Risk Factor Analysis for Occurrence of Linezolid-Resistant Bacteria in the Digestive and Respiratory Tract of Food-Producing Animals in Belgium: A Pilot Study
Abstract
:1. Introduction
2. Results
2.1. Putative Risk Factors for Linezolid Resistance (LR)
2.2. Study Population
2.3. Fecal Samples
2.3.1. Veal Calves
2.3.2. Fattening Pigs
2.3.3. Laying Hens and Broilers
2.4. Nasal Swab Samples
2.4.1. Fattening Pigs
2.4.2. Sows
2.5. General Observations among All Samples
2.6. Follow-Up Analyses
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Potential Risk Factors
4.3. Study Population
4.3.1. Sample Collection
4.3.2. Isolation of LR Enterococci and Staphylococci
4.3.3. LR Status of a Herd
4.3.4. Whole-Genome Sequencing
4.4. Collection of Risk Factor Data
4.4.1. Antimicrobial Use
4.4.2. Animal Movements
4.4.3. Farm and Herd Data
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Critically Important Antimicrobials for Human Medicine, 6th ed.; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Authority, E.F.S. European Centre for Disease Prevention and Control The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2019–2020. EFSA J. 2022, 20, e07209. [Google Scholar] [CrossRef]
- Timmermans, M.; Bogaerts, B.; Vanneste, K.; De Keersmaecker, S.C.J.; Roosens, N.H.C.; Kowalewicz, C.; Simon, G.; Argudín, M.A.; Deplano, A.; Hallin, M.; et al. Large Diversity of Linezolid-Resistant Isolates Discovered in Food-Producing Animals through Linezolid Selective Monitoring in Belgium in 2019. J. Antimicrob. Chemother. 2022, 77, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Leão, C.; Clemente, L.; Cara d’Anjo, M.; Albuquerque, T.; Amaro, A. Emergence of Cfr-Mediated Linezolid Resistance among Livestock-Associated Methicillin-Resistant Staphylococcus aureus (LA-MRSA) from Healthy Pigs in Portugal. Antibiotics 2022, 11, 1439. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Report from the Task Force on Zoonoses Data Collection Including Guidance for Harmonized Monitoring and Reporting of Antimicrobial Resistance in Commensal Escherichia coli and Enterococcus Spp. from Food Animals. EFSA J. 2008, 6, 141r. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Schwarz, S.; Cai, J.; Fan, R.; Li, J.; Feßler, A.T.; Zhang, R.; Wu, C.; Shen, J. Co-Location of the Oxazolidinone Resistance Genes OptrA and Cfr on a Multiresistance Plasmid from Staphylococcus sciuri. J. Antimicrob. Chemother. 2016, 71, 1474–1478. [Google Scholar] [CrossRef] [PubMed]
- Lazaris, A.; Coleman, D.C.; Kearns, A.M.; Pichon, B.; Kinnevey, P.M.; Earls, M.R.; Boyle, B.; O’Connell, B.; Brennan, G.I.; Shore, A.C. Novel Multiresistance Cfr Plasmids in Linezolid-Resistant Methicillin-Resistant Staphylococcus epidermidis and Vancomycin-Resistant Enterococcus Faecium (VRE) from a Hospital Outbreak: Co-Location of Cfr and OptrA in VRE. J. Antimicrob. Chemother. 2017, 72, 3252–3257. [Google Scholar] [CrossRef] [PubMed]
- Long, K.S.; Poehlsgaard, J.; Kehrenberg, C.; Schwarz, S.; Vester, B. The Cfr RRNA Methyltransferase Confers Resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A Antibiotics. Antimicrob. Agents Chemother. 2006, 50, 2500–2505. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lv, Y.; Cai, J.; Schwarz, S.; Cui, L.; Hu, Z.; Zhang, R.; Li, J.; Zhao, Q.; He, T.; et al. A Novel Gene, OptrA, That Confers Transferable Resistance to Oxazolidinones and Phenicols and Its Presence in Enterococcus faecalis and Enterococcus faecium of Human and Animal Origin. J. Antimicrob. Chemother. 2015, 70, 2182–2190. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, A.; D’Andrea, M.M.; Brenciani, A.; Galeotti, C.L.; Morroni, G.; Pollini, S.; Varaldo, P.E.; Rossolini, G.M. Characterization of PoxtA, a Novel Phenicol–Oxazolidinone–Tetracycline Resistance Gene from an MRSA of Clinical Origin. J. Antimicrob. Chemother. 2018, 73, 1763–1769. [Google Scholar] [CrossRef]
- EUR-Lex–C:1996:217:TOC–EN–EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ%3AC%3A1996%3A217%3ATOC (accessed on 20 July 2023).
- Schouls, L.M.; Veldman, K.; Brouwer, M.S.M.; Dierikx, C.; Witteveen, S.; van Santen-Verheuvel, M.; Hendrickx, A.P.A.; Landman, F.; Hengeveld, P.; Wullings, B.; et al. Cfr and FexA Genes in Methicillin-Resistant Staphylococcus aureus from Humans and Livestock in the Netherlands. Commun. Med. 2022, 2, 135. [Google Scholar] [CrossRef]
- Federal Agency For Medicines and Health Products. Belgian Veterinary Surveillance on Antimicrobial Consumption Report 2018 (BELVETSAC 2018); Federal Agency For Medicines and Health Products: Brussels, Belgium, 2019. [Google Scholar]
- Federal Agency For Medicines and Health Products. Belgian Veterinary Surveillance on Antimicrobial Consumption Report 2022 (BELVETSAC 2022); Federal Agency For Medicines and Health Products: Brussels, Belgium, 2023. [Google Scholar]
- Federal Agency For Medicines and Health Products. Belgian Veterinary Surveillance of Antibacterial Consumption, National Consumption Report 2021; Federal Agency For Medicines and Health Products: Brussels, Belgium, 2022. [Google Scholar]
- Europa Categoriseert Antibiotica Om Voorzichtig Gebruik Bij Dieren Te Promoten. Available online: https://www.amcra.be/nl/nieuws/europa-categoriseert-antibiotica-om-voorzichtig-gebruik-bij-dieren-te-promoten/?lid=14306 (accessed on 2 January 2023).
