Knowledge, Attitudes, and Practices of Antibiotic Use among Small-, Medium-, and Large-Scale Fish Farmers of the Stratum II of the Volta Lake of Ghana
Abstract
:1. Introduction
2. Results
2.1. Demographic Characteristics of Respondents
2.2. Level of Experience in Fish Farming
2.3. Ranks of Challenges Facing Fish Farmers on the Volta Lake
2.4. Knowledge Level of Fish Farmers on the Use of Antibiotics
2.4.1. Most Common Groups of Antibiotic Drugs Used in Fish Farming on the Lake Volta
2.4.2. Sources of Information on the Use of Antibiotics in General in Fish Farming
2.4.3. Symptoms/Common Diseases That Affect Cage Fish Farms on the Lake Volta
2.4.4. Perceived Reasons for Farmers’ General Use of Antibiotics in Fish Farming
2.4.5. Farmers’ Perceived Risk and Effect of Improper Use of Antibiotics in Fish Culture
2.5. Attitude of Cage Fish Farmers with the Use of Antibiotics in Fish Farming
2.5.1. Sources of Information on Specific Antibiotics and Their Usage in Fish Farming
2.5.2. Factors That Influence the Desire of CAGE Fish Farmers to Use Antibiotics
2.5.3. Suggested Ways to Reduce the Rate of Antibiotic Use in Fish Culture
2.5.4. Perceived Role of Antibiotics in Fish Health Management
2.6. Practice on the Use of Antibiotics in Fish Farming
2.6.1. Farmers Suggested Ways to Prevent and Manage Fish Disease
2.6.2. Ways Cage Farmers Handle Sudden Change in Fish Behavior
2.6.3. Chemical Drugs and Substances Used by Cage Fish Farmers to Treat Disease/Disinfect Farms
2.6.4. Reasons Cage Fish Farmers Use Antibiotics in Their Fish Farming Operations
2.6.5. How Cage Fish Farmers Apply Antibiotics in Fish Management
2.6.6. Ways Farmers Judge the Effectiveness of Antibiotic Application in Fish Farming
2.6.7. Reaction of Farmers after Antibiotic Application Proves Ineffective in Fish Farming
2.6.8. Farmers Suggestions and Recommendation on the Use of Antibiotics in Farming
2.7. Relationship between Knowledge, Attitude, and Practices of Fish Farmers
2.7.1. Differences in Fish Farmers’ Knowledge, Attitudes, and Practices
2.7.2. Differences in Respondents’ Knowledge, Attitudes, and Practices
2.7.3. Relationship between Knowledge, Attitudes, and Practices of Antibiotic Use
3. Discussion
4. Materials and Methods
4.1. Ethical Consideration and Approval
4.2. Study Area
4.3. Development and Pretesting of Research Instrument
4.4. Sampling Techniques and Design
4.5. Data Analysis
5. Conclusions
6. Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amenyogbe, E.; Chen, G.; Wang, Z.; Lin, M.; Lu, X.; Atujona, D.; Abarike, E.D. A review of Ghana’s aquaculture industry. J. Aquac. Res. Dev. 2018, 9, 2. [Google Scholar] [CrossRef]
- Ramírez-Paredes, J.G.; Paley, R.K.; Hunt, W.; Feist, S.W.; Stone, D.M.; Field, T.R.; Verner-Jeffreys, D.W. First detection of infectious spleen and kidney necrosis virus (ISKNV) associated with massive mortalities in farmed tilapia in Africa. Transbound. Emerg. Dis. 2021, 68, 1550–1563. [Google Scholar] [CrossRef]
- Zornu, J.; Oyih, M.; Binde, M.; Viglo, J.; Agbekpornu, H.; Nkansa, M.; Cudjoe, K.S. Stakeholder perspectives on the 2023 Ghana National Aquaculture Development Plan: An integration within the ecosystem approach framework. Aquac. Fish Fish. 2023, 3, 459–471. [Google Scholar] [CrossRef]
