Efficacy and Safety of Antibiotics in the Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA) Infections: A Systematic Review and Network Meta-Analysis
Abstract
:1. Background
2. Objective
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Bias Risk Assessment
3.4. The Clinical Cure Rate
3.5. Clinical Microbiology Success Rate
3.6. Incidence of Adverse Reactions
3.7. Clinical Cure Rate of Patients with MRSA-Induced cSSSIs
3.8. Clinical Cure Rate of Patients with MRSA-Induced cSSTIs
3.9. Clinical Cure Rate of MRSA-Induced Pneumonia Patients
3.10. Publication Bias and Inconsistency Evaluations
4. Methods
4.1. Search Strategy
4.2. Choice Criteria
4.3. Data Extraction
4.4. Outcome Indicators
4.5. Quality Evaluation
4.6. Statistical Analysis
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barber, M. Methicillin-resistant staphylococci. J. Clin. Pathol. 1961, 14, 385. [Google Scholar] [CrossRef] [PubMed]
- Chambers, H.F. The changing epidemiology of Staphylococcus aureus? Emerg. Infect. Dis. 2001, 7, 178. [Google Scholar] [CrossRef] [PubMed]
- Daum, R.S. Skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. N. Engl. J. Med. 2007, 357, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Moran, G.J.; Krishnadasan, A.; Gorwitz, R.J.; Fosheim, G.E.; McDougal, L.K.; Carey, R.B.; Talan, D.A. Methicillin-resistant S. aureus infections among patients in the emergency department. N. Engl. J. Med. 2006, 355, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kuti, J.L.; Nicolau, D.P. Antimicrobial management of complicated skin and skin structure infections in the era of emerging resistance. Surg. Infect. 2005, 6, 283–295. [Google Scholar] [CrossRef]
- Edelsberg, J.; Taneja, C.; Zervos, M.; Haque, N.; Moore, C.; Reyes, K.; Spalding, J.; Jiang, J.; Oster, G. Trends in US hospital admissions for skin and soft tissue infections. Emerg. Infect. Dis. 2009, 15, 1516. [Google Scholar] [CrossRef]
- Healthcare Cost Utilization Project. HCUP Facts and Figures. In HCUP Facts and Figures: Statistics on Hospital-Based Care in the United States, 2007; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2009. [Google Scholar]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: Executive summary. Clin. Infect. Dis. 2011, 52, 285–292. [Google Scholar] [CrossRef]
- Chalmers, S.J.; Wylam, M.E. Methicillin-Resistant Staphylococcus aureus Infection and Treatment Options; Methods in Molecular Biology; Humana: New York, NY, USA, 2020; Volume 2069, pp. 229–251. [Google Scholar] [CrossRef]
- Samura, M.; Kitahiro, Y.; Tashiro, S.; Moriyama, H.; Hamamura, Y.; Takahata, I.; Kawabe, R.; Enoki, Y.; Taguchi, K.; Takesue, Y.; et al. Efficacy and Safety of Daptomycin versus Vancomycin for Bacteremia Caused by Methicillin-Resistant Staphylococcus aureus with Vancomycin Minimum Inhibitory Concentration > 1 µg/mL: A Systematic Review and Meta-Analysis. Pharmaceutics 2022, 14, 714. [Google Scholar] [CrossRef]
- Matsumoto, K.; Samura, M.; Tashiro, S.; Shishido, S.; Saiki, R.; Takemura, W.; Misawa, K.; Liu, X.; Enoki, Y.; Taguchi, K. Target Therapeutic Ranges of Anti-MRSA Drugs, Linezolid, Tedizolid and Daptomycin, and the Necessity of TDM. Biol. Pharm. Bull. 2022, 45, 824–833. [Google Scholar] [CrossRef]
- Chastre, J.; Blasi, F.; Masterton, R.G.; Rello, J.; Torres, A.; Welte, T. European perspective and update on the management of nosocomial pneumonia due to methicillin-resistant Staphylococcus aureus after more than 10 years of experience with linezolid. Clin. Microbiol. Infect. 2014, 20, 19–36. [Google Scholar] [CrossRef]
