Mutations in embB406 Are Associated with Low-Level Ethambutol Resistance in Canadian Mycobacterium tuberculosis Isolates
Abstract
:1. Introduction
2. Results
2.1. Overview of embB Mutations and Ethambutol Resistance
2.2. Characteristics of embB406 Mutations
2.3. embCAB Mutation Profiles and Low-Level Ethambutol Resistance among Isolates with embB406 Mutations
2.4. embB406 and Phenotypic Susceptibility to Additional First-Line Drugs
3. Discussion
4. Materials and Methods
4.1. Study Isolates
4.2. Sanger Sequencing and Data Analysis
4.3. Whole Genome Sequencing
4.4. Phenotypic Drug Susceptibility Testing
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2022. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022 (accessed on 29 April 2024).
- Schön, T.; Miotto, P.; Köser, C.U.; Viveiros, M.; Böttger, E.; Cambau, E. Mycobacterium tuberculosis drug-resistance testing: Challenges, recent developments and perspectives. Clin. Microbiol. Infect. 2017, 23, 154–160. [Google Scholar] [CrossRef]
- Long, R.; Avendano, M.; Kunimoto, D. Chapter 8: Drug-Resistant Tuberculosis. In Canadian Tuberculosis Standards, 7th ed.; Public Health Agency of Canada: Ottawa, ON, Canada, 2014; pp. 1–38. [Google Scholar]
- Brode, S.K.; Dwilow, R.; Kunimoto, D.; Menzies, D.; Khan, F.A. Chapter 8: Drug-resistant tuberculosis. Can. J. Respir. Crit. Care Sleep Med. 2022, 6, 109–128. [Google Scholar] [CrossRef]
- Public Health Agency of Canada, Tuberculosis in Canada: Infographic (2022). Available online: https://www.canada.ca/en/public-health/services/publications/diseases-conditions/tuberculosis-canada-infographic-2022.html (accessed on 22 May 2024).
- Woods, G.L.; Brown-Elliott, B.A.; Conville, P.S.; Desmond, E.P.; Hall, G.S.; Lin, G.; Pfyffer, G.E.; Ridderhof, J.C.; Siddiqi, S.H.; Wallace, R.J.; et al. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, Canada, 2018. [Google Scholar]
- Wilson, M.; DeRisi, J.; Kristensen, H.H.; Imboden, P.; Rane, S.; Brown, P.O.; Schoolnik, G.K. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc. Natl. Acad. Sci. USA 1999, 96, 12833–12838. [Google Scholar] [CrossRef] [PubMed]
- Spinato, J.; Boivin, É.; Bélanger-Trudelle, É.; Fauchon, H.; Tremblay, C.; Soualhine, H. Genotypic characterization of drug resistant Mycobacterium tuberculosis in Quebec, 2002–2012. BMC Microbiol. 2016, 16, 164. [Google Scholar] [CrossRef] [PubMed]
- Bolotin, S.; Alexander, D.C.; Chedore, P.; Drews, S.J.; Jamieson, F. Molecular characterization of drug-resistant Mycobacterium tuberculosis isolates from Ontario, Canada. J. Antimicrob. Chemother. 2009, 64, 263–266. [Google Scholar] [CrossRef]
- Kohli, M.; Schiller, I.; Dendukuri, N.; Dheda, K.; Denkinger, C.M.; Schumacher, S.G.; Steingart, K.R. Xpert® MTB/RIF assay for extrapulmonary tuberculosis and rifampicin resistance. Cochrane Database Syst. Rev. 2018, 8, CD012768. [Google Scholar] [CrossRef] [PubMed]
- Pankhurst, L.J.; del Ojo Elias, C.; Votintseva, A.A.; Walker, T.M.; Cole, K.; Davies, J.; Fermont, J.M.; Gascoyne-Binzi, D.M.; Kohl, T.A.; Kong, C.; et al. Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: A prospective study. Lancet Respir. Med. 2016, 4, 49–58. [Google Scholar] [CrossRef]