- Abdelfattah, E.M.; Ekong, P.S.; Okello, E.; Williams, D.R.; Karle, B.M.; Rowe, J.D.; Aly, S.S. Survey of antimicrobial drug use and stewardship practices in adult cows on California dairies: Post Senate bill 27. Microorganisms 2021, 9, 1507. [Google Scholar] [CrossRef]
- Griboff, J.; Carrizo, J.C.; Bonansea, R.I.; Valdés, M.E.; Wunderlin, D.A.; Amé, M.V. Multiantibiotic residues in commercial fish from Argentina. The presence of mixtures of antibiotics in edible fish, a challenge to health risk assessment. Food Chem. 2020, 332, 127380. [Google Scholar] [CrossRef]
- Henriksson, P.J.; Rico, A.; Troell, M.; Klinger, D.H.; Buschmann, A.H.; Saksida, S.; Zhang, W. Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: A review from a systems perspective. Sustain. Sci. 2018, 13, 1105–1120. [Google Scholar]
- Manage, P.M. Heavy use of antibiotics in aquaculture; emerging human and animal health problems—A review. Sri Lanka J. Aquat. Sci. 2018, 23, 13. [Google Scholar] [CrossRef]
- Romero, J.; Feijoó, C.G.; Navarrete, P. Antibiotics in aquaculture–use, abuse and alternatives. Health Environ. Aquac. 2012, 159, 159–198. [Google Scholar]
- Thiang, E.L.; Lee, C.W.; Takada, H.; Seki, K.; Takei, A.; Suzuki, S.; Bong, C.W. Antibiotic residues from aquaculture farms and their ecological risks in Southeast Asia: A case study from Malaysia. Ecosyst. Health Sustain. 2021, 7, 1926337. [Google Scholar] [CrossRef]
- Guidi, L.R.; Santos, F.A.; Ribeiro AC, S.; Fernandes, C.; Silva, L.H.; Gloria MB, A. Quinolones and tetracyclines in aquaculture fish by a simple and rapid LC-MS/MS method. Food Chem. 2018, 245, 1232–1238. [Google Scholar] [PubMed]
- Kümmerer, K. Antibiotics in the aquatic environment–a review–part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Steele, J.C.; Meng, X.Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environ. Pollut. 2017, 223, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Adenaya, A.; Berger, M.; Brinkhoff, T.; Ribas-Ribas, M.; Wurl, O. Usage of antibiotics in aquaculture and the impact on coastal waters. Mar. Pollut. Bull. 2023, 188, 114645. [Google Scholar] [CrossRef] [PubMed]
- Oyebanji, B. Use of Antibiotics and Knowledge of Antibiotics Resistance by Selected Farmers in Oyo Town, Nigeria. Uganda J. Agric. Sci. 2018, 18, 43–56. [Google Scholar] [CrossRef]
- Santos, L.; Ramos, F. Analytical strategies for the detection and quantification of antibiotic residues in aquaculture fishes: A review. Trends Food Sci. Technol. 2016, 52, 16–30. [Google Scholar] [CrossRef]
- Agbeko, R.; Aheto, D.W.; Asante, D.K.; Asare, N.K.; Boateng, A.A.; Adinortey, C.A. Identification of molecular determinants of antibiotic resistance in some fish farms of Ghana. Heliyon 2022, 8, e10431. [Google Scholar] [CrossRef] [PubMed]
- Apenteng, J.A.; Osei-Asare, C.; Oppong, E.E.; Amihere, I.; Hafiz, M.Y. Antibiotic sensitivity patterns of microbial isolates from fish ponds: A study in the Greater Accra Region of Ghana. Afr. J. Pharm. Pharmacol. 2017, 11, 314–320. [Google Scholar]
- Jansen, M.D.; Cudjoe, K.; Brun, E. Investigation of Tilapia Mortality in Ghana; Norwegian Veterinary Institute Report 17-2018; Norwegian Veterinary Institute: Oslo, Norway, 2018; ISSN 1890-3290. [Google Scholar]
- Adinortey, C.A.; Aheto, D.W.; Boateng, A.A.; Agbeko, R. Multiple antibiotic resistance-coliform bacteria in some selected fish farms of the central region of Ghana. Scientifica 2020, 2020, 6641461. [Google Scholar] [CrossRef]