- Mandell, L.A.; Wunderink, R.G.; Anzueto, A.; Bartlett, J.G.; Campbell, G.D.; Dean, N.C.; Dowell, S.F.; File, T.M., Jr.; Musher, D.M.; Niederman, M.S.; et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin. Infect. Dis. 2007, 44, S27–S72. [Google Scholar] [CrossRef] [PubMed]
- Van Laethem, Y.; Hermans, P.; De Wit, S.; Goosens, H.; Clumeck, N. Teicoplanin compared with vancomycin in methicillin-resistant Staphylococcus aureus infections: Preliminary results. J. Antimicrob. Chemother. 1988, 21, 81–87. [Google Scholar] [CrossRef]
- Levine, D.P.; Fromm, B.S.; Reddy, B.R. Slow response to vancomycin or vancomycin plus rifampin in methicillin-resistant Staphylococcus aureus endocarditis. Ann. Intern. Med. 1991, 115, 674–680. [Google Scholar] [CrossRef]
- Markowitz, N.; Quinn, E.L.; Saravolatz, L.D. Trimethoprim-sulfamethoxazole compared with vancomycin for the treatment of Staphylococcus aureus infection. Ann. Intern. Med. 1992, 117, 390–398. [Google Scholar] [CrossRef]
- Liu, C.Y.; Lee, W.S.; Fung, C.P.; Cheng, N.C.; Liu, C.L.; Yang, S.P.; Chen, S.L. Comparative Study of Teicoplanin vs Vancomycin for the Treatment of Methicillin-Resistant Staphylococcus aureus Bacteraemia. Clin. Drug Investig. 1996, 12, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, E.; Cammarata, S.; Oliphant, T.; Wunderink, R. Linezolid (PNU-100766) versus vancomycin in the treatment of hospitalized patients with nosocomial pneumonia: A randomized, double-blind, multicenter study. Clin. Infect. Dis. 2001, 32, 402–412. [Google Scholar] [CrossRef]
- Stevens, D.L.; Herr, D.; Lampiris, H.; Hunt, J.L.; Batts, D.H.; Hafkin, B. Linezolid versus vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin. Infect. Dis. 2002, 34, 1481–1490. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Rello, J.; Cammarata, S.K.; Croos-Dabrera, R.V.; Kollef, M.H. Linezolid vs vancomycin: Analysis of two double-blind studies of patients with methicillin-resistant Staphylococcus aureus nosocomial pneumonia. Chest 2003, 124, 1789–1797. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, S.L.; Afghani, B.; Lopez, P.; Wu, E.; Fleishaker, D.; Edge-Padbury, B.; Naberhuis-Stehouwer, S.; Bruss, J.B. Linezolid for the treatment of methicillin-resistant Staphylococcus aureus infections in children. Pediatr. Infect. Dis. J. 2003, 22, S178–S185. [Google Scholar] [CrossRef]
- Kollef, M.H.; Rello, J.; Cammarata, S.K.; Croos-Dabrera, R.V.; Wunderink, R.G. Clinical cure and survival in Gram-positive ventilator-associated pneumonia: Retrospective analysis of two double-blind studies comparing linezolid with vancomycin. Intensive Care Med. 2004, 30, 388–394. [Google Scholar] [CrossRef]
- Weigelt, J.; Kaafarani, H.M.; Itani, K.M.; Swanson, R.N. Linezolid eradicates MRSA better than vancomycin from surgical-site infections. Am. J. Surg. 2004, 188, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, J.N.; Shively, E.H.; Polk, H.C., Jr. Clinical and economic outcomes of oral linezolid versus intravenous vancomycin in the treatment of MRSA-complicated, lower-extremity skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. Am. J. Surg. 2005, 189, 425–428. [Google Scholar] [CrossRef]
- Stryjewski, M.E.; O’Riordan, W.D.; Lau, W.K.; Pien, F.D.; Dunbar, L.M.; Vallee, M.; Fowler, V.G., Jr.; Chu, V.H.; Spencer, E.; Barriere, S.L.; et al. Telavancin versus standard therapy for treatment of complicated skin and soft-tissue infections due to gram-positive bacteria. Clin. Infect. Dis. 2005, 40, 1601–1607. [Google Scholar] [CrossRef] [PubMed]
