Tackling Carbapenem Resistance and the Imperative for One Health Strategies—Insights from the Portuguese Perspective
Abstract
:1. Introduction
2. The Carbapenems: Mechanisms of Action and Resistance
3. Carbapanemases
Ambler Class | Bush’s Classification | Gene Location | Carbapenemase | First Identification |
---|---|---|---|---|
A | 2f | Chromosome | SME (Serratia marcescens enzyme) | Serratia marcescens (UK, 1982) [36] |
NMC-A (Non-metalloenzyme carbapenemase-A) | E. clocae (France, 1990) [37] | |||
IMI (Imipenem-hydrolyzing β-lactamase) | Enterobacter clocae (USA, 1984) [38] | |||
SFC (Serratia fonticola carbapenemase) | Serratia fonticola (Portugal, 2004) [39] | |||
2e | Plasmid | KPC (Klebsiella pneumoniae carbapenemase) | Klebsiella pneumonia (USA, 1996) [40] | |
GES (Guiana extended spectrum) | P. aeruginosa (South Africa, 2000) [41] | |||
B | 3 | Plasmid | IMP (Imipenemase) | Serratia marcescens (Japan, 1991) [42] |
VIM (Verona integron-encoded metallo-β-lactamase) | P. aeruginosa (Italy, 1997) [43] | |||
SPM (Sao Paulo imipenemase) | P. aeruginosa (Brazil, 1997) [44] | |||
GIM (German imipenemase) | P. aeruginosa (Germany, 2002) [45] | |||
NDM (New Delhi metallo-β-lactamase) | Klebsiella pneumoniae (India, 2008) [46] | |||
D | 2df | Plasmid | OXA (Oxacillin-hydrolyzing carbapenemases) | OXA-48—Klebsiella pneumonia (Turkey, 2001) [47] |
3.1. Class A Carbapenemases
3.2. Class B Carbapenemases
3.3. Class D Carbapenemases
4. Epidemiology of Carbapenemases in Portugal
Class A | Bacteria | Source and Year | Reference |
---|---|---|---|
KPC type | E. coli | River, 2021 | [86] |
K. pneumoniae | Hospital, 2021–2022 | [87] | |
River, 2021 | [86] | ||
KPC-2 | E. coli | River, 2010 | [84] |
Hospital, 2014 | [69] | ||
K. pneumoniae | Hospital, 2018–2019 | [13] | |
Seagulls, 2019 | [85] | ||
C. freundii; K. oxycota | Seagulls, 2019 | [85] | |
KPC-3 | E. aerogenes; E. cloacae | Hospital, 2006–2013 | [88] |
K. pneumoniae | Hospital, 2009; 2006–2013; 2013; 2013–2014; 2016; 2013–2018; 2017–2018; 2018; 2020; 2019–2021 | [79,83,88,89,90,91,92,93,94,95] | |
Community laboratories, 2014–2015 | [96] | ||
Seagulls, 2019 | [85] | ||
River, 2017 | [74] | ||
Dogs, 2020 | [97] | ||
Klebsiella spp. | Hospital, 2017–2018 | [98] | |
P. aeruginosa | Hospital, 2017–2018 | [99] | |
E. coli | Hospital, 2006–2013; 2017–2018 | [88,93] | |
K. varicola | Hospital, 2018 | [94] | |
A. baumannii | Hospital, 2018 | [95] | |
K. oxycota | WWTP, 2016–2019 | [100] | |
Raoultella; Enterobacter; Citrobacter | Urban pond, 2019 | [101] | |
K. cryocrescens | Hospital, 2019 | [102] | |
KPC-21 | E. coli | Hospital, 2014 | [69] |
KPC-70 | K. pneumoniae | Hospital, 2019 | [92] |
GES type | P. aeruginosa | Hospital, 2017–2020 | [103] |
GES-5 | K. pneumoniae | Hospital, 2009; 2012–2013; 2013; 2013–2018; 2019–2021 | [69,88,91,92,104] |
Bivalve, 2022 | [95] | ||
Citrobacter | River, 2017 | [74] | |
C. freundii | Seagulls, 2019 | [85] | |
Raoultella; Enterobacter; Klebsiella spp. | Urban pond, 2019 | [101] | |
GES-6 | P. aeruginosa | Hospital, 2012; 2015 | [105,106] |
E. cloacae | Seagulls, 2019 | [85] | |
GES-13 | P. aeruginosa | Hospital, 2017–2018 | [99] |
Class B MBLs | Bacteria | Source and Year | Reference |
NDM-1 | Providencia stuatii | Hospital, 2015 | [107] |
Enterobacter | River, 2017 | [74] | |