- Magna, E.K.; Tornyie, F.; Ofosu-Koranteng, F.; Mensah ET, D.; Larbi, L.; Mbage, B. Occurrence and Environmental Risk Assessment of Antibiotics in Water and Sediment from Fish Farms in the Lower Volta Lake of Ghana. Chem. Afr. 2023, 7, 409–419. [Google Scholar] [CrossRef]
- Agbeko, R. Isolation and Characterization of Antibiotic Resistant Bacteria from Selected Fish Farms in the Central and Western Regions of Ghana. Ph.D. Thesis, University of Cape Coast, Cape Coast, Ghana, 2020. [Google Scholar]
- Agoba, E.E.; Adu, F.; Agyare, C.; Boamah, V.E.; Boakye, Y.D. Antibiotic resistance patterns of bacterial isolates from hatcheries and selected fish farms in the Ashanti region of Ghana. J. Microbiol. Antimicrob. 2017, 9, 35–46. [Google Scholar]
- Carrique-Mas, J.J.; Trung, N.V.; Hoa, N.T.; Mai, H.H.; Thanh, T.H.; Campbell, J.I.; Schultsz, C. Antimicrobial usage in chicken production in the Mekong Delta of Vietnam. Zoonoses Public Health 2015, 62, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Duarte, D.J.; Oldenkamp, R.; Ragas, A.M. Modelling environmental antibiotic-resistance gene abundance: A meta-analysis. Sci. Total Environ. 2019, 659, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 2019, 4, 1432–1442. [Google Scholar] [CrossRef] [PubMed]
- Lamy, B.; Baron, S.; Barraud, O. Aeromonas: The multifaceted middleman in the One Health world. Curr. Opin. Microbiol. 2022, 65, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Limbu, S.M. Antibiotics use in African aquaculture: Their potential risks on fish and human health. In Current Microbiological Research in Africa: Selected Applications for Sustainable Environmental Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 203–221. [Google Scholar]
- Bahadir, T.; Çelebi, H.; Şimşek, İ.; Tulun, Ş. Antibiotic applications in fish farms and environmental problems. Turk. J. Eng. 2019, 3, 60–67. [Google Scholar] [CrossRef]
- Nappier, S.P.; Liguori, K.; Ichida, A.M.; Stewart, J.R.; Jones, K.R. Antibiotic resistance in recreational waters: State of the science. Int. J. Environ. Res. Public Health 2020, 17, 8034. [Google Scholar] [CrossRef]
- Donkor, E.S.; Anim-Baidoo, I.; Fei, E.; Amponsah, C.; Olu-Taiwo, M.; Nana-Adjei, D.; Forson, A.O. Occurrence of antibiotic residues and antibiotic-resistant bacteria in nile Tilapia sold in some markets in Accra, Ghana: Public health implication. J. Food Res. 2018, 7, 129. [Google Scholar] [CrossRef]
- Shi, B.S.; Cheng, X.J.; Chen, H.Z.; Xie, J.; Zhou, Z.H.; Jiang, S.Q.; Lu, Z.Y. Occurrence, source tracking and removal of antibiotics in recirculating aquaculture systems (RAS) in southern China. J. Environ. Manag. 2022, 324, 116311. [Google Scholar] [CrossRef]
- Bondad-Reantaso, M.G.; Lavilla-Pitogo, C.R.; Karunasagar, I.; Arthur, J.R.; Hao, B.; Irde, E.; Peñarubia, O.R. Outputs and activities of FAO project FMM/RAS/298/MUL on antimicrobial resistance in fisheries and summary of FAO’S recent work on antimicrobial resistance in aquaculture. FAO Fish. Aquac. Circ. 2020, C1215, I-0A. [Google Scholar]
- Buschmann, A.H.; Tomova, A.; López, A.; Maldonado, M.A.; Henríquez, L.A.; Ivanova, L.; Cabello, F.C. Salmon aquaculture and antimicrobial resistance in the marine environment. PLoS ONE 2012, 7, e42724. [Google Scholar] [CrossRef]