- Weigelt, J.; Itani, K.; Stevens, D.; Lau, W.; Dryden, M.; Knirsch, C. Linezolid versus vancomycin in treatment of complicated skin and soft tissue infections. Antimicrob. Agents Chemother. 2005, 49, 2260–2266. [Google Scholar] [CrossRef]
- Stryjewski, M.E.; Chu, V.H.; O’Riordan, W.D.; Warren, B.L.; Dunbar, L.M.; Young, D.M.; Vallée, M.; Fowler, V.G., Jr.; Morganroth, J.; Barriere, S.L.; et al. Telavancin versus standard therapy for treatment of complicated skin and skin structure infections caused by gram-positive bacteria: FAST 2 study. Antimicrob. Agents Chemother. 2006, 50, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Talbot, G.H.; Thye, D.; Das, A.; Ge, Y. Phase 2 study of ceftaroline versus standard therapy in treatment of complicated skin and skin structure infections. Antimicrob. Agents Chemother. 2007, 51, 3612–3616. [Google Scholar] [CrossRef]
- Kohno, S.; Yamaguchi, K.; Aikawa, N.; Sumiyama, Y.; Odagiri, S.; Aoki, N.; Niki, Y.; Watanabe, S.; Furue, M.; Ito, T.; et al. Linezolid versus vancomycin for the treatment of infections caused by methicillin-resistant Staphylococcus aureus in Japan. J. Antimicrob. Chemother. 2007, 60, 1361–1369. [Google Scholar] [CrossRef] [PubMed]
- Katz, D.E.; Lindfield, K.C.; Steenbergen, J.N.; Benziger, D.P.; Blackerby, K.J.; Knapp, A.G.; Martone, W.J. A pilot study of high-dose short duration daptomycin for the treatment of patients with complicated skin and skin structure infections caused by gram-positive bacteria. Int. J. Clin. Pract. 2008, 62, 1455–1464. [Google Scholar] [CrossRef]
- Florescu, I.; Beuran, M.; Dimov, R.; Razbadauskas, A.; Bochan, M.; Fichev, G.; Dukart, G.; Babinchak, T.; Cooper, C.A.; Ellis-Grosse, E.J.; et al. Efficacy and safety of tigecycline compared with vancomycin or linezolid for treatment of serious infections with methicillin-resistant Staphylococcus aureus or vancomycin-resistant enterococci: A Phase 3, multicentre, double-blind, randomized study. J. Antimicrob. Chemother. 2008, 62, i17–i28. [Google Scholar] [CrossRef]
- Noel, G.J.; Strauss, R.S.; Amsler, K.; Heep, M.; Pypstra, R.; Solomkin, J.S. Results of a double-blind, randomized trial of ceftobiprole treatment of complicated skin and skin structure infections caused by gram-positive bacteria. Antimicrob. Agents Chemother. 2008, 52, 37–44. [Google Scholar] [CrossRef]
- Stryjewski, M.E.; Graham, D.R.; Wilson, S.E.; O’Riordan, W.; Young, D.; Lentnek, A.; Ross, D.P.; Fowler, V.G.; Hopkins, A.; Friedland, H.D.; et al. Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by gram-positive organisms. Clin. Infect. Dis. 2008, 46, 1683–1693. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, M.H.; Tack, K.J.; Bouza, E.; Herr, D.L.; Ruf, B.R.; Ijzerman, M.M.; Croos-Dabrera, R.V.; Kunkel, M.J.; Knirsch, C. Complicated skin and skin-structure infections and catheter-related bloodstream infections: Noninferiority of linezolid in a phase 3 study. Clin. Infect. Dis. 2009, 48, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Itani, K.M.; Dryden, M.S.; Bhattacharyya, H.; Kunkel, M.J.; Baruch, A.M.; Weigelt, J.A. Efficacy and safety of linezolid versus vancomycin for the treatment of complicated skin and soft-tissue infections proven to be caused by methicillin-resistant Staphylococcus aureus. Am. J. Surg. 2010, 199, 804–816. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.J.; Koh, Y.; Hong, S.B.; Chung, J.W.; Ho Choi, S.; Kim, N.J.; Kim, M.N.; Choi, I.S.; Han, S.Y.; Kim, W.D.; et al. Effect of vancomycin plus rifampicin in the treatment of nosocomial methicillin-resistant Staphylococcus aureus pneumonia. Crit. Care Med. 2010, 38, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, B.A.; Itani, K.M.; Weigelt, J.A.; Joseph, W.; Paap, C.M.; Reisman, A.; Myers, D.E.; Huang, D.B. The role of diabetes mellitus in the treatment of skin and skin structure infections caused by methicillin-resistant Staphylococcus aureus: Results from three randomized controlled trials. Int. J. Infect. Dis. 2011, 15, e140–e146. [Google Scholar] [CrossRef] [PubMed]