- Centre of Expertise AntiMicrobial Consumption and Resistance in Animals. Richtlijnen over voorzichtig gebruik van florfenicol bij dieren—Inperken van het risico op linezolideresistentie in België. 2024. Available online: https://amcra.be/swfiles/files/Advies_Florfenicol_februari2024_finaal_NL.pdf (accessed on 8 July 2024).
- European Medicines Agency. Categorisation of Antibiotics in the European Union; European Medicines Agency: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Fertner, M.; Toft, N.; Martin, H.L.; Boklund, A. A Register-Based Study of the Antimicrobial Usage in Danish Veal Calves and Young Bulls. Prev. Vet. Med. 2016, 131, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Gonggrijp, M.A.; Santman-Berends, I.M.G.A.; Heuvelink, A.E.; Buter, G.J.; van Schaik, G.; Hage, J.J.; Lam, T.J.G.M. Prevalence and Risk Factors for Extended-Spectrum β-Lactamase- and AmpC-Producing Escherichia coli in Dairy Farms. J. Dairy Sci. 2016, 99, 9001–9013. [Google Scholar] [CrossRef] [PubMed]
- Duse, A.; Waller, K.P.; Emanuelson, U.; Unnerstad, H.E.; Persson, Y.; Bengtsson, B. Risk Factors for Quinolone-Resistant Escherichia coli in Feces from Preweaned Dairy Calves and Postpartum Dairy Cows. J. Dairy Sci. 2015, 98, 6387–6398. [Google Scholar] [CrossRef] [PubMed]
- Schnitt, A.; Tenhagen, B.-A. Risk Factors for the Occurrence of Methicillin-Resistant Staphylococcus aureus in Dairy Herds: An Update. Foodborne Pathog. Dis. 2020, 17, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.S.; Kristoffersen, A.B.; Sunde, M.; Nødtvedt, A.; Norström, M. Risk Factors for Occurrence of Cephalosporin-Resistant Escherichia coli in Norwegian Broiler Flocks. Prev. Vet. Med. 2016, 130, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Adler, A.; Sturlesi, N.; Fallach, N.; Zilberman-Barzilai, D.; Hussein, O.; Blum, S.E.; Klement, E.; Schwaber, M.J.; Carmeli, Y. Gentamicin- and Ciprofloxacin-Resistant Enterobacteriaceae in Cattle Farms in Israel: Risk Factors for Carriage and the Effect of Microbiological Methodology on the Measured Prevalence. Microb. Drug Resist. 2017, 23, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Bastard, J.; Andraud, M.; Chauvin, C.; Glaser, P.; Opatowski, L.; Temime, L. Dynamics of Livestock-Associated Methicillin Resistant Staphylococcus aureus in Pig Movement Networks: Insight from Mathematical Modeling and French Data. Epidemics 2020, 31, 100389. [Google Scholar] [CrossRef] [PubMed]
- Zoppi, S.; Dondo, A.; Di Blasio, A.; Vitale, N.; Carfora, V.; Goria, M.; Chiavacci, L.; Giorgi, I.; D’Errico, V.; Irico, L.; et al. Livestock-Associated Methicillin-Resistant Staphylococcus aureus and Related Risk Factors in Holdings of Veal Calves in Northwest Italy. Microb. Drug Resist. 2021, 27, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Duse, A.; Waller, K.P.; Emanuelson, U.; Unnerstad, H.E.; Persson, Y.; Bengtsson, B. Risk Factors for Antimicrobial Resistance in Fecal Escherichia coli from Preweaned Dairy Calves. J. Dairy Sci. 2015, 98, 500–516. [Google Scholar] [CrossRef] [PubMed]
- Österberg, J.; Wingstrand, A.; Jensen, A.N.; Kerouanton, A.; Cibin, V.; Barco, L.; Denis, M.; Aabo, S.; Bengtsson, B. Antibiotic Resistance in Escherichia coli from Pigs in Organic and Conventional Farming in Four European Countries. PLoS ONE 2016, 11, e0157049. [Google Scholar] [CrossRef]
- Springer, H.R.; Denagamage, T.N.; Fenton, G.D.; Haley, B.J.; Van Kessel, J.A.S.; Hovingh, E.P. Antimicrobial Resistance in Fecal Escherichia coli and Salmonella enterica from Dairy Calves: A Systematic Review. Foodborne Pathog. Dis. 2019, 16, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Afema, J.A.; Davis, M.A.; Sischo, W.M. Antimicrobial Use Policy Change in Pre-Weaned Dairy Calves and Its Impact on Antimicrobial Resistance in Commensal Escherichia coli: A Cross Sectional and Ecological Study. BMC Microbiol. 2019, 19, 217. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Van Gompel, L.; Luiken, R.E.C.; Sanders, P.; Joosten, P.; van Heijnsbergen, E.; Wouters, I.M.; Scherpenisse, P.; Chauvin, C.; Wadepohl, K.; et al. Association of Antimicrobial Usage with Faecal Abundance of Aph(3’)-III, ErmB, Sul2 and TetW Resistance Genes in Veal Calves in Three European Countries. Int. J. Antimicrob. Agents 2020, 56, 106131. [Google Scholar] [CrossRef]
- Catry, B.; Dewulf, J.; Maes, D.; Pardon, B.; Callens, B.; Vanrobaeys, M.; Opsomer, G.; de Kruif, A.; Haesebrouck, F. Effect of Antimicrobial Consumption and Production Type on Antibacterial Resistance in the Bovine Respiratory and Digestive Tract. PLoS ONE 2016, 11, e0146488. [Google Scholar] [CrossRef] [PubMed]
- Jarrige, N.; Cazeau, G.; Bosquet, G.; Bastien, J.; Benoit, F.; Gay, E. Effects of Antimicrobial Exposure on the Antimicrobial Resistance of Escherichia coli in the Digestive Flora of Dairy Calves. Prev. Vet. Med. 2020, 185, 105177. [Google Scholar] [CrossRef] [PubMed]