- Limbu, S.M.; Chen, L.Q.; Zhang, M.L.; Du, Z.Y. A global analysis on the systemic effects of antibiotics in cultured fish and their potential human health risk: A review. Rev. Aquac. 2021, 13, 1015–1059. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P.; Tomova, A.; Ivanova, L.; Dölz, H.; Millanao, A.; Buschmann, A.H. Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 2013, 15, 1917–1942. [Google Scholar] [CrossRef] [PubMed]
- Stephen, J.; Mukherjee, S.; Lekshmi, M.; Kumar, S.H. Diseases and Antimicrobial Use in Aquaculture. In Handbook on Antimicrobial Resistance: Current Status, Trends in Detection and Mitigation Measures; Springer: Singapore, 2023; pp. 1–23. [Google Scholar]
- Lulijwa, R.; Rupia, E.J.; Alfaro, A.C. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Rev. Aquac. 2020, 12, 640–663. [Google Scholar] [CrossRef]
- Miranda, C.D.; Godoy, F.A.; Lee, M.R. Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Front. Microbiol. 2018, 9, 1284. [Google Scholar] [CrossRef] [PubMed]
- Hedberg, N.; Stenson, I.; Pettersson, M.N.; Warshan, D.; Nguyen-Kim, H.; Tedengren, M.; Kautsky, N. Antibiotic use in Vietnamese fish and lobster sea cage farms; implications for coral reefs and human health. Aquaculture 2018, 495, 366–375. [Google Scholar] [CrossRef]
- Holmström, K.; Gräslund, S.; Wahlström, A.; Poungshompoo, S.; Bengtsson, B.E.; Kautsky, N. Antibiotic use in shrimp farming and implications for environmental impacts and human health. Int. J. Food Sci. Technol. 2003, 38, 255–266. [Google Scholar] [CrossRef]
- Abarike, E.D.; Dandi, S.O.; Ampofo-Yeboah, A. A blend of Guava, Bitter, and Neem Leaf extracts improves haematology and resistance to co-infection of Streptococcus agalactiae and Aeromonas jandaie but not Liver health in Nile tilapia. Fish. Shellfish Immunol. Rep. 2022, 3, 100066. [Google Scholar] [PubMed]
- Pham, D.K.; Chu, J.; Do, N.T.; Brose, F.; Degand, G.; Delahaut, P.; Wertheim, H.F. Monitoring antibiotic use and residue in freshwater aquaculture for domestic use in Vietnam. EcoHealth 2015, 12, 480–489. [Google Scholar] [CrossRef]
- Ström, G.H.; Björklund, H.; Barnes, A.C.; Da, C.T.; Nhi NH, Y.; Lan, T.T.; Boqvist, S. Antibiotic use by small-scale farmers for freshwater aquaculture in the upper Mekong Delta, Vietnam. J. Aquat. Anim. Health 2019, 31, 290–298. [Google Scholar] [CrossRef]
- Chowdhury, S.; Rheman, S.; Debnath, N.; Delamare-Deboutteville, J.; Akhtar, Z.; Ghosh, S.; Parveen, S.; Islam, K.; Islam, M.A.; Rashid, M.M.; et al. Antibiotics usage practices in aquaculture in Bangladesh and their associated factors. One Health 2022, 15, 100445. [Google Scholar] [CrossRef]
- Phu, T.M.; Scippo, M.L.; Phuong, N.T.; Tien CT, K.; Son, C.H.; Dalsgaard, A. Withdrawal time for sulfamethoxazole and trimethoprim following treatment of striped catfish (Pangasianodon hypophthalmus) and hybrid red tilapia (Oreochromis mossambicus× Oreochromis niloticus). Aquaculture 2015, 437, 256–262. [Google Scholar] [CrossRef]
- St-Hilaire, S.; Price, D.; Chalmers, W.H.; McClure, J. Understanding antibiotic treatment failures in salmon aquaculture. Asian Fish. Sci. 2020, 33 (Suppl. S1), 33–38. [Google Scholar] [CrossRef]
- Burridge, L.; Weis, J.S.; Cabello, F.; Pizarro, J.; Bostick, K. Chemical use in salmon aquaculture: A review of current practices and possible environmental effects. Aquaculture 2010, 306, 7–23. [Google Scholar] [CrossRef]