K. pneumoniae | Hospital, 2018–2019; 2019–2021; 2020 | [79,92,108] | |
M. morganii; P. mirabilis | Hospital, 2019 | [109] | |
K. cryocrescens | Hospital, 2019 | [102] | |
E. coli | Hospital, 2020 | [79] | |
NDM-5 | E. coli | Hospital, 2019 | [110] |
IMP-5 | A. baumanii | Hospital, 1998 | [68] |
P. aeruginosa | Hospital, 2001–2003 | [72] | |
A. bereziniae | Hospital, 2008–2012 | [111] | |
IMP-8 | P. mendocina | Hospital, 2005 | [112] |
K. pneumoniae | Hospital, 2009 | [104] | |
E. coli | River, 2015 | [71] | |
IMP-22 | K. pneumoniae | Hospital, 2011–2012 | [113] |
VIM-1 | C. freundii | Hospital, 2001–2002 | [114] |
E. coli | River, 2015 | [71] | |
Citrobacter | Urban pond, 2019 | [101] | |
VIM-2 | P. aeruginosa | Hospital, 1995, 2003–2004 | [70,115] |
C. freundii | Hospital, 2001–2002 | [114] | |
K. oxycota | Hospital, 2004 | [116] | |
Morganella morgannii | Hospital, 2004 | [117] | |
K. pneumoniae | Hospital, 2006–2013 | [88] | |
Klebsiella spp. | Hospital, 2017–2018 | [98] | |
VIM-34 | K. pneumoniae | Hospital, 2011–2012 | [118] |
E. coli | River, 2015 | [71] | |
SFH-1 | Serratia fonticola | Untreated drinking water, 2003 | [76] |
Class D | Bacteria | Source and Year | Reference |
OXA-48 | E. coli | Hospital, 2013, 2017–2018 | [80,93] |
K. pneumoniae | Hospital, 2017–2018; 2018; 2018–2019; | [13,94,98] | |
Seagulls, 2019 | [85] | ||
OXA-24/40 | A. haemolyticus; A. baumannii | Hospital, 2003–2004 | [119] |
OXA-23 | A. baumannii | Hospital, 2006–2008 | [120] |
Cat, 2014 | [82] | ||
OXA-181 | K. pneumoniae | Hospital, 2016–2018; 2019–2021 | [91,92] |
Cat, 2021 | [121] | ||
E. coli | Seagulls, 2019 | [85] | |
Dog, 2020 | [81] | ||
OXA-58 | A. baumannii | Hospital, 2005 | [117] |
5. One Health in Portugal
5.1. Carbapenem Resistance in Portugal
5.2. Human Antibiotic Consumption in Portugal
5.3. Veterinary Antibiotic Consumption in Portugal
5.4. The Environment and Detection of Antibiotics in Portugal
6. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, Present and Future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2017, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Nicolau, D.P. Carbapenems: A Potent Class of Antibiotics. Expert Opin. Pharmacother. 2008, 9, 23–37. [Google Scholar] [CrossRef]
- Hrenovic, J.; Ganjto, M.; Goic-Barisic, I. Carbapenem-Resistant Bacteria in a Secondary Wastewater Treatment Plant. Water SA 2017, 43, 186–191. [Google Scholar] [CrossRef]
- Programa de Prevenção e Controlo das Infeções e Resistência aos Antimicrobianos. Prevenção Da Transmissão de Enterobactérias Resistentes Aos Carbapenemos Em Hospitais de Cuidados Agudos; PPCIRA: Lisbon, Portugal, 2017. [Google Scholar]
- Aurilio, C.; Sansone, P.; Barbarisi, M.; Pota, V.; Giaccari, L.G.; Coppolino, F.; Barbarisi, A.; Passavanti, M.B.; Pace, M.C. Mechanisms of Action of Carbapenem Resistance. Antibiotics 2022, 11, 421. [Google Scholar] [CrossRef] [PubMed]
- Katzung, B.G. Chapter 43. Beta-Lactam Antibiotics & Other Cell Wall Synthesis Inhibitors. In Basic & Clinical Pharmacology, 14th ed.; Weitz, M., Boyle, P., Eds.; McGraw-Hill Education: New York, NY, USA, 2017; pp. 795–814. ISBN 978-1-260-28817-9. [Google Scholar]
- Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G.J. Environmental Factors Influencing the Development and Spread of Antibiotic Resistance. FEMS Microbiol. Rev. 2018, 42, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Waglechner, N.; Wright, G.D. Antibiotic Resistance: It’s Bad, but Why Isn’t It Worse? BMC Biol. 2017, 15, 84. [Google Scholar] [CrossRef] [PubMed]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic Resistance—The Need for Global Solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [PubMed]
- Bonomo, R.A.; Burd, E.M.; Conly, J.; Limbago, B.M.; Poirel, L.; Segre, J.A.; Westblade, L.F. Carbapenemase-Producing Organisms: A Global Scourge. Clin. Infect. Dis. 2018, 66, 1290–1297. [Google Scholar] [CrossRef]
- Tomczyk, S.; Zanichelli, V.; Grayson, M.L.; Twyman, A.; Abbas, M.; Pires, D.; Allegranzi, B.; Harbarth, S. Control of Carbapenem-Resistant Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa in Healthcare Facilities: A Systematic Review and Reanalysis of Quasi-Experimental Studies. Clin. Infect. Dis. 2019, 68, 873–884. [Google Scholar] [CrossRef]
- Lopes, E.; Saavedra, M.J.; Costa, E.; De Lencastre, H.; Poirel, L.; Aires-de-Sousa, M. Epidemiology of Carbapenemase-Producing Klebsiella pneumoniae in Northern Portugal: Predominance of KPC-2 and OXA-48. J. Glob. Antimicrob. Resist. 2020, 22, 349–353. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Antimicrobial Consumption in the EU/EEA (ESAC-Net)—Annual Epidemiological Report 2021; ECDC: Stockholm, SE, USA, 2022. [Google Scholar]
- European Centre for Disease Prevention and Control. Antibiotic Resistance: A Growing Threat to Human Health. Available online: https://antibiotic.ecdc.europa.eu/sites/default/files/documents/EAAD-infographic-2022.pdf (accessed on 15 January 2024).
- Collignon, P.; McEwen, S. One Health—Its Importance in Helping to Better Control Antimicrobial Resistance. Trop. Med. Infect. Dis. 2019, 4, 22. [Google Scholar] [CrossRef]
- One Health Commission. What Is One Health? Available online: https://www.onehealthcommission.org/en/why_one_health/what_is_one_health/ (accessed on 15 January 2024).
- El-Gamal, M.I.; Brahim, I.; Hisham, N.; Aladdin, R.; Mohammed, H.; Bahaaeldin, A. Recent Updates of Carbapenem Antibiotics. Eur. J. Med. Chem. 2017, 131, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.M.; Silva, B.N.M.D.; Barbosa, G.; Barreiro, E.J. β-Lactam Antibiotics: An Overview from a Medicinal Chemistry Perspective. Eur. J. Med. Chem. 2020, 208, 112829. [Google Scholar] [CrossRef]
- Nordmann, P.; Dortet, L.; Poirel, L. Carbapenem Resistance in Enterobacteriaceae: Here Is the Storm! Trends Mol. Med. 2012, 18, 263–272. [Google Scholar] [CrossRef]
- Jian, Z.; Zeng, L.; Xu, T.; Sun, S.; Yan, S.; Yang, L.; Huang, Y.; Jia, J.; Dou, T. Antibiotic Resistance Genes in Bacteria: Occurrence, Spread, and Control. J. Basic Microbiol. 2021, 61, 1049–1070. [Google Scholar] [CrossRef]
- Brink, A.J. Epidemiology of Carbapenem-Resistant Gram-Negative Infections Globally. Curr. Opin. Infect. Dis. 2019, 32, 609–616. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Categorisation of Antibiotics in the European Union; EMA: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Caliskan-Aydogan, O.; Alocilja, E.C. A Review of Carbapenem Resistance in Enterobacterales and Its Detection Techniques. Microorganisms 2023, 11, 1491. [Google Scholar] [CrossRef] [PubMed]
- Ambler, R.P. The Structure of β-Lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1980, 289, 321–331. [Google Scholar] [CrossRef]