- Gygli, S.M.; Keller, P.M.; Ballif, M.; Blöchliger, N.; Hömke, R.; Reinhard, M.; Loiseau, C.; Ritter, C.; Sander, P.; Borrell, S.; et al. Whole-Genome Sequencing for Drug Resistance Profile Prediction in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2019, 63, e02175-18. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.M.; Kohl, T.A.; Omar, S.V.; Hedge, J.; Elias, C.D.O.; Bradley, P.; Iqbal, Z.; Feuerriegel, S.; Niehaus, K.E.; Wilson, D.J.; et al. Modernizing Medical Microbiology (MMM) Informatics Group. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: A retrospective cohort study. Lancet Infect. Dis. 2015, 15, 1193–1202. [Google Scholar] [CrossRef]
- Krüüner, A.; Yates, M.D.; Drobniewski, F.A. Evaluation of MGIT 960-Based Antimicrobial Testing and Determination of Critical Concentrations of First-and Second-Line Antimicrobial Drugs with Drug-Resistant Clinical Strains of Mycobacterium tuberculosis. J. Clin. Microbiol. 2006, 44, 811–818. [Google Scholar] [CrossRef]
- Christianson, S.; Voth, D.; Wolfe, J.; Sharma, M.K. Re-Evaluation of the Critical Concentration for Ethambutol Antimicrobial Sensitivity Testing on the MGIT 960. PLoS ONE 2014, 9, e108911. [Google Scholar] [CrossRef]
- Li, M.; Chen, R.; Lin, S.; Lu, Y.; Liu, H.; Li, G.; Liu, Z.; Zhao, X.; Zhao, L.; Wan, K.-L. Detecting Ethambutol Resistance in Mycobacterium tuberculosis Isolates in China: A Comparison Between Phenotypic Drug Susceptibility Testing Methods and DNA Sequencing of embAB. Front. Microbiol. 2020, 11, 781. [Google Scholar] [CrossRef] [PubMed]
- Miotto, P.; Zhang, Y.; Cirillo, D.M.; Yam, W.C. Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology 2018, 23, 1098–1113. [Google Scholar] [CrossRef]
- Bradley, P.; Gordon, N.C.; Walker, T.M.; Dunn, L.; Heys, S.; Huang, B.; Earle, S.; Pankhurst, L.J.; Anson, L.; De Cesare, M.; et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat. Commun. 2015, 6, 10063. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Catalogue of Mutations in Mycobacterium tuberculosis Complex and Their Association with Drug Resistance, Second Edition. Available online: https://www.who.int/publications/i/item/9789240082410 (accessed on 29 April 2024).
- Walker, T.M.; Miotto, P.; Köser, C.U.; Fowler, P.W.; Knaggs, J.; Iqbal, Z.; Hunt, M.; Chindelevitch, L.; Farhat, M.R.; Cirillo, D.M.; et al. The CRyPTIC Consortium; the Seq&Treat Consortium. The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: A genotypic analysis. Lancet Microbe 2022, 3, e265–e273. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Li, L.; Zhao, Y.; Jia, Q.; Li, H.; Coulter, C.; Jin, Q.; Zhu, G. Characteristics of embB mutations in multidrug-resistant Mycobacterium tuberculosis isolates in Henan, China. J. Antimicrob. Chemother. 2011, 66, 2240–2247. [Google Scholar] [CrossRef] [PubMed]
- Bwalya, P.; Solo, E.S.; Chizimu, J.Y.; Shrestha, D.; Mbulo, G.; Thapa, J.; Nakajima, C.; Suzuki, Y. Characterization of embB mutations involved in ethambutol resistance in multi-drug resistant Mycobacterium tuberculosis isolates in Zambia. Tuberculosis 2022, 133, 102184. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.K.; Ryoo, S.W.; Lee, S.H.; Jnawali, N.; Kim, C.-K.; Kim, H.J.; Kim, S.J. Correlation of the phenotypic ethambutol susceptibility of Mycobacterium tuberculosis with embB gene mutations in Korea. J. Med. Microbiol. 2012, 61, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Public Health Agency of Canada. Tuberculosis Surveillance in Canada Summary Report: 2012–2021. Available online: https://www.canada.ca/en/public-health/services/publications/diseases-conditions/tuberculosis-surveillance-canada-summary-2012-2021.html (accessed on 29 April 2024).