- Gemeda, B.A.; Amenu, K.; Magnusson, U.; Dohoo, I.; Hallenberg, G.S.; Alemayehu, G.; Wieland, B. Antimicrobial use in extensive smallholder livestock farming systems in Ethiopia: Knowledge, attitudes, and practices of livestock keepers. Front. Vet. Sci. 2020, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Geta, K.; Kibret, M. Knowledge, attitudes and practices of animal farm owners/workers on antibiotic use and resistance in Amhara region, north western Ethiopia. Sci. Rep. 2021, 11, 21211. [Google Scholar] [CrossRef] [PubMed]
- Shanjar, A.M.; Aziz, M.M. Knowledge, Attitude and Practice (KAP) towards Resistance and use of Antibiotic among Veterinary Medicine and Healthcare Students in DhiQar Province/Iraq. Ann. Rom. Soc. Cell Biol. 2021, 25, 3153–3162. [Google Scholar]
- Dankar, I.; Hassan, H.; Serhan, M. Knowledge, attitudes, and perceptions of dairy farmers regarding antibiotic use: Lessons from a developing country. J. Dairy Sci. 2022, 105, 1519–1532. [Google Scholar] [CrossRef] [PubMed]
- Caudell, M.A.; Dorado-Garcia, A.; Eckford, S.; Creese, C.; Byarugaba, D.K.; Afakye, K.; Swiswa, S. Towards a bottom-up understanding of antimicrobial use and resistance on the farm: A knowledge, attitudes, and practices survey across livestock systems in five African countries. PLoS ONE 2020, 15, e0220274. [Google Scholar] [CrossRef] [PubMed]
- Gebeyehu, D.T.; Bekele, D.; Mulate, B.; Gugsa, G.; Tintagu, T. Knowledge, attitude and practice of animal producers towards antimicrobial use and antimicrobial resistance in Oromia zone, north eastern Ethiopia. PLoS ONE 2021, 16, e0251596. [Google Scholar] [CrossRef]
- Ozturk, Y.; Celik, S.; Sahin, E.; Acik, M.N.; Cetinkaya, B. Assessment of farmers’ knowledge, attitudes and practices on antibiotics and antimicrobial resistance. Animals 2019, 9, 653. [Google Scholar] [CrossRef]
- Hossain, M.T.; Rafiq, K.; Islam, M.Z.; Chowdhury, S.; Islam, P.; Haque, Z.; Hossain, M.T. A survey on knowledge, attitude, and practices of large-animal farmers towards antimicrobial use, resistance, and residues in Mymensingh division of Bangladesh. Antibiotics 2022, 11, 442. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; Kalam, M.A.; Alim, M.A.; Shano, S.; Nayem MR, K.; Badsha, M.R.; Nath, C. Knowledge, Attitude, and Practices on Antimicrobial Use and Antimicrobial Resistance among Commercial Poultry Farmers in Bangladesh. Antibiotics 2021, 10, 784. [Google Scholar] [CrossRef] [PubMed]
- Moffo, F.; Mouiche MM, M.; Kochivi, F.L.; Dongmo, J.B.; Djomgang, H.K.; Tombe, P.; Awah-Ndukum, J. Knowledge, attitudes, practices and risk perception of rural poultry farmers in Cameroon to antimicrobial use and resistance. Prev. Vet. Med. 2020, 182, 105087. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.J.; Marier, E.A.; Tranter, R.B.; Wu, G.; Watson, E.; Teale, C.J. Factors affecting dairy farmers’ attitudes towards antimicrobial medicine usage in cattle in England and Wales. Prev. Vet. Med. 2015, 121, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Roess, A.A.; Winch, P.J.; Akhter, A.; Afroz, D.; Ali, N.A.; Shah, R.; Bangladesh Projahnmo Study Group. Household animal and human medicine use and animal husbandry practices in rural Bangladesh: Risk factors for emerging zoonotic disease and antibiotic resistance. Zoonoses Public Health 2015, 62, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.; Singh, R. Probiotics in aquaculture: A promising emerging alternative approach. Symbiosis 2019, 77, 99–113. [Google Scholar] [CrossRef]
