Role of parC Mutations at Position 84 on High-Level Delafloxacin Resistance in Methicillin-Resistant Staphylococcus aureus
Abstract
:1. Introduction
2. Results
2.1. Delafloxacin Susceptibility Results and Genomic Traits of Isolates
2.2. Sensitivity and Specificity of the Developed Real-Time PCR
2.3. Prevalence and Genomic Traits of Isolates with Mutations Affecting Position 84 of ParC
3. Discussion
4. Material and Methods
4.1. Bacterial Strains
4.2. Delafloxacin Susceptibility Study
4.3. Development and Validation of a Real-Time PCR Allelic Discrimination Assay for the Detection of Mutations Affecting Position 84 of ParC
4.4. Screening of MRSA Isolates with Mutations Affecting Position 84 of parC with the rt-PCR Developed
4.5. Whole Genome Sequencing (WGS) and Bioinformatic Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Redgrave, L.S.; Sutton, S.B.; Webber, M.A.; Piddock, L.J.V. Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014, 22, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Turban, A.; Guérin, F.; Dinh, A.; Cattoir, V. Updated review on clinically-relevant properties of delafloxacin. Antibiotics 2023, 12, 1241. [Google Scholar] [CrossRef] [PubMed]
- Nilius, A.M.; Shen, L.L.; Hensey-Rudloff, D.; Almer, L.S.; Beyer, J.M.; Balli, D.J.; Cai, Y.; Flamm, R.K. In vitro antibacterial potency and spectrum of ABT-492, a new fluoroquinolone. Antimicrob. Agents Chemother. 2003, 47, 3260–3269. [Google Scholar] [CrossRef] [PubMed]
- de la Rosa, J.M.O.; Fernández, M.A.; Rodríguez-Villodres, Á.; Casimiro-Soriguer, C.S.; Cisneros, J.M.; Lepe, J.A. High-level delafloxacin resistance through the combination of two different mechanisms in Staphylococcus aureus. Int. J. Antimicrob. Agents 2023, 61, 106795. [Google Scholar] [CrossRef] [PubMed]
- Remy, J.M.; Tow-Keogh, C.A.; McConnell, T.S.; Dalton, J.M.; De Vito, J.A. Activity of delafloxacin against methicillin-resistant Staphylococcus aureus: Resistance selection and characterization. J. Antimicrob. Chemother. 2012, 67, 2814–2820. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, S.; Lawrence, L.; Quintas, M.; Woosley, L.; Flamm, R.; Tseng, C.; Cammarata, S. In vitro activity of delafloxacin and microbiological response against fluoroquinolone-susceptible and nonsusceptible Staphylococcus aureus isolates from two phase 3 studies of acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother. 2017, 61, e00772-17. [Google Scholar] [CrossRef] [PubMed]
- Saravolatz, L.D.; Pawlak, J.M.; Wegner, C. Delafloxacin activity against Staphylococcus aureus with reduced susceptibility or resistance to methicillin, vancomycin, daptomycin or linezolid. J. Antimicrob. Chemother. 2020, 75, 2605–2608. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Sader, H.S.; Rhomberg, P.R.; Flamm, R.K. In vitro activity of delafloxacin against contemporary bacterial pathogens from the United States and Europe, 2014. Antimicrob. Agents Chemother. 2017, 61, e02609-16. [Google Scholar] [CrossRef] [PubMed]
- Shortridge, D.; Pfaller, M.A.; Streit, J.M.; Flamm, R.K. Update on the activity of delafloxacin against acute bacterial skin and skin-structure infection isolates from European Hospitals (2014–2019). J. Glob. Antimicrob. Resist. 2020, 23, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Iregui, A.; Khan, Z.; Malik, S.; Landman, D.; Quale, J. Emergence of delafloxacin-resistant Staphylococcus aureus in Brooklyn, New York. Clin. Infect. Dis. 2020, 70, 1758–1760. [Google Scholar] [CrossRef] [PubMed]
- EUCAST The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 14.0, 2024; EUCAST: 2024. Available online: http://www.eucast.org (accessed on 20 February 2024).