- Corey, G.R.; Wilcox, M.H.; Talbot, G.H.; Thye, D.; Friedland, D.; Baculik, T. CANVAS 1: The first Phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J. Antimicrob. Chemother. 2010, 65, iv41–iv51. [Google Scholar] [CrossRef]
- Wilcox, M.H.; Corey, G.R.; Talbot, G.H.; Thye, D.; Friedland, D.; Baculik, T. CANVAS 2: The second Phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J. Antimicrob. Chemother. 2010, 65, iv53–iv65. [Google Scholar] [CrossRef] [PubMed]
- Corey, G.R.; Wilcox, M.; Talbot, G.H.; Friedland, H.D.; Baculik, T.; Witherell, G.W.; Critchley, I.; Das, A.F.; Thye, D. Integrated analysis of CANVAS 1 and 2: Phase 3, multicenter, randomized, double-blind studies to evaluate the safety and efficacy of ceftaroline versus vancomycin plus aztreonam in complicated skin and skin-structure infection. Clin. Infect. Dis. 2010, 51, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Barriere, S.L. ATLAS trials: Efficacy and safety of telavancin compared with vancomycin for the treatment of skin infections. Future Microbiol. 2010, 5, 1765–1773. [Google Scholar] [CrossRef]
- Duane, T.M.; Weigelt, J.A.; Puzniak, L.A.; Huang, D.B. Linezolid and vancomycin in treatment of lower-extremity complicated skin and skin structure infections caused by methicillin-resistant Staphylococcus aureus in patients with and without vascular disease. Surg. Infect. 2012, 13, 147–153. [Google Scholar] [CrossRef]
- Itani, K.M.; Biswas, P.; Reisman, A.; Bhattacharyya, H.; Baruch, A.M. Clinical efficacy of oral linezolid compared with intravenous vancomycin for the treatment of methicillin-resistant Staphylococcus aureus-complicated skin and soft tissue infections: A retrospective, propensity score-matched, case-control analysis. Clin. Ther. 2012, 34, 1667–1673.e1. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Niederman, M.S.; Kollef, M.H.; Shorr, A.F.; Kunkel, M.J.; Baruch, A.; McGee, W.T.; Reisman, A.; Chastre, J. Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: A randomized, controlled study. Clin. Infect. Dis. 2012, 54, 621–629. [Google Scholar] [CrossRef]
- Stryjewski, M.E.; Barriere, S.L.; O’Riordan, W.; Dunbar, L.M.; Hopkins, A.; Genter, F.C.; Corey, G.R. Efficacy of telavancin in patients with specific types of complicated skin and skin structure infections. J. Antimicrob. Chemother. 2012, 67, 1496–1502. [Google Scholar] [CrossRef] [PubMed]
- Stryjewski, M.E.; Lentnek, A.; O’Riordan, W.; Pullman, J.; Tambyah, P.A.; Miró, J.M.; Fowler, V.G., Jr.; Barriere, S.L.; Kitt, M.M.; Corey, G.R. A randomized Phase 2 trial of telavancin versus standard therapy in patients with uncomplicated Staphylococcus aureus bacteremia: The ASSURE study. BMC Infect. Dis. 2014, 14, 289. [Google Scholar] [CrossRef]
- Shaw, G.J.; Meunier, J.M.; Korfhagen, J.; Wayne, B.; Hart, K.; Lindsell, C.J.; Fermann, G. Randomized controlled noninferiority trial comparing daptomycin to vancomycin for the treatment of complicated skin and skin structure infections in an observation unit. J. Emerg. Med. 2015, 49, 928–936. [Google Scholar] [CrossRef]