- Tran, N.H.; Chen, H.; Reinhard, M.; Mao, F.; Gin, K.Y.H. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Res. 2016, 104, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Desbois, A.P.; Garza, M.; Eltholth, M.; Hegazy, Y.M.; Mateus, A.; Adams, A.; Brunton, L.A. Systems-thinking approach to identify and assess feasibility of potential interventions to reduce antibiotic use in tilapia farming in Egypt. Aquaculture 2021, 540, 736735. [Google Scholar] [CrossRef] [PubMed]
- Sommerset, I.; Krossøy, B.; Biering, E.; Frost, P. Vaccines for fish in aquaculture. Expert. Rev. Vaccines 2005, 4, 89–101. [Google Scholar] [CrossRef]
- Abarike, E.D.; Atuna, R.A.; Dandi, S.O.; Agyekum, S.; Appenteng, P. Preliminary Survey on Perceived Fish Health Management Practices among Small-Scale Cage Tilapia Farmers on Lake Volta. J. Aquac. Fish. 2023, 7, 2. [Google Scholar]
Characteristics | Category | Frequency | Percentage |
---|---|---|---|
Age | Less than 20 Years | 1 | 1.10 |
21–30 years | 20 | 21.98 | |
31–40 Years | 24 | 26.37 | |
41–50 years | 22 | 24.18 | |
50 years and above | 24 | 26.37 | |
Level of Education | Tertiary | 7 | 7.69 |
Primary | 13 | 14.29 | |
SHS | 21 | 23.08 | |
JHS/JSS | 24 | 26.37 | |
None | 26 | 28.57 | |
Role on the farm | Owner | 44 | 48.35 |
Manager | 27 | 29.67 | |
Worker | 20 | 21.98 | |
Others | 0 | 0.00 | |
Total | 91 | 100.00 |
Characteristics | Category | Frequency | Percentage |
---|---|---|---|
Year in fish farming | Less than 1 year | 0 | 0.00 |
1–5 years | 9 | 9.89 | |
6–10 years | 22 | 24.18 | |
11–15 years | 28 | 30.77 | |
16 years and above | 32 | 35.16 | |
Reasons for fish farming | Easy to manage | 7 | 7.69 |
Less starting capital | 8 | 8.79 | |
Free water resources | 10 | 10.99 | |
Trained personnel | 13 | 14.29 | |
Supplementary income | 15 | 16.48 | |
Gather personnel experience | 38 | 41.79 | |
Average income per year (Converted from Ghana cedis to US dollars) | Less than 1000 dollars | 3 | 3.30 |
2000 dollars | 14 | 15.38 | |
5000 dollars | 21 | 23.08 | |
10,000 dollars and above | 53 | 58.25 | |
Number of cages (5 m by 5 m, 6 m by 6 m and 12 m by 12 m) | Less than 10 cages | 7 | 7.69 |
11–20 cages | 14 | 15.38 | |
21–30 cages | 15 | 16.48 | |
31–40 cages | 23 | 25.27 | |
Above 41 cages | 32 | 35.16 | |
Total | 91 | 100.00 |
Challenges | Mean Rank | Rank |
---|---|---|
Cost of feed, cost of fingerlings, mortality, disease outbreak | 1.79 | 1st |
Dam spillage, increase in water level, water pollution | 2.13 | 2rd |
Inadequate fingerlings, theft, wind | 3.03 | 4nd |
Lack of fish health personnel and market, swollen belly | 2.77 | 3th |
N | 91 | |
Kendall’s Wa | 0.771 | |
Chi-square | 152.451 | |
df | 3 | |
Asymp. Sig. | 0.001 |
Recommendation on the Use of Antibiotics | Frequency | Percentages |
---|---|---|
Research into the combination of red oil and local salt with antibiotics | 8 | 8.79 |
Research into medicinal plants | 9 | 9.89 |
Normally buy from vet shops | 15 | 16.48 |
Screen the market for fake and expired ones | 20 | 21.99 |
Collaboration, education, and training | 39 | 42.86 |
Total | 91 | 100.00 |