- Dorado-García, A.; Mevius, D.J.; Jacobs, J.J.H.; Van Geijlswijk, I.M.; Mouton, J.W.; Wagenaar, J.A.; Heederik, D.J. Quantitative Assessment of Antimicrobial Resistance in Livestock during the Course of a Nationwide Antimicrobial Use Reduction in the Netherlands. J. Antimicrob. Chemother. 2016, 71, 3607–3619. [Google Scholar] [CrossRef] [PubMed]
- Burow, E.; Simoneit, C.; Tenhagen, B.-A.; Käsbohrer, A. Oral Antimicrobials Increase Antimicrobial Resistance in Porcine E. Coli—A Systematic Review. Prev. Vet. Med. 2014, 113, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Dorado-García, A.; Dohmen, W.; Bos, M.E.H.; Verstappen, K.M.; Houben, M.; Wagenaar, J.A.; Heederik, D.J.J. Dose-Response Relationship between Antimicrobial Drugs and Livestock-Associated MRSA in Pig Farming1. Emerg. Infect. Dis. 2015, 21, 950–959. [Google Scholar] [CrossRef] [PubMed]
- Huber, L.; Agunos, A.; Gow, S.P.; Carson, C.A.; Van Boeckel, T.P. Reduction in Antimicrobial Use and Resistance to Salmonella, Campylobacter, and Escherichia coli in Broiler Chickens, Canada, 2013–2019. Emerg. Infect. Dis. 2021, 27, 2434–2444. [Google Scholar] [CrossRef]
- Luiken, R.E.C.; Van Gompel, L.; Munk, P.; Sarrazin, S.; Joosten, P.; Dorado-García, A.; Borup Hansen, R.; Knudsen, B.E.; Bossers, A.; Wagenaar, J.A.; et al. Associations between Antimicrobial Use and the Faecal Resistome on Broiler Farms from Nine European Countries. J. Antimicrob. Chemother. 2019, 74, 2596–2604. [Google Scholar] [CrossRef]
- Murphy, C.P.; Carson, C.; Smith, B.A.; Chapman, B.; Marrotte, J.; McCann, M.; Primeau, C.; Sharma, P.; Parmley, E.J. Factors Potentially Linked with the Occurrence of Antimicrobial Resistance in Selected Bacteria from Cattle, Chickens and Pigs: A Scoping Review of Publications for Use in Modelling of Antimicrobial Resistance (IAM.AMR Project). Zoonoses Public Health 2018, 65, 957–971. [Google Scholar] [CrossRef] [PubMed]
- Neogi, S.B.; Islam, M.M.; Islam, S.K.S.; Akhter, A.H.M.T.; Sikder, M.d.M.H.; Yamasaki, S.; Kabir, S.M.L. Risk of Multi-Drug Resistant Campylobacter Spp. and Residual Antimicrobials at Poultry Farms and Live Bird Markets in Bangladesh. BMC Infect. Dis. 2020, 20, 278. [Google Scholar] [CrossRef]
- Bos, M.E.H.; Graveland, H.; Portengen, L.; Wagenaar, J.A.; Heederik, D.J.J. Livestock-Associated MRSA Prevalence in Veal Calf Production Is Associated with Farm Hygiene, Use of Antimicrobials, and Age of the Calves. Prev. Vet. Med. 2012, 105, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Taylor, N.M.; Wales, A.D.; Ridley, A.M.; Davies, R.H. Farm Level Risk Factors for Fluoroquinolone Resistance in E. Coli and Thermophilic Campylobacter Spp. on Poultry Farms. Avian Pathol. 2016, 45, 559–568. [Google Scholar] [CrossRef]
- Caffrey, N.; Agunos, A.; Gow, S.; Liljebjelke, K.; Waldner, C.L.; Mainali, C.; Checkley, S.L. A Cross-Sectional Study of the Prevalence Factors Associated with Fluoroquinolone Resistant Campylobacter Jejuni in Broiler Flocks in Canada. Prev. Vet. Med. 2021, 186, 105164. [Google Scholar] [CrossRef]
- Ibrahim, R.A.; Cryer, T.L.; Lafi, S.Q.; Basha, E.-A.; Good, L.; Tarazi, Y.H. Identification of Escherichia coli from Broiler Chickens in Jordan, Their Antimicrobial Resistance, Gene Characterization and the Associated Risk Factors. BMC Vet. Res. 2019, 15, 159. [Google Scholar] [CrossRef]
- Lienen, T.; Grobbel, M.; Tenhagen, B.-A.; Maurischat, S. Plasmid-Coded Linezolid Resistance in Methicillin-Resistant Staphylococcus aureus from Food and Livestock in Germany. Antibiotics 2022, 11, 1802. [Google Scholar] [CrossRef]
- Catry, B.; Duijkeren, E.V.; Pomba, M.C.; Greko, C.; Moreno, M.A.; Pyörälä, S.; Ružauskas, M.; Sanders, P.; Threlfall, E.J.; Ungemach, F.; et al. Reflection Paper on MRSA in Food-Producing and Companion Animals: Epidemiology and Control Options for Human and Animal Health. Epidemiol. Infect. 2010, 138, 626–644. [Google Scholar] [CrossRef]
- Kehrenberg, C.; Cuny, C.; Strommenger, B.; Schwarz, S.; Witte, W. Methicillin-Resistant and -Susceptible Staphylococcus aureus Strains of Clonal Lineages ST398 and ST9 from Swine Carry the Multidrug Resistance Gene Cfr. Antimicrob. Agents Chemother. 2009, 53, 779–781. [Google Scholar] [CrossRef]
- Fèvre, E.M.; Bronsvoort, B.M.d.C.; Hamilton, K.A.; Cleaveland, S. Animal Movements and the Spread of Infectious Diseases. Trends Microbiol. 2006, 14, 125–131. [Google Scholar] [CrossRef]
- Green, D.M.; Kiss, I.Z.; Kao, R.R. Modelling the Initial Spread of Foot-and-Mouth Disease through Animal Movements. Proc. R. Soc. B: Biol. Sci. 2006, 273, 2729–2735. [Google Scholar] [CrossRef]
- Sieber, R.N.; Skov, R.L.; Nielsen, J.; Schulz, J.; Price, L.B.; Aarestrup, F.M.; Larsen, A.R.; Stegger, M.; Larsen, J. Drivers and Dynamics of Methicillin-Resistant Livestock-Associated Staphylococcus aureus CC398 in Pigs and Humans in Denmark. mBio 2018, 9, e02142-18. [Google Scholar] [CrossRef]