- Seyoum, B.; Demissie, M.; Worku, A.; Bekele, S.; Aseffa, A. Prevalence and Drug Resistance Patterns of Mycobacterium tuberculosis among New Smear Positive Pulmonary Tuberculosis Patients in Eastern Ethiopia. Tuberc. Res. Treat. 2014, 2014, 753492. [Google Scholar] [CrossRef]
- Nasiri, M.J.; Imani Fooladi, A.A.; Dabiri, H.; Pormohammad, A.; Salimi Chirani, A.; Dadashi, M.; Houri, H.; Heidary, M.; Feizabadi, M.M. Primary ethambutol resistance among Iranian pulmonary tuberculosis patients: A systematic review. Ther. Adv. Infect. Dis. 2016, 3, 133–138. [Google Scholar] [CrossRef]
- Starks, A.M.; Gumusboga, A.; Plikaytis, B.B.; Shinnick, T.M.; Posey, J.E. Mutations at embB Codon 306 Are an Important Molecular Indicator of Ethambutol Resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2009, 53, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Safi, H.; Fleischmann, R.D.; Peterson, S.N.; Jones, M.B.; Jarrahi, B.; Alland, D. Allelic Exchange and Mutant Selection Demonstrate that Common Clinical embCAB Gene Mutations Only Modestly Increase Resistance to Ethambutol in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2010, 54, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Safi, H.; Sayers, B.; Hazbón, M.H.; Alland, D. Transfer of embB Codon 306 Mutations into Clinical Mycobacterium tuberculosis Strains Alters Susceptibility to Ethambutol, Isoniazid, and Rifampin. Antimicrob. Agents Chemother. 2008, 52, 2027–2034. [Google Scholar] [CrossRef]
- Hernando Hazbón, M.; Bobadilla del Valle, M.; Inírida Guerrero, M.; Varma-Basil, M.; Filliol, I.; Cavatore, M.; Colangeli, R.; Safi, H.; Billman-Jacobe, H.; Lavender, C.; et al. Role of embB Codon 306 Mutations in Mycobacterium tuberculosis Revisited: A Novel Association with Broad Drug Resistance and IS6110 Clustering Rather than Ethambutol Resistance. Antimicrob. Agents Chemother. 2005, 49, 3794–3802. [Google Scholar] [CrossRef] [PubMed]
- Plinke, C.; Cox, H.S.; Zarkua, N.; Karimovich, H.A.; Braker, K.; Diel, R.; Rü sch-Gerdes, S.; Feuerriegel, S.; Niemann, S. embCAB sequence variation among ethambutol-resistant Mycobacterium tuberculosis isolates without embB306 mutation. J. Antimicrob. Chemother. 2010, 65, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Tylyaprawat, O.; Chaiprasert, A.; Chongtrakool, P. Distribution of embB mutations of Thai clinical isolates of ethambutol-resistant Mycobacterium tuberculosis. J. Glob. Antimicrob. Resist. 2019, 18, 115–117. [Google Scholar] [CrossRef]
- Brossier, F.; Sougakoff, W.; Bernard, C.; Petrou, M.; Adeyema, K.; Pham, A.; De La Breteque, D.A.; Vallet, M.; Jarlier, V.; Sola, C.; et al. Molecular Analysis of the embCAB Locus and embR Gene Involved in Ethambutol Resistance in Clinical Isolates of Mycobacterium tuberculosis in France. Antimicrob. Agents Chemother. 2015, 59, 4800–4808. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Jia, H.; Huang, H.; Sun, Z.; Zhang, Z. Mutations Found in embCAB, embR, and ubiA Genes of Ethambutol-Sensitive and -Resistant Mycobacterium tuberculosis Clinical Isolates from China. Biomed. Res. Int. 2015, 2015, 951706. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Q.; Liu, H.; Wu, X.; Xiao, T.; Zhao, X.; Li, G.; Jiang, Y.; Zeng, C.; Wan, K. Analysis of embCAB Mutations Associated with Ethambutol Resistance in Multidrug-Resistant Mycobacterium tuberculosis Isolates from China. Antimicrob. Agents Chemother. 2015, 59, 2045–2050. [Google Scholar] [CrossRef]