Knowledge | Chi-Square | Attitude | Chi-Square | Practice | Chi-Square | |||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Category | More Knowledge | Less Knowledge | p Value | Adequate | Inadequate | p Value | Advance | Unadvanced | p Value |
21–30 years | 17 (18.68) | 4 (4.39) | 4 (4.39) | 5 (5.49) | 9 (9.89) | 12 (13.18) | ||||
Age | 31–40 years | 20 (21.97) | 3 (3.29) | 0.042 | 10 (10.98) | 18 (19.78) | 5 (5.49) | 19 (20.87) | 0.006 | |
41–50 years | 19 (20.87) | 3 (3.29) | 14 (15.38) | 18 (19.78) | 0.89 | 13 (14.28) | 9 (9.89) | |||
51 years and above | 24 (26.37) | 4 (4.39) | 8 (8.79) | 14 (15.38) | 9 (9.89) | 15 (16.48) | ||||
None | 22 (24.17) | 4 (4.39) | 2 (2.19) | 24 (26.37) | 20 (21.97) | 6 (6.59) | ||||
Primary | 12 (13.18) | 4 (4.39) | 0.016 | 3 (3.29) | 10 (10.98) | 12 (13.18) | 1 (1.09) | |||
Level of education | JHS/JSS | 19 (20.97) | 1 (1.09) | 9 (9.87) | 15 (16.48) | 0.007 | 18 (19.78) | 6 (6.59) | 0.036 | |
SSS | 18 (19.78) | 3 (3.29) | 8 (8.79) | 13 (14.28) | 18 (19.78) | 3 (3.29) | ||||
Tertiary | 4 (4.38) | 3 (3.29) | 1 (1.09) | 6 (6.59) | 4 (4.39)) | 3 (3.29) | ||||
Manager | 24 (26.37) | 3 (3.29) | 17 (18.68) | 10 (10.98) | 22 (24.17) | 5 (5.49) | ||||
Role of farmer | Owner | 38 (41.75) | 5 (5.49) | 0.002 | 40 (43.95) | 4 (4.39) | 0.017 | 44 (48.35) | 1 (1.09) | 0.68 |
Worker | 14 (15.38) | 6 (6.59) | 15 (16.48) | 5 (5.49) | 19 (20.87) | 1 (1.09) | ||||
1–5 years | 1 (1.09) | 8 (8.79) | 3 (3.29) | 6 (6.59) | 7 (7.69) | 2 (2.19) | ||||
6–10 years | 11 (12.08) | 17 (18.68) | 4 (4.39) | 24 (26.37) | 0.028 | 24 (26.37) | 4 (4.39) | 0.001 | ||
Years in farming | 11–15 years | 8 (8.79) | 24 (26.37) | 0.19 | 7 (7.69) | 25 (27.47) | 30 (32.96) | 2 (2.19) | ||
16 years | 4 (4.39) | 18 (19.78) | 8 (8.79) | 14 (15.38) | 11 (12.08) | 11 (12.08) | ||||
11–20 cages | 31 (34.06) | 1 (1.09) | 4 (4.39) | 28 (30.76) | 28 (30.76) | 4 (4.39) | ||||
Number of cages | 21–30 cages | 12 (13.18)) | 3 (2.29) | 0.002 | 1 (1.09) | 14 (15.38) | 13 (14.28) | 2 (2.19) | ||
31–40 cages | 6 (6.59) | 1 (1.09) | 2 (1.19) | 5 (5.49) | 0.005 | 6 (6.59) | 1 (1.09) | 0.004 | ||
Above 41 cages | 19 (20.87) | 4 (4.39) | 12 (13.18) | 11 (12.08) | 13 (14.28) | 10 (10.98) | ||||
Less than 10 cages | 12 (13.18) | 2 (2.19) | 3 (3.29) | 11 (12.08) | 12 (13.18) | 2 (2.19) |
Knowledge | Attitude | Practice | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Category | Odd Ratio (Exp B) | 95% CL | Odd Ratio (Exp B) | 95% CL | Odd Ratio (Exp B) | 95% CL | |||
Lower | Upper | Lower | Upper | Lower | Upper | |||||
Age | Less than 20 | 1.85642 | 0.96212 | 3.811554 | 0.11742 | 0.18562 | 0.92375 | 0.13968 | 0.18943 | 0.02614 |
21–30 | 3.44786 | 0.9972 | 2.6684 | 0.02621 | 0.02314 | 0.39671 | 0.17746 | 0.2931 | 0.06521 | |
31–40 | 1.424719 | 0.96212 | 3.811554 | 0.00066 | 0.29329 | 0.291962 | 0.16173 | 0.3374 | 0.01395 | |
41–50 | 2.297162 | 0.14932 | 4.743642 | 0.106475 | 0.19346 | 0.406413 | 0.15877 | 0.3388 | 0.02130 | |
51 years | 5.284593 | 1.13327 | 8.70245 | 4.104708 | 0.19172 | 3.887431 | 6.17358 | 1.3515 | 6.0439 | |
Education | Primary | 0.14375 | 0.70611 | 3.569419 | 0.077901 | 0.24214 | 0.39794 | 0.04483 | 0.2369 | 0.1473 |
Jhs/jss | 0.92742 | 0.8694 | 3.55371 | 0.29713 | 0..69487 | 0.92172 | 0.06341 | 0.1827 | 0.2694 | |
Sss | 0.05114 | 2.11804 | 2.015754 | 0.154558 | 0.09884 | 0.407959 | 0.04829 | 0.2004 | 0.1038 | |