- Broens, E.M.; Graat, E.A.M.; van der Wolf, P.J.; van de Giessen, A.W.; van Duijkeren, E.; Wagenaar, J.A.; van Nes, A.; Mevius, D.J.; de Jong, M.C.M. MRSA CC398 in the Pig Production Chain. Prev. Vet. Med. 2011, 98, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Gongora, C.; Broens, E.M.; Moodley, A.; Nielsen, J.P.; Guardabassi, L. Transmission of MRSA CC398 Strains between Pig Farms Related by Trade of Animals. Vet. Rec. 2012, 170, 564. [Google Scholar] [CrossRef]
- Locatelli, C.; Cremonesi, P.; Bertocchi, L.; Zanoni, M.G.; Barberio, A.; Drigo, I.; Varisco, G.; Castiglioni, B.; Bronzo, V.; Moroni, P. Short Communication: Methicillin-Resistant Staphylococcus aureus in Bulk Tank Milk of Dairy Cows and Effect of Swine Population Density. J. Dairy Sci. 2016, 99, 2151–2156. [Google Scholar] [CrossRef] [PubMed]
- Cortimiglia, C.; Luini, M.; Bianchini, V.; Marzagalli, L.; Vezzoli, F.; Avisani, D.; Bertoletti, M.; Ianzano, A.; Franco, A.; Battisti, A. Prevalence of Staphylococcus aureus and of Methicillin-Resistant S. Aureus Clonal Complexes in Bulk Tank Milk from Dairy Cattle Herds in Lombardy Region (Northern Italy). Epidemiol. Infect. 2016, 144, 3046–3051. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Wang, Y.; Wang, S.; Wang, Z.; Du, X.; Jiang, H.; Xia, X.; Shen, Z.; Ding, S.; Wu, C.; et al. Prevalence and Abundance of Florfenicol and Linezolid Resistance Genes in Soils Adjacent to Swine Feedlots. Sci. Rep. 2016, 6, 32192. [Google Scholar] [CrossRef]
- Fioriti, S.; Coccitto, S.N.; Cedraro, N.; Simoni, S.; Morroni, G.; Brenciani, A.; Mangiaterra, G.; Vignaroli, C.; Vezzulli, L.; Biavasco, F.; et al. Linezolid Resistance Genes in Enterococci Isolated from Sediment and Zooplankton in Two Italian Coastal Areas. Appl. Environ. Microbiol. 2021, 87, e02958-20. [Google Scholar] [CrossRef]
- Biggel, M.; Nüesch-Inderbinen, M.; Jans, C.; Stevens, M.J.A.; Stephan, R. Genetic Context of OptrA and PoxtA in Florfenicol-Resistant Enterococci Isolated from Flowing Surface Water in Switzerland. Antimicrob. Agents Chemother. 2021, 65, 10-1128. [Google Scholar] [CrossRef]
- Shen, W.; Cai, C.; Dong, N.; Chen, J.; Zhang, R.; Cai, J. Mapping the Widespread Distribution and Transmission Dynamics of Linezolid Resistance in Humans, Animals, and the Environment. Microbiome 2024, 12, 52. [Google Scholar] [CrossRef]
- Bibbal, D.; Dupouy, V.; Ferré, J.P.; Toutain, P.L.; Fayet, O.; Prère, M.F.; Bousquet-Mélou, A. Impact of Three Ampicillin Dosage Regimens on Selection of Ampicillin Resistance in Enterobacteriaceae and Excretion of BlaTEM Genes in Swine Feces. Appl. Environ. Microbiol. 2007, 73, 4785–4790. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Trends and Sources of Zoonoses and Zoonotic Agents in Foodstuffs, Animals and Feedingstuffs in 2019 in Belgium. Available online: https://www.efsa.europa.eu/sites/default/files/zoocountryreport19be.pdf (accessed on 23 July 2024).
- Commission Implementing Decision of 12 November 2013 on the Monitoring and Reporting of Antimicrobial Resistance in Zoonotic and Commensal Bacteria (Notified under Document C(2013) 7145)Text with EEA Relevance. Available online: https://eur-lex.europa.eu/eli/dec_impl/2013/652/oj (accessed on 8 July 2024).
- European Food Safety Authority (EFSA); Aerts, M.; Battisti, A.; Hendriksen, R.; Kempf, I.; Teale, C.; Tenhagen, B.-A.; Veldman, K.; Wasyl, D.; Guerra, B.; et al. Technical Specifications on Harmonised Monitoring of Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Food-Producing Animals and Food. EFSA J. 2019, 17, e05709. [Google Scholar] [CrossRef]
- Bogaerts, B.; Nouws, S.; Verhaegen, B.; Denayer, S.; Van Braekel, J.; Winand, R.; Fu, Q.; Crombé, F.; Piérard, D.; Marchal, K.; et al. Validation Strategy of a Bioinformatics Whole Genome Sequencing Workflow for Shiga Toxin-Producing Escherichia coli Using a Reference Collection Extensively Characterized with Conventional Methods. Microb. Genom. 2021, 7, 000531. [Google Scholar] [CrossRef]
- Hasman, H.; Clausen, P.T.L.C.; Kaya, H.; Hansen, F.; Knudsen, J.D.; Wang, M.; Holzknecht, B.J.; Samulioniené, J.; Røder, B.L.; Frimodt-Møller, N.; et al. LRE-Finder, a Web Tool for Detection of the 23S RRNA Mutations and the OptrA, Cfr, Cfr(B) and PoxtA Genes Encoding Linezolid Resistance in Enterococci from Whole-Genome Sequences. J. Antimicrob. Chemother. 2019, 74, 1473–1476. [Google Scholar] [CrossRef]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for Predictions of Phenotypes from Genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- 25 JUNI 2018—Koninklijk Besluit Tot Vaststelling van Een Identificatie- En Registratieregeling Voor Pluimvee, Konijnen En Bepaald Hobbypluimvee. Available online: https://etaamb.openjustice.be/nl/koninklijk-besluit-van-25-juni-2018_n2018031294.html (accessed on 8 July 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org/ (accessed on 8 July 2024).