- Equils, O.; da Costa, C.; Wible, M.; Lipsky, B.A. The effect of diabetes mellitus on outcomes of patients with nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus: Data from a prospective double-blind clinical trial comparing treatment with linezolid versus vancomycin. BMC Infect. Dis. 2016, 16, 476. [Google Scholar] [CrossRef] [PubMed]
- Dube, A.; Deb, A.K.; Das, C.; Padhye, D.; Bhalla, H.; Basu, I.; Bs, M.; Srivastava, P.; Agarwal, R.; Agrawal, R.P.; et al. A Multicentre, Open label, Randomized, Comparative, Parallel Group, Active-controlled, Phase III Clinical Trial to Evaluate Safety and Efficacy of Arbekacin Sulphate Injection versus Vancomycin Injection in Patients Diagnosed with MRSA Infection. J. Assoc. Physicians India 2018, 66, 47–50. [Google Scholar] [PubMed]
- Mikamo, H.; Takesue, Y.; Iwamoto, Y.; Tanigawa, T.; Kato, M.; Tanimura, Y.; Kohno, S. Efficacy, safety and pharmacokinetics of tedizolid versus linezolid in patients with skin and soft tissue infections in Japan—Results of a randomised, multicentre phase 3 study. J. Infect. Chemother. 2018, 24, 434–442. [Google Scholar] [CrossRef]
- Kotsaki, A.; Tziolos, N.; Kontopoulou, T.; Koutelidakis, I.M.; Symbardi, S.; Reed, V.; O’Hare, M.; Alexiou, Z.; Sambatakou, H.; Toutouzas, K.; et al. Oral minocycline plus rifampicin versus oral linezolid for complicated skin and skin structure infections caused by methicillin-resistant Staphylococcus aureus: The AIDA open label, randomized, controlled Phase 4 trial. EClinicalMedicine 2023, 56, 101790. [Google Scholar] [CrossRef]
- Bally, M.; Dendukuri, N.; Sinclair, A.; Ahern, S.P.; Poisson, M.; Brophy, J. A network meta-analysis of antibiotics for treatment of hospitalised patients with suspected or proven meticillin-resistant Staphylococcus aureus infection. Int. J. Antimicrob. Agents 2012, 40, 479–495. [Google Scholar] [CrossRef]
- Feng, J.; Xiang, F.; Cheng, J.; Gou, Y.; Li, J. Comparative Efficacy and Safety of Vancomycin, Linezolid, Tedizolid, and Daptomycin in Treating Patients with Suspected or Proven Complicated Skin and Soft Tissue Infections: An Updated Network Meta-Analysis. Infect. Dis. Ther. 2021, 10, 1531–1547. [Google Scholar] [CrossRef] [PubMed]
- Ju, G.; Zhang, Y.; Ye, C.; Liu, Q.; Sun, H.; Zhang, Z.; Huang, X.; Jiang, Y.; Huang, Q. Comparative effectiveness and safety of six antibiotics in treating MRSA infections: A network meta-analysis. Int. J. Infect. Dis. 2024, 146, 107109. [Google Scholar] [CrossRef]
- Agwuh, K.N.; MacGowan, A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J. Antimicrob. Chemother. 2006, 58, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, B.M. IDSA creates MRSA treatment guideline. JAMA 2011, 305, 768–769. [Google Scholar] [CrossRef] [PubMed]
- Bounthavong, M.; Hsu, D.I. Efficacy and safety of linezolid in methicillin-resistant Staphylococcus aureus (MRSA) complicated skin and soft tissue infection (cSSTI): A meta-analysis. Curr. Med. Res. Opin. 2010, 26, 407–421. [Google Scholar] [CrossRef]
- Flanagan, S.; Fang, E.; Muñoz, K.A.; Minassian, S.L.; Prokocimer, P.G. Single- and multiple-dose pharmacokinetics and absolute bioavailability of tedizolid. Pharmacotherapy 2014, 34, 891–900. [Google Scholar] [CrossRef]
- Chen, R.; Shen, K.; Chang, X.; Tanaka, T.; Li, L.; Hu, P. Pharmacokinetics and Safety of Tedizolid after Single and Multiple Intravenous/Oral Sequential Administrations in Healthy Chinese Subjects. Clin. Ther. 2016, 38, 1869–1879. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Hagihara, M.; Asai, N.; Shibata, Y.; Koizumi, Y.; Yamagishi, Y.; Mikamo, H. Meta-analysis of vancomycin versus linezolid in pneumonia with proven methicillin-resistant Staphylococcus aureus. J. Glob. Antimicrob. Resist. 2021, 24, 98–105. [Google Scholar] [CrossRef]