Tertiary | 4.29033 | 1.11021 | 7.47202 | 3.047702 | 1.00218 | 5.437583 | 5.143383 | 1.0906 | 4.3774 | |
None | 1.431655 | 0.70611 | 3.569419 | 0.175682 | 0.08641 | 0.437771 | 0.005876 | 0.1514 | 0.16322 | |
Role on farm | Owner | 0.359082 | 1.69931 | 2.417471 | 0.25953 | 0.51189 | 0.00717 | 0.22451 | 0.37602 | 0.07300 |
Manager | 0.92471 | 1.0942 | 1.00421 | 0.18952 | 0.22616 | 0.3651 | 0.31859 | 0.02461 | 0.00417 | |
Worker | 1.53713 | 3.7771 | 0.702842 | 0.05397 | 0.32858 | 0.220654 | 0.15503 | 0.31991 | 0.98450 | |
Years in farming | <1 yr | 0.06917 | 1.7793 | 2.36214 | 0.3891 | 0.49706 | 0.85312 | 0.03142 | 0.08321 | 0.33143 |
1–5 | 0.9392 | 2.2183 | 3.4491 | 0.0893 | 0.27933 | 0.6931 | 0.05531 | 0.08427 | 0.34407 | |
6–10 | 1.115312 | 1.63954 | 3.870164 | 0.03444 | 0.3033 | 0.372183 | 0.065125 | 0.13765 | 0.2679 | |
11–15 | 0.58398 | 3.40063 | 2.232674 | 0.187978 | 0.15734 | 0.533298 | 0.124113 | 0.1121 | 0.3384 | |
16 yr and above | 0.08111 | 2.99085 | 2.828629 | 0.165837 | 0.1909 | 0.522569 | 0.129902 | 0.3812 | 0.6924 | |
Number of cages | Less than 10 | 0.09487 | 1.35438 | 2.164636 | 0.00738 | 0.2844 | 0.269632 | 0.077867 | 0.32671 | 0.18923 |
11–20 | 0.07241 | 0.9774 | 1.9558 | 0.0497 | 0.0851 | 0.17932 | 0.59421 | 0.4491 | 0.6342 | |
21–30 | 0.32829 | 2.6761 | 2.01951 | 0.007317 | 0.28052 | 0.295157 | 0.15389 | 0.1828 | 0.15513 | |
31–40 | 0.97924 | 1.99972 | 3.958204 | 0.12375 | 0.48897 | 0.241472 | 0.02793 | 0.08845 | 0.24182 | |
Above 41 | 1.06652 | 1.20092 | 3.33395 | 0.47384 | 0.75183 | 0.19586 | 0.01639 | 0.1382 | 0.97782 |
Variable | Correlation Coefficient | p-Value |
---|---|---|
Knowledge vs. Attitude | 0.9394 | 0.0005 |
Attitude vs. Practice | 0.8743 | 0.0045 |
Knowledge vs. Practice | 0.9157 | 0.0014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dandi, S.O.; Abarike, E.D.; Abobi, S.M.; Doke, D.A.; Lyche, J.L.; Addo, S.; Edziyie, R.E.; Obiakara-Amaechi, A.I.; Øystein, E.; Mutoloki, S.; et al. Knowledge, Attitudes, and Practices of Antibiotic Use among Small-, Medium-, and Large-Scale Fish Farmers of the Stratum II of the Volta Lake of Ghana. Antibiotics 2024, 13, 582. https://doi.org/10.3390/antibiotics13070582
Dandi SO, Abarike ED, Abobi SM, Doke DA, Lyche JL, Addo S, Edziyie RE, Obiakara-Amaechi AI, Øystein E, Mutoloki S, et al. Knowledge, Attitudes, and Practices of Antibiotic Use among Small-, Medium-, and Large-Scale Fish Farmers of the Stratum II of the Volta Lake of Ghana. Antibiotics. 2024; 13(7):582. https://doi.org/10.3390/antibiotics13070582
Chicago/Turabian StyleDandi, Samuel O., Emmanuel D. Abarike, Seth M. Abobi, Dzigbodi A. Doke, Jan L. Lyche, Samuel Addo, Regina E. Edziyie, Amii I. Obiakara-Amaechi, Evensen Øystein, Stephen Mutoloki, and et al. 2024. "Knowledge, Attitudes, and Practices of Antibiotic Use among Small-, Medium-, and Large-Scale Fish Farmers of the Stratum II of the Volta Lake of Ghana" Antibiotics 13, no. 7: 582. https://doi.org/10.3390/antibiotics13070582
APA StyleDandi, S. O., Abarike, E. D., Abobi, S. M., Doke, D. A., Lyche, J. L., Addo, S., Edziyie, R. E., Obiakara-Amaechi, A. I., Øystein, E., Mutoloki, S., & Cudjoe, K. S. (2024). Knowledge, Attitudes, and Practices of Antibiotic Use among Small-, Medium-, and Large-Scale Fish Farmers of the Stratum II of the Volta Lake of Ghana. Antibiotics, 13(7), 582. https://doi.org/10.3390/antibiotics13070582