- Doerken, S.; Avalos, M.; Lagarde, E.; Schumacher, M. Penalized Logistic Regression with Low Prevalence Exposures beyond High Dimensional Settings. PLoS ONE 2019, 14, e0217057. [Google Scholar] [CrossRef]
- Puhr, R.; Heinze, G.; Nold, M.; Lusa, L.; Geroldinger, A. Firth’s Logistic Regression with Rare Events: Accurate Effect Estimates and Predictions? Stat. Med. 2017, 36, 2302–2317. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Sultana, M. Performance of Firth-and LogF-Type Penalized Methods in Risk Prediction for Small or Sparse Binary Data. BMC Med. Res. Methodol. 2017, 17, 33. [Google Scholar] [CrossRef] [PubMed]
Risk Factor | Type of Variable | Rationale | Reference | Animal Species Examined in This Study |
---|---|---|---|---|
Purchase of animals during a defined period prior to sampling | Categorical (binary(Yes/No)) | LR can potentially be introduced in a herd via the purchase of carrier animals within Belgium | [19,20,21,22,23,24,25], expert opinion | Veal calves, pigs |
Import of animals from outside Belgium | Categorical (binary(Yes/No)) | LR can potentially be introduced in a herd via the purchase of carrier animals from outside Belgium | expert opinion | Veal calves |
Import country | Categorical (No import/Country A/Country B/Country C) a | LR can potentially be introduced in a herd via the purchase of carrier animals from outside Belgium; the risk of introducing LR can potentially vary by import country | [26], expert opinion | Veal calves |
Production type | Categorical (Closed/Fattening/Breeding/Mixed/Rearing/Piglets rearing) b | Susceptibility and herd management may differ between categories | [27], expert opinion | Pigs |
Herd size | Continuous | Larger herd size could be associated with more contact between animals and increased risk for antimicrobial resistance transmission due to direct and indirect contact | [20,22], expert opinion | Veal calves, pigs, poultry |
Age of the building (best available proxy for biosecurity level) | Continuous | Higher biosecurity levels and less morbidity are expected in more recent farms | expert opinion | Veal calves, pigs, poultry |
Housing type | Categorical (Organic, Outdoor, Enriched cage, Free-range) | Organic means less use of antimicrobials, access outside, and more space allowance per animal and thus less contact between animals | [22,28], expert opinion | Poultry |
Organic | Categorical (Yes/No) | Organic means less use of antimicrobials, access outside, and more space allowance per animal and thus less contact between animals | [22,28], expert opinion | Poultry |
Florfenicol use | Categorical (binary(Yes/No)) | Selection of resistance genes conferring cross-resistance to linezolid | [3], expert opinion | Veal calves, pigs, poultry |
Antimicrobial use (all antimicrobials except florfenicol) | Categorical (binary(Yes/No)) | Comorbidity (other diseases and antibiotic treatment) and potential co- or cross-selection of LR genes | [20,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44], expert opinion | Veal calves, pigs, poultry |
Region | Categorical (Region A/Region B) a | Geographic location of the farm | [27], expert opinion | Veal calves, pigs, poultry |
Number of farm animal species | Categorical (1 (absence of other animal species) or >1 (presence of other animal species) in pigs and poultry and 1 (absence of other animal species), 2 (one other animal species) or 3 (two other animal species) in veal calves) | The presence of other livestock animal species on the farm | [20,28], expert opinion | Veal calves, pigs, poultry |
Number of Herds (N, %) per Species | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Veal Calves | Fattening Pigs | Laying Hens | Broilers | ||||||||||
Variable | Category | LRP | LRN | Total | LRP | LRN | Total | LRP | LRN | Total | LRP | LRN | Total |
(N = 31) | (N = 82) | (N = 113) | (N = 31) | (N = 216) | (N = 247) | (N = 3) | (N = 176) | (N = 179) | (N = 13) | (N = 177) | (N = 190) | ||
Demographics | |||||||||||||
Herd size | Mean (SD) | 810.40 (518.05) | 687.12 (343.18) | 720.94 (400.14) | 1849.44 (1844.22) | 1493.46 (1437.91) | 1538.14 (1495.25) | 15,400.00 (17,328.59) | 28,327.05 (30,978.77) | 28,110.39 (30,816.44) | 20,130.77 (7020.61) | 30,561.29 (23,286.94) | 29,847.63 (22,695.43) |
Median (1st Qu, 3rd Qu) | 645.00 (538.50, 818.75) | 601.50 (497.62, 819.25) | 622.50 (498.00, 819.50) | 1463.50 (735.75, 1947.50) | 1133.25 (593.12, 1838.38) | 1178.00 (607.75, 1856.50) | 8000.00 (5500.00, 21,600.00) | 19,990.00 (6000.00, 36,241.00) | 19,990.00 (6000.00, 36,000.00) | 21,000.00 (18,000.00, 23,000.00) | 25,000.00 (19,900.00, 39,000.00) | 24,000.00 (19,562.50, 36,000.00) | |
Number of farm animal species | 1 | 26 (83.9%) | 66 (80.5%) | 92 (81.4%) | 25 (80.6%) | 133 (61.6%) | 158 (64.0%) | 2 (66.7%) | 108 (61.4%) | 110 (61.5%) | 4 (30.8%) | 91 (51.4%) | 95 (50.0%) |
>1 | N.A. | N.A. | N.A. | 6 (19.4%) | 83 (38.4%) | 89 (36.0%) | 1 (33.3%) | 68 (38.6%) | 69 (38.5%) | 9 (69.2%) | 86 (48.6%) | 95 (50.0%) | |
