal | KRFHSVGSLIQRHQQMIRDKSEATRHGIRIITRPKLLLAS | [33] |
EA-CATH1 | Equus asinus | Anti-gram+ and gram-, antifungal | KRRGSVTTRYQFLMIHLLRPKKLFA | [34] |
Tritrpticin | Sus scrofa | Anti-gram+ and gram-, antifungal, hemolytic, anticancer | VRRFPWWWPFLRR | [35] |
Protegrin 1 | Sus scrofa | Anti-gram+, antiviral, antifungal, candidacidal, anti-HIV, anti-MRSA, anti-sepsis, synergistic AMPs, antibiofilm | RGGRLCYCRRRFCVCVGR | [36] |
Protegrin 2 | Sus scrofa | Anti-gram+ and gram-, antiviral, antifungal, candidacidal | RGGRLCYCRRRFCICV | [37] |
Protegrin 3 | Sus scrofa | Anti-gram+ and gram-, antiviral, antifungal, candidacidal | RGGGLCYCRRRFCVCVGR | [38] |
Protegrin 4 | Sus scrofa | Anti-gram+ and gram-, antiviral | RGGRLCYCRGWICFCVGR | [39] |
Protegrin 5 | Sus scrofa | Anti-gram+ and gram-, antiviral, antifungal, candidacidal | RGGRLCYCRPRFCVCVGR | [40] |
PMAP-23 | Sus scrofa | Anti-gram+ and gram-, antifungal, candidacidal | RIIDLLWRVRRPQKPKFVTVWVR | [41] |
PMAP-36 | Sus scrofa | Anti-gram+ and gram- | VGRFRRLRKKTRKRLKKIGKVLKWIPPIVGSIPLGCG | [41] |
PMAP-37 | Sus scrofa | Anti-gram+ and gram- | GLLSRLRDFLSDRGRRLGEKIERIGQKIKDLSEFFQS | [42] |
PR-39 | Sus scrofa | Anti-gram+ and gram-, wound healing, anticancer | RRRPRPPYLPRPRPPPFFPPRLPPRIPPGFPPRFPPRFP | [43] |
Prophenin-1 | Sus scrofa | Anti-gram+ and gram- | AFPPPNVPGPRFPPPNFPGPRFPPPNFPGPRFPPPNFPGPRFPPPNFPGPPFPPPIFPGPWFPPPPPFRPPPFGPPRFP | [44] |
Prophenin-2 | Sus scrofa | Anti-gram+ and gram- | AFPPPNVPGPRFPPPNVPGPRFPPPNFPGPRFPPPNFPGPRFPPPNFPGPPFPPPIFPGPWFPPPPPFRPPPFGPPRFP | [45] |
PR-35 | Sus scrofa | Anti-gram- | RPPYLPRPRPPPFFPPRLPPRIPPGFPPRFPPRFP | [46] |
Cyclic dodecapeptide | Ovis aries | Anti-gram+ and gram- | RICRIIFLRVCR | [47] |
SMAP-29 | Ovis aries | Anti-gram+ and gram-, antifungal, candidacidal, anti-MRSA, anti-sepsis, hemolytic, antibiofilm | RGLRRLGRKIAHGVKKYGPTVLRIIRIAG | [47,48] |
SMAP-34 | Ovis aries | Anti-gram+ and gram-, anti-MRSA | GLFGRLRDSLQRGGQKILEKAERIWCKIKDIFR | [49] |
OaBac5 | Ovis aries | Anti-gram+ and gram-, anti-sepsis | RFRPPIRRPPIRPPFRPPFRPPVRPPIRPPFRPPFRPPIGPFP | [30] |
OaBac6 | Ovis aries | Anti-gram+ and gram- | RRLRPRHQHFPSERPWPKPLPLPLPRPGPRPWPKPLPLPLPRPGLRPWPKPL | [50] |
OaBac7.5 | Ovis aries | Anti-gram+ and gram-, anti-sepsis | RRLRPRRPRLPRPRPRPRPRPRSLPLPRPQPRRIPRPILLPWRPPRPIPRPQIQPIPRWL | [30] |
OaBac11 | Ovis aries | Anti-gram+ and gram- | RRLRPRRPRLPRPRPRPRPRPRSLPLPRPKPRPIPRPLPLPRPRPKPIPRPLPLPRPRPRRIPRPLPLPRPRPRPIPRPLPLPQPQPSPIPRPL | [30] |
OaBac5gamma | Ovis aries | Anti-gram+ and gram-, antifungal, anti-MRSA | RFRPPILRPPIRPPFRPPFRPPVRPPIRPPFRPPFRPPIGPFP | [30] |
mini-ChBac7.5Nalpha | Capra hircus | Anti-gram+ and gram-, antifungal, candidacidal, anti-sepsis | RRLRPRRPRLPRPRPRPRPRPR | [51] |