- Al Mahrouqi, S.; Gadalla, A.; Azri, S.; Al-Hamidi, S.; Al-Jardani, A.; Balkhair, A.; Al-Fahdi, A.; Balushi, L.; Zadjali, S.; Al Marhoubi, A.; et al. Drug Resistant Mycobacterium tuberculosis in Oman: Resistance-conferring mutations and lineage diversity. PeerJ 2022, 10, e13645. [Google Scholar] [CrossRef]
- Liu, D.; Huang, F.; Zhang, G.; He, W.; Ou, X.; He, P.; Zhao, B.; Zhu, B.; Liu, F.; Li, Z.; et al. Whole-genome sequencing for surveillance of tuberculosis drug resistance and determination of resistance level in China. Clin. Microbiol. Infect. 2022, 28, 731.e9–731.e15. [Google Scholar] [CrossRef]
- Li, J.; Yang, T.; Hong, C.; Yang, Z.; Wu, L.; Gao, Q.; Yang, H.; Tan, W.; Paula, D.A.; Carvalho-Assef, A.; et al. Whole-Genome Sequencing for Resistance Level Prediction in Multidrug-Resistant Tuberculosis. Microbiol. Spectr. 2022, 10, e02714-21. [Google Scholar] [CrossRef]
- Finci, I.; Merker, M.; Barilar, I.; Kohl, T.A.; Niemann, S.; Andres, S.; Kranzer, K.; Maurer, F.P.; Albertini, S.A.; Hoogland, C.; et al. Investigating resistance in clinical Mycobacterium tuberculosis complex isolates with genomic and phenotypic antimicrobial susceptibility testing: A multicentre observational study. Lancet Microbe 2022, 3, e672–e682. [Google Scholar] [CrossRef]
- Siddiqi, S.H.; Rusch-Gerdes, S. BACTEC MGIT 960 TB System Product and Procedure Manual; Becton Dickinson Microbiology Systems: Sparks, MD, USA, 2006. [Google Scholar]
- Siddiqi, S.H. BACTEC 460 TB System Product and Procedure Manual; Revision D.; Becton Dickinson Microbiology Systems: Sparks, MD, USA, 1995. [Google Scholar]
- Lee, J.; Armstrong, D.T.; Ssengooba, W.; Park, J.-A.; Yu, Y.; Mumbowa, F.; Namaganda, C.; Mboowa, G.; Nakayita, G.; Armakovitch, S.; et al. Sensititre MYCOTB MIC Plate for Testing Mycobacterium tuberculosis Susceptibility to First-and Second-Line Drugs. Antimicrob. Agents Chemother. 2014, 58, 11–18. [Google Scholar] [CrossRef]
- Palomino, J.C.; Martin, A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics 2014, 3, 317–340. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, Y.; Hu, L.; Yang, M.; He, Z.-G. Molecular mechanism of the synergistic activity of ethambutol and isoniazid against Mycobacterium tuberculosis. J. Biol. Chem. 2018, 293, 16741–16750. [Google Scholar] [CrossRef]
- Gupta, P.; Jadaun, G.; Das, R.; Gupta, U.; Srivastava, K.; Chauhan, A.; Sharma, V.; Chauhan, D.; Katoch, V. Simultaneous ethambutol and isoniazid resistance in clinical isolates of Mycobacterium tuberculosis. Indian. J. Med. Res. 2006, 123, 125–130. [Google Scholar]
- Molle, V.; Kremer, L.; Girard-Blanc, C.; Besra, G.S.; Cozzone, A.J.; Prost, J.-F. An FHA Phosphoprotein Recognition Domain Mediates Protein EmbR Phosphorylation by PknH; a Ser/Thr Protein Kinase from Mycobacterium tuberculosis. Biochemistry 2003, 42, 15300–15309. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.; Remm, M.; Rozen, S. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef]
- Edgar, R. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Geneious Prime Version 2022.11.0.12. Available online: https://www.geneious.com (accessed on 29 April 2024).