2 | 3 (9.7%) | 12 (14.6%) | 15 (13.3%) | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | |
3 | 2 (6.5%) | 4 (4.9%) | 6 (5.3%) | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | |
Region | Region A | 31 (100%) | 77 (93.9%) | 108 (95.6%) | 29 (93.5%) | 184 (85.2%) | 213 (86.2%) | 2 (66.7%) | 120 (68.2%) | 122 (68.2%) | 8 (61.5%) | 145 (81.9%) | 153 (80.5%) |
Region B | 0 (0%) | 5 (6.1%) | 5 (4.4%) | 2 (6.5%) | 32 (14.8%) | 34 (13.8%) | 1 (33.3%) | 56 (31.8%) | 57 (31.8%) | 5 (38.5%) | 32 (18.1%) | 37 (19.5%) | |
Husbandry types | |||||||||||||
Production type | Closed | N.A. | N.A. | N.A. | 3 (9.7%) | 51 (23.6%) | 54 (21.9%) | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. |
Mixed | N.A. | N.A. | N.A. | 5 (16.1%) | 70 (32.4%) | 75 (30.4%) | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | |
Fattening | N.A. | N.A. | N.A. | 21 (67.7%) | 95 (44.0%) | 116 (47.0%) | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | |
Breeding | N.A. | N.A. | N.A. | 1 (3.2%) | 0 (0%) | 1 (0.4%) | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | |
Piglets rearing | N.A. | N.A. | N.A. | 1 (3.2%) | 0 (0%) | 1 (0.4%) | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | |
Rearing | N.A. | N.A. | N.A. | 0 (0%) | 0 (0%) | 0 (0%) | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | |
Housing type | Organic | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | 0 (0%) | 58 (33.0%) | 58 (32.4%) | 0 (0%) | 7 (4.0%) | 7 (3.7%) |
Enriched cage | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | 1 (33.3%) | 31 (17.6%) | 32 (17.9%) | 0 (0%) | 0 (0%) | 0 (0%) | |
Free-range | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | 1 (33.3%) | 55 (31.3%) | 56 (31.3%) | 0 (0%) | 0 (0%) | 0 (0%) | |
Not specified | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | 0 (0%) | 3 (1.7%) | 3 (1.7%) | 7 (53.8%) | 139 (78.5%) | 146 (76.8%) | |
Outdoor | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | 1 (33.3%) | 29 (16.5%) | 30 (16.8%) | 0 (0%) | 0 (0%) | 0 (0%) | |
Missing | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | 0 (0%) | 0 (0%) | 0 (0%) | 6 (46.2%) | 31 (17.5%) | 37 (19.5%) | |
Organic | Yes | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | 0 (0%) | 58 (33.0%) | 58 (32.4%) | 0 (0%) | 7 (4.0%) | 7 (3.7%) |
No | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | 3 (100%) | 118 (67.0%) | 121 (67.6%) | 7 (53.8%) | 139 (78.5%) | 146 (76.8%) | |
Missing | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | 0 (0%) | 0 (0%) | 0 (0%) | 6 (46.2%) | 31 (17.5%) | 37 (19.5%) | |
Biosecurity | |||||||||||||
Age of the building in years | Mean (SD) | 20.97 (1.66) | 19.98 (5.00) | 20.2 (4.36) | 23.71 (4.16) | 23.16 (5.07) | 23.23 (4.96) | 8.00 (10.39) | 13.61 (8.44) | 13.51 (8.47) | 15.62 (8.35) | 14.71 (8.52) | 14.77 (8.49) |
Median (1st Qu, 3rd Qu) | 21.00 (15.00, 22.00) | 22.00 (2.00, 27.00) | 22.00 (2.00, 27.00) | 25.00 (25.00, 25.00) | 25.00 (25.00, 25.00) | 25.00 (25.00, 25.00) | 2.00 (2.00, 11.00) | 19.50 (3.00, 21.00) | 19.00 (3.00, 21.00) | 21.00 (7.00, 21.00) | 21.00 (4.00, 21.00) | 21.00 (4.00, 21.00) | |
Purchase of animals | No | 19 (61.3%) | 64 (78.0%) | 83 (73.5%) | 17 (54.8%) | 115 (53.2%) | 132 (53.4%) | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. |
Yes | 12 (38.7%) | 18 (22.0%) | 30 (26.5%) | 14 (45.2%) | 101 (46.8%) | 115 (46.6%) | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | |
Import of animals | No | 30 (96.8%) | 78 (95.1%) | 108 (95.6%) | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. |
Yes | 1 (3.2%) | 4 (4.9%) | 5 (4.4%) | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | |
Import country | No import | 30 (96.8%) | 78 (95.1%) | 108 (95.6%) | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. |
Country A | 0 (0%) | 1 (1.2%) | 1 (0.9%) | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | |
Country B | 1 (3.2%) | 2 (2.4%) | 3 (2.7%) | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | |
Country C | 0 (0%) | 1 (1.2%) | 1 (0.9%) | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | |
Antibiotic use | |||||||||||||
Florfenicol use | No | 9 (29.0%) | 46 (56.1%) | 55 (48.7%) | 15 (48.4%) | 182 (84.3%) | 197 (79.8%) | 3 (100%) | 154 (87.5%) | 157 (87.7%) | 13 (100%) | 176 (99.4%) | 189 (99.5%) |
Yes | 22 (71.0%) | 34 (41.5%) | 56 (49.6%) | 15 (48.4%) | 34 (15.7%) | 49 (19.8%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (0.6%) | 1 (0.5%) | |
Missing | 0 (0%) | 2 (2.4%) | 2 (1.8%) | 1 (3.2%) | 0 (0%) | 1 (0.4%) | 0 (0%) | 22 (12.5%) | 22 (12.3%) | 0 (0%) | 0 (0%) | 0 (0%) | |
Other antibiotic use | No | 3 (9.7%) | 12 (14.6%) | 15 (13.3%) | 7 (22.6%) | 74 (34.3%) | 81 (32.8%) | 3 (100%) | 147 (83.5%) | 150 (83.8%) | 4 (30.8%) | 58 (32.8%) | 62 (32.6%) |
Yes | 28 (90.3%) | 68 (82.9%) | 96 (85.0%) | 23 (74.2%) | 142 (65.7%) | 165 (66.8%) | 0 (0%) | 7 (4.0%) | 7 (3.9%) | 9 (69.2%) | 119 (67.2%) | 128 (67.4%) | |