mini-ChBac7.5Nbeta | Capra hircus | Anti-gram+ and gram-, anti-sepsis | RRLRPRRPRLPRPRPRPRPRP | [51] |
ChBac3.4 | Capra hircus | Anti-gram+ and gram-, antifungal, hemolytic, anticancer | RFRLPFRRPPIRIHPPPFYPPFRRFL | [52] |
ChBac5 | Capra hircus | Anti-gram+ and gram-, anti-sepsis | RFRPPIRRPPIRPPFNPPFRPPVRPPFRPPFRPPFRPPIGPFP | [53] |
VicBac | Vicugna pacos | Anti-gram+ and gram-, anti-inflammatory | RRIRRPRLPRPRVPRPRIPPRIPRPVLPPPRVPFPRFPR | [54] |
P9 | Cervus elaphus | Anti-gram+ and gram-, antifungal | RFIPPILRPPVRPPFRPPFRPPFRPPPIIRFFGG (incomplete) | [55] |
Cathelicidin-AM | Ailuropoda melanoleuca | Anti-gram+ and gram-, antifungal | GRLRNLIEKAGQNIRGKIQGIGRRIKDILKNLQPRPQV | [56] |
K9CATH | Canis lupus | Anti-gram+ and gram-, antifungal, candidacidal, anti-sepsis | RLKELITTGGQKIGEKIRRIGQRIKDFFKNLQPREEKS | [57] |
Saha-CATH3 | Sarcophilus harrisii | Antifungal, anticancer | KRMGIFHLFWAGLRKLGNLIKNKIQQGIENFLG | [58] |
Saha-CATH5 | Sarcophilus harrisii | Anti-gram+ and gram-, antifungal, anti-MRSA, anticancer | KRIGLIRLIGKILRGLRRLG | [58] |
Saha-CATH6 | Sarcophilus harrisii | Anti-gram+ and gram-, antifungal, anticancer | KRIRFFERIRDRLRDLGNRIKNRIRDFFS | [58] |
FeCath | Felis catus | Anti-gram+ and gram- | QLGELIQQGGQKIVEKIQKIGQRIRDFFSNLRPRQEA | [59] |
WAM1 | Macropus eugenii | Anti-gram+ and gram- | KRGFGKKLRKRLKKFRNSIKKRLKNFNVVIPIPLPG | [60] |
WAM2 | Macropus eugenii | Anti-gram+ and gram- | KRGLWESLKRKATKLGDDIRNTLRNFKIKFPVPRQG | [60] |
MaeuCath7 | Macropus eugenii | Anti-gram- | KRGLWESLKRKVTKLGDDIRNTLRNFKIKFPVPRQG | [61] |
Taac-CATH1 | Tachyglossus aculeatus | Anti-gram+ and gram-, anti-MRSA | PIRTKRRWKLIKKGGKIVKDLLTKNNIIILPGGNE | [61] |
ModoCath1 | Monodelphis domestica | Anti-gram+ and gram- | VKRTKRGARRGLTKVLKKIFGSIVKKAVSKGV | [62] |
ModoCath4 | Monodelphis domestica | Anti-gram+ and gram-, anti-MRSA | SKTKRRSLLKRLGDGIRGFWNGFRGRK | [61] |
ModoCath5 | Monodelphis domestica | Anti-gram+ and gram-, antiviral | WYQLIRTFGNLIHQKYRKLLEAYRKLRD | [62] |
ModoCath6 | Monodelphis domestica | Anti-gram- | VRRSKRGIKVPSFVKKVLKDVVSESIS | [62] |
PhciCath5 | Phascolarctos cinereus | Anti-gram+ and gram-, antifungal, anti-MRSA | KRGGIWKLIRPLGRGAGRILRHFHIDFCGNC | [63] |
PAM1 | Ornithorhynchus anatinus | Anti-gram+ and gram- | RTKRRIKLIKNGVKKVKDILKNNNIIILPGSNEK | [60] |
PAM2 | Ornithorhynchus anatinus | Anti-gram+ and gram- | RPWAGNGSVHRYTVLSPRLKTQ | [60] |
HA-CATH | Hipposideros armiger | Anti-gram+ and gram-, antifungal | ILGRLRDLLRRGGRKIGQGLERIGQRIQGFFSNREPMEES | [64] |
MI-LN-35 | Myotis lucifugus | Anti-gram+ and gram-, antifungal, candidacidal | LNPLIKAGIFILKHRRPIGRGIEITGRGIKKFFSK | [64] |
PD-CATH | Phyllostomus discolor | Anti-gram+ and gram-, antifungal, candidacidal | ILGPALRIGGRIAGRIAGKLIGDAINRHRERNRQRRG | [64] |