- Matthews, T.C.; Bristow, F.R.; Griffiths, E.J.; Petkau, A.; Adam, J.; Dooley, D.; Kruczkiewicz, P.; Curatcha, J.; Cabral, J.; Fornika, D.; et al. The Integrated Rapid Infectious Disease Analysis (IRIDA) Platform. bioRxiv 2018. Pre-print. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Genome analysis Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- FastQC Version 0.72. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 29 April 2024).
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Labbé, G.; Kruczkiewicz, P.; Robertson, J.; Mabon, P.; Schonfeld, J.; Kein, D.; Rankin, M.A.; Gopez, M.; Hole, D.; Son, D.; et al. Rapid and accurate SNP genotyping of clonal bacterial pathogens with BioHansel. Microb. Genom. 2021, 7, 000651. [Google Scholar] [CrossRef] [PubMed]
- Snippy. Available online: https://github.com/tseemann/snippy (accessed on 29 April 2024).
- Okonechnikov, K.; Conesa, A.; García-Alcalde, F. Qualimap 2: Advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 2016, 32, 292–294. [Google Scholar] [CrossRef]
- Petkau, A.; Mabon, P.; Sieffert, C.; Knox, N.C.; Cabral, J.; Iskander, M.; Iskander, M.; Weedmark, K.; Zaheer, R.; Katz, L.S.; et al. SNVPhyl: A single nucleotide variant phylogenomics pipeline for microbial genomic epidemiology. Microb. Genom. 2017, 3, e000116. [Google Scholar] [CrossRef]
- Microreact. Available online: https://microreact.org/ (accessed on 29 April 2024).
embB Mutation | Phenotype a | Number of Isolates Tested by MGIT960 b (5 µg/mL) | Number of Isolates Tested by BACTEC460 c (2.5 µg/mL) | Number of Isolates | WHO Confidence Grading of Resistance Mutations d |
---|---|---|---|---|---|
Met306Val | S | 5 | 0 | 5 | “Associated with Resistance” |
R | 22 | 10 | 32 | ||
Met306Ile | S | 17 | 0 | 17 | |
R | 16 | 3 | 19 | ||
Met306Leu | S | 1 | 0 | 1 | |
R | 0 | 1 | 1 | ||
Tyr319Ser | S | 0 | 0 | 0 | |
R | 0 | 1 | 1 | ||
Asp328Tyr | S | 0 | 0 | 0 | |
R | 1 | 0 | 1 | ||
Asp354Ala | S | 0 | 0 | 0 | |
R | 1 | 0 | 1 | ||
Gly406Ala e | S | 0 | 0 | 0 | |
R | 1 | 2 | 3 | ||
Gly406Asp | S | 11 | 0 | 11 | |
R | 1 | 1 | 2 | ||
Gln497Arg | S | 1 | 0 | 1 | |
R | 3 | 0 | 3 | ||
Glu378Ala | S | 36 | 0 | 36 | “Not Associated with Resistance” |
R | 1 | 0 | 1 | ||
Ile226Val | S | 1 | 0 | 1 | “Uncertain Significance” |
R | 0 | 0 | 0 | ||
Ala313Val | S | 1 | 0 | 1 | |
R | 0 | 0 | 0 | ||
Ala386Ser | S | 1 | 0 | 1 | |
R | 0 | 0 | 0 | ||
Gln497Pro | S | 1 | 0 | 1 | |
R | 0 | 0 | 0 | ||
Tyr333Asn | S | 1 | 0 | 1 | Not Documented in WHO Catalogue |
R | 0 | 0 | 0 | ||
Wild-type | S | 2593 | 39 | 2632 | Not applicable |
R | 8 | 14 | 22 |
Isolate Number | Mutation Profile | Phenotypic Drug Susceptibility Testing Results a | |||||||
---|---|---|---|---|---|---|---|---|---|
embC | embA | embB | embR | EMB | RIF | INH | PZA | ||