- Brown, N.M.; Goodman, A.L.; Horner, C.; Jenkins, A.; Brown, E.M. Treatment of methicillin-resistant Staphylococcus aureus (MRSA): Updated guidelines from the UK. JAC-Antimicrob. Resist. 2021, 3, dlaa114. [Google Scholar] [CrossRef]
- Diekema, D.J.; Pfaller, M.A.; Shortridge, D.; Zervos, M.; Jones, R.N. Twenty-Year Trends in Antimicrobial Susceptibilities Among Staphylococcus aureus From the SENTRY Antimicrobial Surveillance Program. Open Forum Infect. Dis. 2019, 6, S47–S53. [Google Scholar] [CrossRef]
- Graziani, A.; Lawson, L.; Gibson, G.; Steinberg, M.; MacGregor, R. Vancomycin concentrations in infected and noninfected human bone. Antimicrob. Agents Chemother. 1988, 32, 1320–1322. [Google Scholar] [CrossRef] [PubMed]
- Rennie, R.P.; Jones, R.N.; Mutnick, A.H. Occurrence and antimicrobial susceptibility patterns of pathogens isolated from skin and soft tissue infections: Report from the SENTRY Antimicrobial Surveillance Program (United States and Canada, 2000). Diagn. Microbiol. Infect. Dis. 2003, 45, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Baguneid, M.; Bouza, E.; Dryden, M.; Nathwani, D.; Wilcox, M. European perspective and update on the management of complicated skin and soft tissue infections due to methicillin-resistant Staphylococcus aureus after more than 10 years of experience with linezolid. Clin. Microbiol. Infect. 2014, 20, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Study | Country | Age | Study Design | Types of MRSA Infection (Percentage of Infections) | Interventions | Sample Size | Dosage | Treatment Duration (Days) | Outcomes |
---|---|---|---|---|---|---|---|---|---|
Laethem 1988 [14] | Belgium | ≥18 | RCT, open-label | Infection (0.33%) | Vancomycin | 9 | i.v. 1 g qd | 8–48 | CS, AE |
Teicoplanin | 12 | i.v. or i.m. 400 mg qd | |||||||
Levine 1991 [15] | America | 23–61 | RCT | Endocarditis (0.67%) | Vancomycin | 22 | i.v. 1 g q12h | 28 | CS, AE |
Vancomycin+rifampin | 20 | i.v. or p.o. 1 g q12h and 400 mg qd | |||||||
Markowitz 1992 [16] | America | ≥18 | RCT | Infection (0.75%) | TMP-SMZ | 21 | i.v. 320 mg TMP and 1600 mg SMZ q12h | CS | |
Vancomycin | 26 | i.v. 1g q12h | |||||||
Liu 1996 [17] | China | ≥18 | RCT | Bacteremia (0.64%) | Teicoplanin Vancomycin | 20 20 | i.v. 400 mg q12h for the first three times, then 400 mg qd | CS, AE | |
i.v. 500 mg q6h | |||||||||
Rubinstein 2001 [18] | Multinational | ≥18 | RCT, double-blind | NP (0.51%) | Linezolid + aztreonam | 23 | i.v. 600 mg q12h and 1–2g q8h | 7–21 | ME |
Vancomycin + aztreonam | 9 | i.v. 1 g q12h and 1–2 g q8h | |||||||
Stevens 2002 [19] | Multinational | ≥13 | RCT, open-label | SSTIs, pneumonia (2.31%) | Linezolid | 76 | i.v. 600 mg q12h | 7–28 | CS |
Vancomycin | 69 | i.v. 1g q12h | |||||||
Wunderink 2003 [20] | Multinational | ≥18 | RCT, double-blind | NP (1.96%) | Linezolid | 61 | i.v. 600 mg q12h | 7–21 | CS, AE |
Vancomycin | 62 | i.v. 1g q12h | |||||||
Kaplan 2003 [21] | America | 5–17 | RCT, open-label | cSSSIs, HAP (0.35%) | Linezolid | 13 | p.o. 10 mg/kg up to 600 mg/dose q12h | 10–21 | CS, AE |
Cefadroxil | 9 | p.o. 15 mg/kg up to 500 mg/dose q12h | |||||||
Kollef 2004 [22] | Multinational | ≥65 | RCT, double-blind | VAP (1.11%) | Linezolid | 37 | i.v. 600 mg q12h | 7–21 | CS |
Vancomycin | 33 | i.v. 1g q12h | |||||||
Weigelt 2004 [23] | Multinational | ≥18 | RCT, open-label | SSIs (1.70%) | Linezolid | 53 | i.v. or p.o. 600 mg q12h | 7–21 | CS |
Vancomycin | 54 | i.v. 1g q12h | |||||||