To-KL37 | Talpa occidentalis | Anti-gram+ and gram- | KLFGKVGNLLQKGWQKIKNIGRRIKDFFRNIRPMQEA | [65] |
Hg-CATH | Heterocephalus glaber | Anti-gram- | RRFRRTVGLSKFFRKARKKLGKGLQKIKNVLRKYLPRPQYAYA | [66] |
mCRAMP | Mus musculus | Anti-gram+ and gram-, antifungal, candidacidal, antibiofilm, anticancer | GLLRKGGEKIGEKLKKIGQKIKNFFQKLVPQPEQ | [67] |
rCRAMP | Rattus rattus | Anti-gram+ and gram-, anti-MRSA | GLVRKGGEKFGEKLRKIGQKIKEFFQKLALEIEQ | [49] |
CAP18 (106–142) | Oryctolagus cuniculus | Anti-gram+ and gram-, anti-MRSA, anti-sepsis | GLRKRLRKFRNKIKEKLKKIGQKIQGFVPKLAPRTDY | [68] |
TC-33 | Tupaia belangeri chinensis | Anti-gram+ and gram- | LLRRGGEKLAEKFEKIGQKIKNFFRKLLPETES | [69] |
CAP11 | Cavia porcellus | Anti-gram+ and gram-, antiviral, anti-sepsis | GLRKKFRKTRKRIQKLGRKIGKTGRKVWKAWREYGQIPYPCRI | [70] |
BM-CATH | Balaenoptera musculus | Anti-gram+ and gram- | GRFSRLRKRIRKVWRKIGPIAGPIIGHFG | [71] |
LV-CATH | Lipotes vexillifer | Anti-gram+ and gram- | GRFRRLRNRIRNIWRKIGPIAGPLISRFG | [71] |
Birds | ||||
Chicken CATH-1 | Gallus galllus | Anti-gram+ and gram-, anti-MRSA, anti-inflammatory, anti-sepsis | RVKRVWPLVIRTVIAGYNLYRAIKKK | [72] |
Chicken CATH-2 | Gallus galllus | Anti-gram+ and gram-, anti-MRSA, anti-sepsis, hemolytic, antibiofilm | RFGRFLRKIRRFRPKVTITIQGSARFG | [73] |
Chicken CATH-3 | Gallus galllus | Anti-gram+ and gram-, anti-sepsis | RVKRFWPLVPVAINTVAAGINLYKAIRRK | [72] |
Cath-B1 | Gallus gallus | Anti-gram+ and gram-, antiviral | PITYLDAILAAVRLLNQRISGPCILRLREAQPRPGWVGTLQRRREVSFLVEDGPCPPGVDCRSCEPGALQHCVGTVSIEQQPTAELRCRPLRPQ | [74] |
Cl-CATH2 | Columba livia | Anti-gram+ and gram-, antifungal, candidacidal, anti-inflammatory | LIQRGRFGRFLGRIRRFRPRINFDIRARGSIRLG | [75] |
dCATH | Anas platyrhynchos | Anti-gram+ and gram-, anti-inflammatory, anti-sepsis, hemolytic | KRFWQLVPLAIKIYRAWKRR | [76] |
Pc-CATH1 | Phasianus colchicus | Anti-gram+ and gram-, antifungal, candidacidal | RIKRFWPVVIRTVVAGYNLYRAIKKK | [77] |
cc-CATH2 | Coturnix coturnix | Anti-gram+ and gram-, antifungal | LVQRGRFGRFLKKVRRFIPKVIIAAQIGSRFG | [78] |
cc-CATH3 | Coturnix coturnix | Anti-gram+ and gram-, antifungal | RVRRFWPLVPVAINTVAAGINLYKAIRRK | [78] |
CATH-2 | Corvus splendens | Anti-gram+ and gram- | LIQRGRFGRFLGKIRHFRPRVKFNVHLRGSVGLG | [79] |
Fish | ||||
CodCath | Gadus morhua | Anti-gram+ and gram-, antifungal | SRSGRGSGKGGRGGSRGSSGSRGSKGPSGSRGSSGSRGSKGSRGGRSGRGSTIAGNGNRNNGGTRTA | [80] |
aCATH | Plecoglossus altivelis | Anti-gram- | RMRRSKSGKGSGGSKGSGSKGSKGSKGSGSKGSGSKGGSRPGGGSSIAGGGSKGKGGTQTA | [81] |
CATH_BRALE | Brachymystax lenok | Anti-gram+ and gram-, antifungal, candidacidal | RRSKARGGSRGSKMGRKDSKGGSRGRPGSGSRPGGGSSIAGASRGDRGGTRNA | [82] |