- Vielva, L.; de Toro, M.; Lanza, V.F.; Cruz, F. De PLACNETw: A Web-based tool for plasmid reconstruction from bacterial genomes. Bioinformatics 2017, 33, 3796–3798. [Google Scholar] [CrossRef] [PubMed]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
No. of Isolates | MIC (mg/L) | QRDR Mutation Profile | |||||
---|---|---|---|---|---|---|---|
DLX | CIP | LVX | GyrA | GyrB | ParC | ParE | |
1 | 0.003 | ≤1 | ≤1 | WT | WT | WT | WT |
1 | 0.006 | ≤0.5 | ≤1 | WT | WT | WT | WT |
1 | 0.125 | >2 | 4 | S84L | WT | S80F | WT |
5 | 0.19 | >2 | >4 | S84L | WT | S80F | WT |
13 | 0.25 | >2 | >4 | S84L | WT | S80F | WT |
2 | 0.25 | >2 | >4 | S84L | WT | S80F | D432N |
1 | 0.25 | >2 | >4 | S84L | WT | S80Y | P585S |
4 | 0.38 | >2 | >4 | S84L | WT | S80F | WT |
2 | 0.38 | >2 | >4 | S84L | WT | S80F | P585S |
1 | 0.38 | >2 | >4 | S84L | WT | S80F | D432N |
4 | 0.5 | >2 | >4 | S84L | WT | S80F | WT |
1 | 0.5 | >2 | >4 | S84L | WT | S80F | P585S |
1 | 0.5 | >2 | >4 | S84L | WT | S80F | D432N |
3 | 1.5 | >2 | >4 | S84L | WT | E84K; S80F | WT |
1 | 3 | >2 | >4 | S84L | WT | E84G; S80F | WT |
No. of Isolates | MIC (mg/L) | QRDR Mutation Profile | |||||
---|---|---|---|---|---|---|---|
DLX | CIP | LVX | GyrA | GyrB | ParC | ParE | |
1 | 0.006 | 2 | ≤1 | WT | WT | E84K | WT |
1 | 0.38 | >2 | >4 | S84L | WT | E84Q; S80F | WT |
1 | 0.5 | >2 | >4 | S84L | WT | E84K; S80F | WT |
1 | 1.5 | >2 | >4 | S84L | WT | E84K; S80F | WT |
1 | 1.5 | >2 | >4 | S84L | WT | E84K; S80F | P456S |
1 | 2 | >2 | >4 | S84L | WT | E84K; S80F | P456S |
1 | 6 | >2 | >4 | S84L; S85P | WT | E84G; S80Y | WT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolaños, S.; Acebes, C.; Martínez-Expósito, Ó.; Boga, J.A.; Fernández, J.; Rodríguez-Lucas, C. Role of parC Mutations at Position 84 on High-Level Delafloxacin Resistance in Methicillin-Resistant Staphylococcus aureus. Antibiotics 2024, 13, 641. https://doi.org/10.3390/antibiotics13070641
Bolaños S, Acebes C, Martínez-Expósito Ó, Boga JA, Fernández J, Rodríguez-Lucas C. Role of parC Mutations at Position 84 on High-Level Delafloxacin Resistance in Methicillin-Resistant Staphylococcus aureus. Antibiotics. 2024; 13(7):641. https://doi.org/10.3390/antibiotics13070641
Chicago/Turabian StyleBolaños, Silvia, Cesar Acebes, Óscar Martínez-Expósito, José Antonio Boga, Javier Fernández, and Carlos Rodríguez-Lucas. 2024. "Role of parC Mutations at Position 84 on High-Level Delafloxacin Resistance in Methicillin-Resistant Staphylococcus aureus" Antibiotics 13, no. 7: 641. https://doi.org/10.3390/antibiotics13070641
APA StyleBolaños, S., Acebes, C., Martínez-Expósito, Ó., Boga, J. A., Fernández, J., & Rodríguez-Lucas, C. (2024). Role of parC Mutations at Position 84 on High-Level Delafloxacin Resistance in Methicillin-Resistant Staphylococcus aureus. Antibiotics, 13(7), 641. https://doi.org/10.3390/antibiotics13070641