- Naas, T.; Oueslati, S.; Bonnin, R.A.; Dabos, M.L.; Zavala, A.; Dortet, L.; Retailleau, P.; Iorga, B.I. Beta-Lactamase Database (BLDB)—Structure and Function. J. Enzyme Inhib. Med. Chem. 2017, 32, 917–919. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A.; Medeiros, A.A. A Functional Classification Scheme for β-Lactamases and Its Correlation with Molecular Structure and Its Correlation with Molecular Structure. Antimicrob. Agents Chemother. 1995, 39, 1211–1233. [Google Scholar] [CrossRef] [PubMed]
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Jacoby, G.A. Updated Functional Classification of β-Lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef]
- Abraham, E.P.; Chain, E. An Enzyme from Bacteria Able to Destroy Penicillin. Nature 1940, 146, 837. [Google Scholar] [CrossRef]
- Bush, K.; Bradford, P.A. Epidemiology of β-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020, 33, 2. [Google Scholar] [CrossRef]
- Ma, J.; Song, X.; Li, M.; Yu, Z.; Cheng, W.; Yu, Z.; Zhang, W.; Zhang, Y.; Shen, A.; Sun, H.; et al. Global Spread of Carbapenem-Resistant Enterobacteriaceae: Epidemiological Features, Resistance Mechanisms, Detection and Therapy. Microbiol. Res. 2023, 266, 127249. [Google Scholar] [CrossRef] [PubMed]
- Eichenberger, E.M.; Thaden, J.T. Epidemiology and Mechanisms of Resistance of Extensively Drug Resistant Gram-Negative Bacteria. Antibiotics 2019, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Vrancianu, C.O.; Popa, L.I.; Bleotu, C.; Chifiriuc, M.C. Targeting Plasmids to Limit Acquisition and Transmission of Antimicrobial Resistance. Front. Microbiol. 2020, 11, 761. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Bethel, C.R.; Thomas, P.W.; Shurina, B.A.; Alao, J.-P.; Thomas, C.A.; Yang, K.; Marshall, S.H.; Zhang, H.; Sturgill, A.M.; et al. Carbapenem Use Is Driving the Evolution of Imipenemase 1 Variants. Antimicrob. Agents Chemother. 2021, 65, 4. [Google Scholar] [CrossRef]
- Naas, T.; Vandel, L.; Sougakoff, W.; Livermore, D.M.; Nordmann, P. Cloning and Sequence Analysis of the Gene for a Carbapenem-Hydrolyzing Class A β-Lactamase, Sme-1, from Serratia marcescens S6. Antimicrob. Agents Chemother. 1994, 38, 1262–1270. [Google Scholar] [CrossRef]
- Nordmann, P.; Mariotte, S.; Naas, T.; Labia, R.; Nicolas, M.H. Biochemical Properties of a Carbapenem-Hydrolyzing β-Lactamase from Enterobacter cloacae and Cloning of the Gene into Escherichia coli. Antimicrob. Agents Chemother. 1993, 37, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, B.A.; Bush, K.; Keeney, D.; Yang, Y.; Hare, R.; O’Gara, C.; Medeiros, A.A. Characterization of IMI-1 Beta-Lactamase, a Class A Carbapenem-Hydrolyzing Enzyme from Enterobacter cloacae. Antimicrob. Agents Chemother. 1996, 40, 2080–2086. [Google Scholar] [CrossRef] [PubMed]
- Henriques, I.; Moura, A.; Alves, A.; Saavedra, M.J.; Correia, A. Molecular Characterization of a Carbapenem-Hydrolyzing Class A β-Lactamase, SFC-1, from Serratia Fonticola UTAD54. Antimicrob. Agents Chemother. 2004, 48, 2321–2324. [Google Scholar] [CrossRef] [PubMed]
- Yigit, H.; Queenan, A.M.; Anderson, G.J.; Domenech-Sanchez, A.; Biddle, J.W.; Steward, C.D.; Alberti, S.; Bush, K.; Tenover, F.C. Novel Carbapenem-Hydrolyzing β-Lactamase, KPC-1, from a Carbapenem-Resistant Strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2001, 45, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Weldhagen, G.F.; Naas, T.; De Champs, C.; Dove, M.G.; Nordmann, P. GES-2, a Class A Beta-Lactamase from Pseudomonas aeruginosa with Increased Hydrolysis of Imipenem. Antimicrob. Agents Chemother. 2001, 45, 2598–2603. [Google Scholar] [CrossRef] [PubMed]