HFIAP-1 | Myxine glutinosa | Anti-gram+ and gram- | GFFKKAWRKVKHAGRRVLDTAKGVGRHYVNNWLNRYR | [83] |
HFIAP-3 | Myxine glutinosa | Anti-gram+ and gram- | GWFKKAWRKVKNAGRRVLKGVGIHYGVGLI | [83] |
rtCATH_1 | Oncorhynchus mykiss | Anti-gram+ and gram- | RICSRDKNCVSRPGVGSIIGRPGGGSLIGRPGGGSVIGRPGGGSPPGGGSFNDEFIRDHSDGNRFA | [84] |
rtCATH-1a | Oncorhynchus mykiss | Anti-gram+ and gram- | RRSKVRICSRGKNCVSRLGGGSIIGRPGGGSLIGRPGGGSVIGRPGGGSPPGGGSFNDEFIRDHSDGNRFA | [85] |
rtCATH-1b | Oncorhynchus mykiss | Anti-gram+ and gram- | RRSKVRICSRGKNCVSRPGGGSVIGRPGGGSPPGGGSFNDEFIRDHSDGNRFA | [85] |
rtCATH-1c | Oncorhynchus mykiss | Anti-gram+ and gram- | RRSKVRICSRGKNCVSRPGGGSFNDEFIRDHSDGNRFA | [85] |
rtCATH-1d | Oncorhynchus mykiss | Anti-gram+ and gram- | RRSKVRICSRGKNCVSFNDEFIRDHSDGNRFA | [85] |
rtCATH-2a | Oncorhynchus mykiss | Anti-gram+ and gram- | RRGKDSGGPKMGRKDSKGCWRGRPGSGSRPGFGSGIAGASGVNHVGTLPASNSTTHPLDNCKISPQ | [85] |
rtCATH-2b | Oncorhynchus mykiss | Anti-gram+ and gram- | RRGKDSGGPKMGRKDSKGCWRGRPGSGSRPGFGSGIAGASGVNHVGTLPA | [85] |
Reptiles | ||||
OH-CATH | Ophiophagus hannah | Anti-gram+ and gram-, enzyme inhibitor | KRFKKFFKKLKNSVKKRAKKFFKKPRVIGVSIPF | [86] |
BF-CATH | Bungarus fasciatus | Anti-gram+ and gram- | KRFKKFFKKLKKSVKKRAKKFFKKPRVIGVSIPF | [86] |
NA-CATH | Naja atra | Anti-gram+ and gram-, antibiofilm | KRFKKFFKKLKNSVKKRAKKFFKKPKVIGVTFPF | [86] |
Hc-CATH | Hydrophis cyanocinctus | Anti-gram+ and gram-, antiviral, antifungal, candidacidal, anti-inflammatory, anti-sepsis, antibiofilm | KFFKRLLKSVRRAVKKFRKKPRLIGLSTLL | [87] |
Batroxicidin | Bothrops atrox | Anti-gram+ and gram-, antiparasitic | KRFKKFFKKLKNSVKKRVKKFFRKPRVIGVTFPF | [88] |
Crotalicidin | Crotalus durissus terrificus | Anti-gram+ and gram-, antifungal, anticancer, hemolytic | KRFKKFFKKVKKSVKKRLKKIFKKPMVIGVTIPF | [88] |
Cathelicidin-BF | Bungarus fasciatus | Anti-gram+ and gram-, antifungal, candidacidal, enzyme inhibitor, anticancer | KFFRKLKKSVKKRAKEFFKKPRVIGVSIPF | [89] |
CATHPb1 | Python bivittatu | Anti-gram+ and gram-, antifungal, candidacidal, anti-MRSA, anti-inflammatory, antibiofilm | KRFKKFFRKIKKGFRKIFKKTKIFIGGTIPI | [90] |
CATHPb2 | Python bivittatu | Anti-gram+ and gram-, antifungal, anti-MRSA | KRNGFRKFMRRLKKFFAGGGSSIAHIKLH | [90] |
CATHPb4 | Python bivittatu | Anti-gram+ and gram-, antifungal, anti-MRSA | TRSRWRRFIRGAGRFARRYGWRIALGLVG | [90] |
TS-CATH | Thamnophis sirtalis | Anti-gram+ and gram-, anti-inflammatory, wound healing | KRFKKFFKKIKKSVKKRVKKLFKKPRVIPISIPF | [71] |
SA-CATH | Sinonatrix annularis | Anti-gram+ and gram-, antifungal, candidacidal, anti-inflammatory, antibiofilm | KFFKKLKKSVKKHVKKFFKKPKVIGVSIPF | [91] |
Aquiluscidin | Crotalus aquilus | Anti-gram+ and gram- | KRFKKFFKKVKKSVKKRLKKIFKKPMVIGVSFPF | [92] |