Sharpe 2005 [24] | ≥18 | Open-label | cSSTIs (0.96%) | Linezolid | 30 | p.o. 600 mg q12h | 7–21 | CS | |
Vancomycin | 30 | i.v. 1g q12h | |||||||
Stryjewski 2005 [25] | ≥18 | RCT, double-blind | SSTIs (0.76%) | Telavancin | 22 | i.v. 600 mg q12h | >4 | CS | |
Vancomycin | 26 | i.v. 1g q12h | |||||||
Weigelt 2005 [26] | Multinational | RCT, open-label | SSTIs (5.75%) | Linezolid | 176 | i.v. or p.o. 600 mg q12h | 7–21 | CS | |
Vancomycin | 185 | i.v. 1g q12h | |||||||
Stryjewski 2006 [27] | America, South Africa | ≥18 | RCT, double-blind | cSSSIs (0.72%) | Telavancin | 26 | i.v. 10mg/kg qd | 4–14 | ME |
Vancomycin | 19 | i.v. 1g q12h | |||||||
Talbot 2007 [28] | Multinational | ≥18 | RCT, single-blind | cSSSIs (0.16%) | Ceftaroline | 5 | i.v. 600 mg q12h | 7–14 | CS |
Vancomycin | 5 | i.v. 1 g q12h | |||||||
Kohno 2007 [29] | Japan | >20 | RCT, open-label | cSSTIs, pneumonia, sepsis (1.46%) | Linezolid | 62 | i.v. or p.o. 600 mg q12h | 7–28 | ME |
Vancomycin | 30 | i.v. 1 g q12h | |||||||
Katz 2008 [30] | America | ≥18 | RCT | cSSSIs (0.94%) | Daptomycin | 31 | i.v. 10mg/kg qd | 14 | CS |
Vancomycin | 28 | i.v. 1 g q12h | |||||||
Florescu 2008 [31] | Multinational | ≥18 | RCT, double-blind | cSSSIs (1.31%) | Tigecycline | 59 | i.v. 100 mg q12h for the first four times, then 50 mg q12h | 7–28 | ME |
Vancomycin | 23 | i.v. 1 g q12h | |||||||
Noel 2008 [32] | Multinational | ≥18 | RCT, double-blind | cSSSIs (1.93%) | Ceftobiprole | 61 | i.v. 500 mg q12h | ME | |
Vancomycin | 60 | i.v. 1 g q12h | |||||||
Stryjewski 2008 [33] | Multinational | ≥18 | RCT, double-blind | cSSSIs (9.22%) | Telavancin | 278 | i.v. 10mg/kg qd | 7–14 | ME |
Vancomycin | 301 | i.v. 1 g q12h | |||||||
Wilcox 2009 [34] | Multinational | ≥13 | RCT, open-label | cSSSIs (1.34%) | Linezolid | 45 | i.v. 600 mg q12h | 7–28 | CS |
Vancomycin | 39 | i.v. 1 g q12h | |||||||
Itani 2010 [35] | Multinational | ≥18 | RCT, open-label | cSSTIs (6.94%) | Linezolid | 227 | i.v. or p.o. 600 mg q12h | 7–14 | CS |
Vancomycin | 209 | i.v. 15 mg/kg q12h | |||||||
Jung 2010 [36] | Korea | ≥18 | RCT, open-label | Pneumonia (1.32%) | Vancomycin + rifampicin | 41 | i.v. 1 g q12h and 300 mg q12h | 14 | CS, AE |
Vancomycin | 42 | i.v. 1 g q12h | |||||||
Lipsky 2010 [37] | Multinational | Unclear | RCT, open-label | cSSSIs (11.26%) | Linezolid | 356 | i.v. or p.o. 600 mg q12h | 7–28 | CS, AE |
Vancomycin | 351 | i.v. 1 g q12h | |||||||
Corey 2010 [38] | Multinational | ≥18 | RCT, double-blind | cSSSIs (1.74%) | Ceftaroline | 66 | 600 mg q12h | 5–14 | CS |
Vancomycin + aztreonam | 43 | 1 g q12h and 1 g q12h | |||||||
Wilcox 2010 [39] | Multinational | ≥18 | RCT, double-blind | cSSSIs (1.75%) | Ceftaroline | 58 | 600 mg q12h | 5–14 | CS |
Vancomycin + aztreonam | 52 | 1 g q12h and 1 g q12h | |||||||
Corey 2010 [40] | Multinational | ≥18 | RCT, double-blind | cSSSIs (4.36%) | Ceftaroline | 152 | i.v. 600 mg q12h | 5–14 | ME |
Vancomycin + aztreonam | 122 | i.v. 1 g q12h and 1 g q12h | |||||||
Barriere 2010 [41] | Multinational | ≥18 | RCT, double-blind | cSSSIs (7.98%) | Telavancin | 239 | i.v. 10mg/kg qd | 7–14 | ME |
Vancomycin | 262 | i.v. 1 g q12h | |||||||
Duane 2012 [42] | Multinational | ≥18 | RCT, open-label | cSSSIs (2.52%) | Linezolid | 73 | i.v. 600 mg q12h | 7–28 | CS, AE |
Vancomycin | 85 | i.v. 1 g q12h | |||||||
Itani 2012 [43] | Multinational | ≥18 | RCT, open-label | cSSTIs (2.91%) | Linezolid | 91 | p.o. 600 mg q12h | 7–14 | CS, AE |
Vancomycin | 92 | i.v. 15 mg/kg q12h | |||||||