Missing | 0 (0%) | 2 (2.4%) | 2 (1.8%) | 1 (3.2%) | 0 (0%) | 1 (0.4%) | 0 (0%) | 22 (12.5%) | 22 (12.3%) | 0 (0%) | 0 (0%) | 0 (0%) |
Number of Herds (N, %) per Species | |||||||
---|---|---|---|---|---|---|---|
Fattening Pigs | Sows | ||||||
Variable | Category | LRP | LRN | Total | LRP | LRN | Total |
(N = 17) | (N = 52) | (N = 69) | (N = 16) | (N = 61) | (N = 77) | ||
Demographics | |||||||
Herd size | Mean (SD) | 950.97 (426.43) | 1052.86 (1001.29) | 1027.75 (892.57) | 1771.66 (1230.68) | 1485.40 (1243.10) | 1544.88 (1237.97) |
Median (1st Qu, 3rd Qu) | 950.50 (530.00, 1333.00) | 704.50 (398.12, 1372.50) | 742.00 (449.50, 1366.00) | 1512.50 (903.25, 2089.75) | 1265.00 (665.00, 1941.50) | 1283.00 (683.50, 1990.00) | |
Number of farm animal species | 1 | 8 (47.1%) | 31 (59.6%) | 39 (56.5%) | 10 (62.5%) | 36 (59.0%) | 46 (59.7%) |
>1 | 9 (52.9%) | 21 (40.4%) | 30 (43.5%) | 6 (37.5%) | 25 (41.0%) | 31 (40.3%) | |
Region | Region A | 14 (82.4%) | 47 (90.4%) | 61 (88.4%) | 16 (100%) | 59 (96.7%) | 75 (97.4%) |
Region B | 3 (17.6%) | 5 (9.6%) | 8 (11.6%) | 0 (0%) | 2 (3.3%) | 2 (2.6%) | |
Husbandry types | |||||||
Production type | Closed | 0 (0%) | 4 (7.7%) | 4 (5.8%) | 4 (25.0%) | 15 (24.6%) | 19 (24.7%) |
Mixed | 2 (11.8%) | 10 (19.2%) | 12 (17.4%) | 11 (68.8%) | 39 (63.9%) | 50 (64.9%) | |
Fattening | 15 (88.2%) | 37 (71.2%) | 52 (75.4%) | 0 (0%) | 3 (4.9%) | 3 (3.9%) | |
Breeding | 0 (0%) | 0 (0%) | 0 (0%) | 1 (6.3%) | 4 (6.6%) | 5 (6.5%) | |
Piglets rearing | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | |
Rearing | 0 (0%) | 1 (1.9%) | 1 (1.4%) | 0 (0%) | 0 (0%) | 0 (0%) | |
Biosecurity | |||||||
Age of the building in years | Mean (SD) | 23.73 (4.51) | 23.53 (4.16) | 23.68 (4.40) | 25.00 (0.00) | 24.54 (3.11) | 24.64 (2.77) |
Median (1st Qu, 3rd Qu) | 25.00 (25.00, 25.00) | 25.00 (25.00, 25.00) | 25.00 (25.00, 25.00) | 25.00 (25.00, 25.00) | 25.00 (25.00, 25.00) | 25.00 (25.00, 25.0) | |
Purchase of animals | No | 10 (58.8%) | 36 (69.2%) | 46 (66.7%) | 2 (12.5%) | 34 (55.7%) | 36 (46.8%) |
Yes | 7 (41.2%) | 16 (30.8%) | 23 (33.3%) | 14 (87.5%) | 27 (44.3%) | 41 (53.2%) | |
Antibiotic use | |||||||
Florfenicol use | No | 11 (64.7%) | 47 (90.4%) | 58 (84.1%) | 11 (68.8%) | 57 (93.4%) | 68 (88.3%) |
Yes | 5 (29.4%) | 2 (3.8%) | 7 (10.1%) | 5 (31.3%) | 4 (6.6%) | 9 (11.7%) | |
Missing | 1 (5.9%) | 3 (5.8%) | 4 (5.8%) | 0 (0%) | 0 (0%) | 0 (0%) | |
Other antibiotic use | No | 5 (29.4%) | 27 (51.9%) | 32 (46.4%) | 0 (0%) | 14 (23.0%) | 14 (18.2%) |
Yes | 11 (64.7%) | 22 (42.3%) | 33 (47.8%) | 16 (100%) | 47 (77.0%) | 63 (81.8%) | |
Missing | 1 (5.9%) | 3 (5.8%) | 4 (5.8%) | 0 (0%) | 0 (0%) | 0 (0%) |
Livestock Species | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Veal Calves | Fattening Pigs | Laying Hens | Broilers | ||||||||||||||
Variable | Category | n | OR | Lower–Upper 95% CI | p-Value | n | OR | Lower–Upper 95% CI | p-Value | n | OR | Lower–Upper 95% CI | p-Value | n | OR | Lower–Upper 95% CI | p-Value |
Demographics | |||||||||||||||||
Herd size | 113 | 1.00 | [1.00–1.00] | 0.15 | 247 | 1.00 | [1.00–1.00] | 0.19 | 179 | 1.00 | [1.00–1.00] | 0.92 | 190 | 1.00 | [1.00–1.00] | 0.03 | |
Number of farm animal species | 1 | - | - | - | - | - | - | - | - | - | - | - | - | ||||
>1 | N.A. | N.A. | N.A. | 247 | 0.41 | [0.15–0.95] | 0.04 | 179 | 0.95 | [0.09–7.30] | 0.96 | 190 | 2.23 | [0.73–7.88] | 0.16 | ||
2 | 113 | 0.70 | [0.17–2.30] | 0.58 | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | ||||
3 | 113 | 1.39 | [0.23–6.71] | 0.69 | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | ||||
Region | Region A | - | - | - | - | - | - | - | - | - | - | - | - | ||||
Region B | 113 | 0.22 | [0.00–2.07] | 0.22 | 247 | 0.48 | [0.09–1.56] | 0.25 | 179 | 1.28 | [0.12–9.84] | 0.82 | 190 | 2.90 | [0.88–8.92] | 0.08 | |
Husbandry types | |||||||||||||||||
Production type | Closed | N.A. | N.A. | N.A. | - | - | - | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | ||||
Mixed | N.A. | N.A. | N.A. | 247 | 1.15 | [0.29–5.14] | 0.84 | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | ||||
Fattening | N.A. | N.A. | N.A. | 247 | 3.31 | [1.14–12.90] | 0.03 | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | ||||
Breeding | N.A. | N.A. | N.A. | 247 | 44.14 | [1.99–6971.80] | 0.02 | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | ||||
Piglets rearing | N.A. | N.A. | N.A. | 247 | 44.14 | [1.99–6971.80] | 0.02 | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | ||||
Housing type | Organic | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | - | - | - | - | - | - | ||||
Enriched cage | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | 179 | 5.57 | [0.29–822.90] | 0.25 | N.A. | N.A. | N.A. | ||||
Free-range | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | 179 | 3.16 | [0.17–465.45] | 0.45 | N.A. | N.A. | N.A. | ||||
Not specified | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | 179 | 16.71 | [0.08–3332.97] | 0.22 | 153 | 0.81 | [0.08–108.30] | 0.89 | |||