RG-29 | Gekko japonicus | Anti-gram+ and gram- | RWRRFWGKAKRGIKKHGVSIALAALRLRG | [93] |
Gj-CATH2 | Gekko japonicus | Anti-gram+ and gram-, anti-MRSA | RRGIKKFIKKVKKVKKAIKEGIKKGIKKLLSGGGSNIAHGPGGRRHIA | [94] |
Ps-CATH4 | Pelodiscus sinensis | Anti-gram+ and gram- | TRGRWGRFKRRAGRFIRRNRWQIISTGLKLIG | [95] |
Ps-CATH6 | Pelodiscus sinensis | Anti-gram+ and gram-, candidacidal | KKPSKKPKPQAMTFPKVTVEYFPASFSTAALTVPED | [95] |
Cm-CATH1 | Chelonia mydas | Anti-gram+ and gram-, antifungal, candidacidal | RRSIFRKLRRKIKKGLKKGIQHLLAGGRQGLPQGGRPGMI | [96] |
Cm-CATH2 | Chelonia mydas | Anti-gram+ and gram-, antifungal, candidacidal, anti-inflammatory, antibiofilm | RRSRFGRFFKKVRKQLGRVLRHSRITVGGRMRF | [96] |
Cm-CATH3 | Chelonia mydas | Anti-gram+ and gram-, antifungal, candidacidal | TRGRWKRFWRGAGRFFRRHKEKIIRAAVDIVLS | [96] |
Cm-CATH4 | Chelonia mydas | Anti-gram+ and gram-, antifungal, candidacidal | MAFPFSTQRINPEIEEGNASLADLPVTHAGSLPGIKAQVRTALGIALLLVA | [96] |
As-CATH4 | Alligator sinensis | Anti-gram+ and gram-, antifungal, candidacidal, anti-sepsis | RRGLFKKLRRKIKKGFKKIFKRLPPVGVGVSIPLAGRR | [97] |
As-CATH5 | Alligator sinensis | Anti-gram+ and gram-, antifungal, candidacidal, anti-sepsis | TRRKFWKKVLNGALKIAPFLLG | [97] |
As-CATH6 | Alligator sinensis | Anti-gram+ and gram-, anti-sepsis | TRWLWLLRGGLKAAGWGIRAHLNRNQ | [97] |
As-CATH7 | Alligator sinensis | Anti-gram+ and gram- | KRVNWRKVGRNTALGASYVLSFLG | [98] |
As-CATH8 | Alligator sinensis | Anti-gram+ and gram- | KRVNWAKVGRTALKLLPYIFG | [98] |
AM-CATH36 | Alligator mississippiensis | Anti-gram+ and gram- | GLFKKLRRKIKKGFKKIFKRLPPIGVGVSIPLAGKR | [99] |
Gg-CATH5 | Gavialis gangeticus | Anti-gram+ and gram- | TRRKWWKKVLNGAIKIAPYILD | [98] |
Gg-CATH7 | Gavialis gangeticus | Anti-gram+ and gram- | KRVNWRKVGLGASYVMSWLG | [98] |
Amphibians | ||||
Cathelicidin-AL | Amolops loloensis | Anti-gram+ and gram-, antifungal, candidacidal, anti-MRSA | RRSRRGRGGGRRGGSGGRGGRGGGGRSGAGSSIAGVGSRGGGGGRHYA | [100] |
Cathelicidin-PY | Paa yunnanensis | Anti-gram+ and gram-, antifungal, candidacidal, anti-inflammatory, anti-sepsis | RKCNFLCKLKEKLRTVITSHIDKVLRPQG | [101] |
Lf-CATH1 | Limnonectes fragilis | Anti-gram+ and gram-, antifungal, candidacidal | PPCRGIFCRRVGSSSAIARPGKTLSTFITV | [102] |
Lf-CATH2 | Limnonectes fragilis | Anti-gram+ and gram-, antifungal, candidacidal | GKCNVLCQLKQKLRSIGSGSHIGSVVLPRG | [102] |
Cathelicidin-RC1 | Rana catesbeiana | Anti-gram+ and gram-, antifungal, candidacidal | KKCKFFCKVKKKIKSIGFQIPIVSIPFK | [103] |
Cathelicidin-RC2 | Rana catesbeiana | Anti-gram+ | KKCGFFCKLKNKLKSTGSRSNIAAGTHGGTFRV | [103] |
BG-CATH37 | Bufo bufo gargarizans | Anti-gram+ and gram- | SSRRPCRGRSCGPRLRGGYTLIGRPVKNQNRPKYMWV | [104] |