Wunderink 2012 [44] | Multinational | ≥18 | RCT, double-blind | Pneumonia (5.40%) | Linezolid | 165 | i.v. 600 mg q12h | 7–14 | CS |
Vancomycin | 174 | i.v. 15 mg/kg q12h | |||||||
Stryjewski 2012 [45] | Multinational | ≥18 | RCT, double-blind | cSSSIs (8.96%) | Telavancin | 269 | i.v. 10mg/kg qd | 7–14 | ME |
Vancomycin | 294 | i.v. 1 g q12h | |||||||
Stryjewski 2014 [46] | Multinational | ≥18 | RCT, double-blind | Bacteremia (0.14%) | Telavancin | 5 | i.v. 10mg/kg qd | 14 | CS |
Vancomycin | 4 | i.v. 1 g q12h | |||||||
Shaw 2015 [47] | America | ≥18 | RCT, open-label | cSSSIs (1.59%) | Daptomycin | 50 | i.v. 5 mg/kg qd | 10–14 | CS |
Vancomycin | 50 | i.v. 15 mg/kg q12h | |||||||
Equils 2016 [48] | Multinational | ≥18 | RCT, double-blind | NP (3.76%) | Linezolid | 120 | 600 mg q12h | 7–14 | CS |
Vancomycin | 116 | 15 mg/kg q12h | |||||||
Dube 2018 [49] | India | 18–65 | RCT, open-label | SSTIs (2.44%) | Arbekacin | 75 | 200 mg injection OD | 7–14 | CS |
Vancomycin | 78 | 1000 mg injection BD | |||||||
Mikamo 2018 [50] | Japan | ≥18 | RCT, open-label | SSTIs (0.57%) | Tedizolid | 27 | i.v. or p.o. 200 mg qd | 7–21 | CS |
Linezolid | 9 | i.v. or p.o. 600 mg q12h | |||||||
Kotsak 2023 [51] | Greece, Italy | ≥18 | RCT, open-label | cSSSIs (1.50%) | Minocycline + rifampicin | 59 35 | p.o. 600 mg qd and 100 mg q12h | 10 | CS, AE |
Linezolid | p.o. 600 mg q12h |
Interventions | Types of MRSA Infection | Outcomes | References |
---|---|---|---|
Vancomycin | cSSSIs, pneumonia, cSSTIs | CS, AE, ME | [14,15,16,17,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,41,42,43,44,45,46,47,48,49] |
Linezolid | pneumonia, cSSSIs, cSSTIs | CS, AE, ME | [19,20,21,22,23,24,26,29,34,35,37,42,43,44,48,50,51] |
Telavancin | cSSSIs | CS, ME | [25,27,33,41,45,46] |
Ceftaroline | cSSSIs | CS, ME | [32,39,40] |
Cefadroxil | cSSSIs, pneumonia | CS, AE | [21,28,38] |
Daptomycin | cSSSIs | CS | [30,47] |
Teicoplanin | CS, AE | [14,17] | |
Tedizolid | cSSTIs | CS | [50] |
Arbekacin | cSSTIs | CS | [49] |
Tigecycline | cSSSIs | ME | [31] |
TMP-SMZ | CS | [16] | |
Minocycline + Rifampin | cSSSIs | CS, AE | [51] |
Vancomycin + Rifampin | Pneumonia | CS, AE | [15,36] |
Vancomycin + Aztreonam | Pneumonia, cSSSIs | CS, ME | [18,38,39,40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; He, D.; Wang, L.; Wu, Y.; Liu, X.; Yang, Y.; Chen, Z.; Dong, Z.; Luo, Y.; Song, Y. Efficacy and Safety of Antibiotics in the Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA) Infections: A Systematic Review and Network Meta-Analysis. Antibiotics 2024, 13, 866. https://doi.org/10.3390/antibiotics13090866
Liu Q, He D, Wang L, Wu Y, Liu X, Yang Y, Chen Z, Dong Z, Luo Y, Song Y. Efficacy and Safety of Antibiotics in the Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA) Infections: A Systematic Review and Network Meta-Analysis. Antibiotics. 2024; 13(9):866. https://doi.org/10.3390/antibiotics13090866
Chicago/Turabian StyleLiu, Qi, Dongxia He, Lei Wang, Yuewei Wu, Xian Liu, Yahan Yang, Zhizhi Chen, Zhan Dong, Ying Luo, and Yuzhu Song. 2024. "Efficacy and Safety of Antibiotics in the Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA) Infections: A Systematic Review and Network Meta-Analysis" Antibiotics 13, no. 9: 866. https://doi.org/10.3390/antibiotics13090866
APA StyleLiu, Q., He, D., Wang, L., Wu, Y., Liu, X., Yang, Y., Chen, Z., Dong, Z., Luo, Y., & Song, Y. (2024). Efficacy and Safety of Antibiotics in the Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA) Infections: A Systematic Review and Network Meta-Analysis. Antibiotics, 13(9), 866. https://doi.org/10.3390/antibiotics13090866