Highest Concentration of Resistance (μg/mL) | Phenotype | ||||||||
3 | - | - | Gly406Ala | - | 5 | R | S | S | S |
15 | 5 | R | R | R | S | ||||
2 | 3 | S | R | R | S | ||||
1 | - | - | Gly406Asp | - | 5 | R | R | R | R |
11 | 5 | R | R | R | S | ||||
4 | 4 | S | R | R | R | ||||
5 | 3 | S | R | R | S | ||||
6 | Leu333Arg | - | Gly406Asp | Gln258fs | 4 | S | S | R | S |
7 | 3 | S | S | R | S | ||||
10 | 3 | S | S | R | S | ||||
12 | 3 | S | S | R | S | ||||
8 | 2 | S | S | R | S | ||||
9 | 2 | S | S | R | S | ||||
13 | 2 | S | S | R | S | ||||
14 | 2 | S | S | R | S | ||||
16 | 2 | S | S | R | S |
Study | Gly406Asp | Gly406Ala | Method, Critical Concentration | ||
---|---|---|---|---|---|
Susceptible | Resistant | Susceptible | Resistant | ||
Plinke et al., 2010 [31] | 0 | 5 | 0 | 2 | LJ a, 2 µg/mL |
Park et al., 2012 [23] | 4 | 2 | 2 | 1 | LJ a, 2 µg/mL |
Zhao et al., 2015 [35] | 3 | 2 | 2 | 4 | LJ a, 2 µg/mL |
Brossier et al., 2015 [33] | 0 | 4 | 0 | 2 | LJ a, 2 µg/mL |
Xu et al., 2015 [34] | 2 | 2 | 2 | 5 | LJ a, 2 µg/mL |
Tylyaprawat et al., 2019 [32] | 4 | 1 | 0 | 2 | Agar proportion, 5 µg/mL |
Bwalya et al., 2022 [22] | 3 | 0 | 2 | 1 | M960 b |
Al Mahrouqi 2022 [36] | 2 | 0 | 0 | 0 | M960 b |
Li et al., 2020 [16] | 2 | 0 | 0 | 3 | LJ, 2 ug/mL; M960, MABA c |
Liu et al., 2022 [37] | 6 | 5 | 21 | 7 | MYCOTBI, MIC d |
Li et al., 2022 [38] | 3 | 0 | 2 | 8 | MYCOTBI, MIC d |
Finci et al., 2022 [39] | 4 | 0 | 1 | 0 | MYCOTBI, MIC d |
Total | 31 | 21 | 32 | 32 | |
WHO [19] | 212 | 274 | 199 | 328 | All methods e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiebert, M.; Sharma, M.K.; Rabb, M.; Karlowsky, L.; Bergman, K.; Soualhine, H. Mutations in embB406 Are Associated with Low-Level Ethambutol Resistance in Canadian Mycobacterium tuberculosis Isolates. Antibiotics 2024, 13, 624. https://doi.org/10.3390/antibiotics13070624
Hiebert M, Sharma MK, Rabb M, Karlowsky L, Bergman K, Soualhine H. Mutations in embB406 Are Associated with Low-Level Ethambutol Resistance in Canadian Mycobacterium tuberculosis Isolates. Antibiotics. 2024; 13(7):624. https://doi.org/10.3390/antibiotics13070624
Chicago/Turabian StyleHiebert, Morgan, Meenu K. Sharma, Melissa Rabb, Lisa Karlowsky, Kiana Bergman, and Hafid Soualhine. 2024. "Mutations in embB406 Are Associated with Low-Level Ethambutol Resistance in Canadian Mycobacterium tuberculosis Isolates" Antibiotics 13, no. 7: 624. https://doi.org/10.3390/antibiotics13070624
APA StyleHiebert, M., Sharma, M. K., Rabb, M., Karlowsky, L., Bergman, K., & Soualhine, H. (2024). Mutations in embB406 Are Associated with Low-Level Ethambutol Resistance in Canadian Mycobacterium tuberculosis Isolates. Antibiotics, 13(7), 624. https://doi.org/10.3390/antibiotics13070624