Cathelicidin-PP | Polypedates puerensis | Anti-gram+ and gram-, antifungal, anti-inflammatory, anti-sepsis | ASENGKCNLLCLVKKKLRAVGNVIKTVVGKIA | [105] |
OL-CATH2 | Odorrana livida | Anti-gram+ and gram-, anti-inflammatory, anti-sepsis | RKCNFLCKVKNKLKSVGSKSLIGSATHHGIYRV | [106] |
HR-CATH | Hoplobatrachus rugulosus | Anti-gram+ and gram-, chemotactic | ASKKGKCNLLCKLKQKLRSVGAGTHIGSVVLKG | [107] |
Cath-MH | Microhyla heymonsi Vogt | Anti-gram+ and gram-, antifungal, candidacidal, anti-inflammatory, enzyme inhibitor | APCKLGCKIKKVKQKIKQKLKAKVNAVKTVIGKISEHLG | [108] |
PN-CATH1 | Pelophylax nigromaculata | Anti-gram+ and gram-, antioxidant | KKCNFFCKLKKKVKSVGSRNLIGSATHHHRIYRV | [109] |
PN-CATH2 | Pelophylax nigromaculata | Anti-gram+ and gram-, antioxidant, anti-inflammatory, anti-sepsis | EGCNILCLLKRKVKAVKNVVKNVVKSVVG | [109] |
Cathelicidin-PR1 | Paa robertingeri | Anti-gram+ and gram-, antifungal, candidacidal | RKCNLFCKAKQKLKSLSSVIGTVVHPPRG | [110] |
Ll-CATH | Leptobrachium liui | Anti-gram+ and gram-, chemotactic, anti-inflammatory | SRPCNCRCCYVARGNGRCLLRPGCFTVAARPNRSV | [111] |
QS-CATH | Quasipaa spinosa | Anti-gram+ and gram-, chemotactic | ANRKPPCRGIFCRRVGSGSLIGRPAKDSSNNLSPFIAV | [112] |
Cathelicidin-NV | Nanorana ventripunctata | Wound healing | ARGKKECKDDRCRLLMKRGSFSYV | [113] |
Nv-CATH | Nanorana ventripunctata | Anti-gram+ and gram-, anti-inflammatory, anti-sepsis | NCNFLCKVKQRLRSVSSTSHIGMAIPRPRG | [114] |
Zs-CATH | Zhangixalus smaragdinus | Anti-gram+ and gram-, anti-inflammatory | ASKKGKCNFMCKVKQKLRAIGSKTVIGTVVHKI | [115] |
Cathelicidin-DM | Duttaphrynus melanostictus, or Bufo bufo gargarizans Cantor | Anti-gram+ and gram-, wound healing | SSRRKPCKGWLCKLKLRGGYTLIGSATNLNRPTYVRA | [116] |
Cathelicidin-Bg | Bufo gargarizans | Anti-gram+ | RPCRGRSCSPWLRGAYTLIGRPAKNQNRPKYMWV | [117] |
AdCath | Andrias davidianus | Anti-gram+ and gram-, anti-sepsis | RPKKVQGRKAEKDNGDGTTAANASGKKKSSNVFK | [118] |
Animal Model | Thickness Epidermis+Dermis | Hair Follicle | |||
---|---|---|---|---|---|
Female/Male (mm) | Density (/cm2) | Diameter (µm) | Hair Section (µm) | ||
Human | Thigh | 1.50/1.72 I | 14–32 IV | 66–170 IV | 16–29 IV |
Waist | 1.92/1.99 I | ||||
Deltoid | 1.96/2.26 I | ||||
Porcine | Ear | 1.95 II | 20 II | 200 II | 82 II |
Mouse | Dorsal | 0.20–0.25/0.35–0.40 III | 5045 V | 24 V | - |
Peptide | Target | Status in 2024 | Phase | Article/Reference | Clinical Trial ID |
---|---|---|---|---|---|
LL-37 | Melanoma | Completed | I/II | M.D. Anderson Cancer Center, Houston, TX, USA. Induction of antitumor response in melanoma patients using the antimicrobial peptide LL-37 | NCT02225366 |
LL-37 | Diabetic foot ulcer | Unknown | II | [191]; Fakultas Kedokteran Universitas Indonesia, Kenari, Indonesia | NCT04098562 |