Outdoor | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | 179 | 5.95 | [0.31–879.17] | 0.24 | N.A. | N.A. | N.A. | ||||
Organic | Yes | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | - | - | - | - | - | - | ||||
No | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | 179 | 3.46 | [0.33–467.57] | 0.35 | 153 | 0.81 | [0.08–108.30] | 0.89 | |||
Biosecurity | |||||||||||||||||
Age of the building | 113 | 1.05 | [0.95–1.21] | 0.34 | 247 | 1.02 | [0.95–1.12] | 0.71 | 179 | 0.94 | [0.81–1.05] | 0.27 | 190 | 1.01 | [0.95–1.09] | 0.79 | |
Purchase of animals | No | - | - | - | - | - | - | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | ||||
Yes | 113 | 2.23 | [0.92–5.39] | 0.08 | 247 | 0.94 | [0.44–1.99] | 0.88 | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | |||
Import of animals | 113 | 0.86 | [0.08–4.89] | 0.87 | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | ||||
Import country | No import | - | - | - | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | ||||
Country A | 113 | 0.86 | [0.01–16.54] | 0.92 | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | ||||
Country B | 113 | 1.54 | [0.14–12.09] | 0.69 | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | ||||
Country C | 113 | 0.86 | [0.01–16.54] | 0.92 | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | ||||
Antibiotic use | |||||||||||||||||
Florfenicol use | No | - | - | - | - | - | - | N.A. | N.A. | N.A. | - | - | - | ||||
Yes | 111 | 3.19 | [1.36–7.97] | 0.01 | 246 | 5.29 | [2.39–11.78] | <0.01 | N.A. | N.A. | N.A. | 190 | 4.36 | [0.03–85.88] | 0.44 | ||
Other antibiotic use | No | - | - | - | - | - | - | - | - | - | - | - | - | ||||
Yes | 111 | 1.49 | [0.46–6.14] | 0.53 | 246 | 1.64 | [0.72–4.16] | 0.25 | 157 | 2.81 | [0.02–33.25] | 0.55 | 190 | 1.03 | [0.34–3.66] | 0.96 |
Livestock Species | |||||||||
---|---|---|---|---|---|---|---|---|---|
Fattening Pigs | Sows | ||||||||
Variable | Category | n | OR | Lower–Upper 95% CI | p-Value | n | OR | Lower–Upper 95% CI | p-Value |
Demographics | |||||||||
Herd size | 69 | 1.00 | [1.00–1.00] | 0.81 | 77 | 1.00 | [1.00–1.00] | 0.37 | |
Number of farm animal species | 1 | - | - | - | - | - | - | ||
>1 | 69 | 1.64 | [0.56–4.90] | 0.37 | 77 | 0.89 | [0.28–2.63] | 0.83 | |
Region | Region A | - | - | - | - | - | - | ||
Region B | 69 | 2.08 | [0.44–8.89] | 0.34 | 77 | 0.72 | [0.01–9.45] | 0.83 | |
Husbandry types | |||||||||
Production type | Closed | - | - | - | - | - | - | ||
Mixed | 69 | 2.14 | [0.13–319.24] | 0.62 | 77 | 1.00 | [0.30–3.78] | 1.00 | |
Fattening | 69 | 3.72 | [0.36–504.15] | 0.31 | 77 | 0.49 | [0.00–6.70] | 0.64 | |
Breeding | N.A. | N.A. | N.A. | 77 | 1.15 | [0.10–8.77] | 0.90 | ||
Rearing | 69 | 3.00 | [0.01–702.69] | 0.62 | N.A. | N.A. | N.A. | ||
Biosecurity | |||||||||
Age of the building | 69 | 0.98 | [0.88–1.11] | 0.72 | 77 | 1.00 | [0.88–1.45] | 0.96 | |
Purchase of animals | No | - | - | - | - | - | - | ||
Yes | 69 | 1.58 | [0.51–4.76] | 0.42 | 77 | 7.28 | [2.00–39.26] | <0.01 | |
Antibiotic use | |||||||||
Florfenicol use | No | - | - | - | - | - | - | ||
Yes | 65 | 9.09 | [1.92–56.15] | 0.01 | 77 | 6.11 | [1.51–26.25] | 0.01 | |
Other antibiotic use | No | - | - | - | - | - | - | ||
Yes | 65 | 2.56 | [0.83–8.70] | 0.10 | 77 | 10.07 | [1.22–1313.51] | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Driesen, M.; Timmermans, M.; Cargnel, M.; Simons, X.; Filippitzi, M.-E.; Catry, B.; Dal Pozzo, F.; Vanderhaeghen, W.; Callens, B.; Dispas, M.; et al. Risk Factor Analysis for Occurrence of Linezolid-Resistant Bacteria in the Digestive and Respiratory Tract of Food-Producing Animals in Belgium: A Pilot Study. Antibiotics 2024, 13, 707. https://doi.org/10.3390/antibiotics13080707
Driesen M, Timmermans M, Cargnel M, Simons X, Filippitzi M-E, Catry B, Dal Pozzo F, Vanderhaeghen W, Callens B, Dispas M, et al. Risk Factor Analysis for Occurrence of Linezolid-Resistant Bacteria in the Digestive and Respiratory Tract of Food-Producing Animals in Belgium: A Pilot Study. Antibiotics. 2024; 13(8):707. https://doi.org/10.3390/antibiotics13080707
Chicago/Turabian StyleDriesen, Michèle, Michaël Timmermans, Mickaël Cargnel, Xavier Simons, Maria-Eleni Filippitzi, Boudewijn Catry, Fabiana Dal Pozzo, Wannes Vanderhaeghen, Bénédicte Callens, Marc Dispas, and et al. 2024. "Risk Factor Analysis for Occurrence of Linezolid-Resistant Bacteria in the Digestive and Respiratory Tract of Food-Producing Animals in Belgium: A Pilot Study" Antibiotics 13, no. 8: 707. https://doi.org/10.3390/antibiotics13080707
APA StyleDriesen, M., Timmermans, M., Cargnel, M., Simons, X., Filippitzi, M. -E., Catry, B., Dal Pozzo, F., Vanderhaeghen, W., Callens, B., Dispas, M., & Boland, C. (2024). Risk Factor Analysis for Occurrence of Linezolid-Resistant Bacteria in the Digestive and Respiratory Tract of Food-Producing Animals in Belgium: A Pilot Study. Antibiotics, 13(8), 707. https://doi.org/10.3390/antibiotics13080707