OP-145 (AMP60.4Ac) synthetic, LL-37 derived peptide | Otitis media | Completed | II | [192]; OctoPlus BV, Heerenveen, Netherlands | ISRCTN12149720 |
Recombinant LL-37 | COVID-19 | Completed, another undefined phase ongoing until 2026 | II | [193]; Chinese PLA General Hospital, Beijing, China | ChiCTR2300067840 |
Synthetic LL-37 (Ropocamptide) | Hard-to-heal venous leg ulcers | Completed | II | [194,195]; Lipopeptide AB (Promore Pharma in present, Solna, Sweden) | EUCTR2012-002100-41-SE, EUCTR2018-000536-10-PL |
Omiganan (MBI 226, synthetic analogue of bovine indolicidin) | Evaluate the safety of topical application of AMPs | Completed | I | Mashhad University of Medical Sciences, Mashhad, Iran. Evaluate the safety, side effects, and maximum tolerable dose of 5 AMPs on the skin of healthy volunteers to the treatment of skin and soft tissue infections | IRCT20190924044863N1 |
Omiganan (MBI 226, synthetic analogue of bovine indolicidin) | Facial seborrheic dermatitis | Ongoing | II | [196]; Maruho Co., Ltd., Osaka, Japan. | NCT03688971 |
Omiganan (MBI 226, synthetic analogue of bovine indolicidin) | Atopic dermatitis | Completed | II | [197,198]; Cutanea Life Sciences, Wayne, PA, USA | NL-OMON42963 |
Omiganan (MBI 226, synthetic analogue of bovine indolicidin) | Venous catheterization | Completed | III | [199] | NCT00027248 (BioWest Therapeutics Inc., Vancouver, BC, Canada), NCT00231153 (Mallinckrodt, St. Louis, MO, USA) |
Omiganan (MBI 226, synthetic analogue of bovine indolicidin) | Healthy volunteers | Ongoing | II | [200]; Cutanea Life Sciences, Wayne, PA, USA | EUCTR2016-004702-34-NL |
Omiganan (MBI 226, synthetic analogue of bovine indolicidin) | Genital warts | Completed | II | [201]; Cutanea Life Sciences, Wayne, PA, USA | NCT02849262 |
Omiganan (MBI 226, synthetic analogue of bovine indolicidin) | Papulopustular rosacea | Completed | III | Maruho Co., Ltd., Osaka, Japan. Study to evaluate the safety and efficacy of a once-daily CLS001 topical gel versus vehicle. | NCT02576860 |
Omiganan (MBI 226, synthetic analogue of bovine indolicidin) | Severe acne vulgaris | Completed | II | Cutanea Life Sciences, Inc., Wayne, PA, USA. A study to evaluate the safety and efficacy of Omiganan (CLS001) topical gel versus vehicle in female subjects with moderate-to-severe acne vulgaris. | NCT02571998 |
Omiganan (MBI 226, synthetic analogue of bovine indolicidin) | Severe acne vulgaris | Completed | II | (a) BioWest Therapeutics Inc., Vancouver, BC, Canada. Safety and efficacy of MBI 226 2.5% and 5.0% topical acne solutions in the treatment of acne; (b) safety and efficacy of MBI 226 1.25% and 2.5% topical acne solutions in the treatment of acne. | a) NCT00211523; b) NCT00211497 |
Omiganan (MBI 226, synthetic analogue of bovine indolicidin) | Vulvar intraepithelial neoplasia | Completed | II | [201]; Cutanea Life Sciences, Wayne, PA, USA. | EUCTR2015-002724-16-NL |
Omiganan (MBI 226, synthetic analogue of bovine indolicidin) | Healthy adult subject | Completed | III | Mallinckrodt, St. Louis, MO, USA. Study of antimicrobial activity of omiganan 1% gel vs. chlorhexidine 2% for topical skin anti-sepsis in healthy adult subjects. | NCT00608959 |
SGX942 (Dusquetide, synthetic peptide derived from indolicidin) | Treatment of oral mucositis | Ongoing | III | [202,203] | EUCTR2017-003702-41-FR |
SGX945 (Dusquetide, synthetic peptide derived from indolicidin) | Aphthous ulcers in Behçet’s disease | Ongoing | II | [203] | NCT06386744 |
Murepavadin (POL7080; synthetic derivative of pigs protegrin-1) | Pneumonia due to P. aeruginosa | Terminated | III | Polyphor Ltd. (Spexis at present, Allschwil, Switzerland) | CTRI/2019/04/018855, NCT03582007, NCT03409679 |
Murepavadin (POL7080; synthetic derivative of pigs protegrin-1) | Nosocomial pneumonia due to P. aeruginosa | Ongoing | III | [204,205] preceding trial NCT02110459; Polyphor Ltd. (Spexis at present, Allschwil, Switzerland) | EUCTR2018-001159-11-FR, EUCTR2018-001159-11-CZ, EUCTR2017-003933-27-HU |
Iseganan (IB-367, synthetic analog of protegrin-1) | Pneumonia | Terminated | II/III | [206]; IntraBiotics Pharmaceuticals Inc., Mountain View, CA, USA (closed) | NCT00118781 |
Iseganan (IB-367, synthetic analog of protegrin-1) | Oral mucositis | Unknown | III | [207]; National Cancer Institute, Bethesda, MD, USA (NCI) | NCT00022373 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzurová, L.; Holásková, E.; Pospíšilová, H.; Schneider Rauber, G.; Frébortová, J. Cathelicidins: Opportunities and Challenges in Skin Therapeutics and Clinical Translation. Antibiotics 2025, 14, 1. https://doi.org/10.3390/antibiotics14010001
Dzurová L, Holásková E, Pospíšilová H, Schneider Rauber G, Frébortová J. Cathelicidins: Opportunities and Challenges in Skin Therapeutics and Clinical Translation. Antibiotics. 2025; 14(1):1. https://doi.org/10.3390/antibiotics14010001
Chicago/Turabian StyleDzurová, Lenka, Edita Holásková, Hana Pospíšilová, Gabriela Schneider Rauber, and Jitka Frébortová. 2025. "Cathelicidins: Opportunities and Challenges in Skin Therapeutics and Clinical Translation" Antibiotics 14, no. 1: 1. https://doi.org/10.3390/antibiotics14010001
APA StyleDzurová, L., Holásková, E., Pospíšilová, H., Schneider Rauber, G., & Frébortová, J. (2025). Cathelicidins: Opportunities and Challenges in Skin Therapeutics and Clinical Translation. Antibiotics, 14(1), 1. https://doi.org/10.3390/antibiotics14010001