- Osano, E.; Arakawa, Y.; Wacharotayankun, R.; Ohta, M.; Horii, T.; Ito, H.; Yoshimura, F.; Kato, N. Molecular Characterization of an Enterobacterial Metallo-β-Lactamase Found in a Clinical Isolate of Serratia marcescens That Shows Imipenem Resistance. Antimicrob. Agents Chemother. 1994, 38, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Lauretti, L.; Riccio, M.L.; Mazzariol, A.; Cornaglia, G.; Amicosante, G.; Fontana, R.; Rossolini, G.M. Cloning and Characterization of BlaVIM, a New Integron-Borne Metallo-ß-Lactamase Gene from a Pseudomonas Aeruginosa Clinical Isolate. Antimicrob. Agents Chemother. 1999, 43, 1584–1590. [Google Scholar] [CrossRef]
- Toleman, M.A. Molecular Characterization of SPM-1, a Novel Metallo-β-Lactamase Isolated in Latin America: Report from the SENTRY Antimicrobial Surveillance Programme. J. Antimicrob. Chemother. 2002, 50, 673–679. [Google Scholar] [CrossRef]
- Castanheira, M.; Toleman, M.A.; Jones, R.N.; Schmidt, F.J.; Walsh, T.R. Molecular Characterization of a β-Lactamase Gene, BlaGIM-1, Encoding a New Subclass of Metallo-β-Lactamase. Antimicrob. Agents Chemother. 2004, 48, 4654–4661. [Google Scholar] [CrossRef]
- Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a New Metallo-β-Lactamase Gene, BlaNDM-1, and a Novel Erythromycin Esterase Gene Carried on a Unique Genetic Structure in Klebsiella pneumoniae Sequence Type 14 from India. Antimicrob. Agents Chemother. 2009, 53, 5046–5054. [Google Scholar] [CrossRef]
- Poirel, L.; Héritier, C.; Tolün, V.; Nordmann, P. Emergence of Oxacillinase-Mediated Resistance to Imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2004, 48, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Queenan, A.M.; Bush, K. Carbapenemases: The Versatile β-Lactamases. Clin. Microbiol. Rev. 2007, 20, 440–458. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Castillo, F.Y.; Guerrero-Barrera, A.L.; Avelar-González, F.J. An Overview of Carbapenem-Resistant Organisms from Food-Producing Animals, Seafood, Aquaculture, Companion Animals, and Wildlife. Front. Vet. Sci. 2023, 10, 1158588. [Google Scholar] [CrossRef] [PubMed]
- Ambler, R.P.; Coulson, A.F.W.; Frère, J.-M.; Ghuysen, J.-M.; Joris, B.; Forsman, M.; Levesque, R.C.; Tiraby, G.; Waley, S.G. A Standard Numbering Scheme for the Class A β-Lactamases. Biochem. J. 1991, 276, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Codjoe, F.; Donkor, E. Carbapenem Resistance: A Review. Med. Sci. 2017, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef] [PubMed]
- Walther-Rasmussen, J.; Høiby, N. Class A Carbapenemases. J. Antimicrob. Chemother. 2007, 60, 470–482. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Sasaki, M.; Imai, W.; Murakami, H.; Morita, T.; Aoki, K.; Ishii, Y.; Tateda, K. Evaluation of Inhibitor-Combination mCIM for Detecting MBL-Producing Enterobacterales Using Three MBL Inhibitors. J. Med. Microbiol. 2019, 68, 1604–1606. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.R.; Toleman, M.A.; Poirel, L.; Nordmann, P. Metallo-β-Lactamases: The Quiet before the Storm? Clin. Microbiol. Rev. 2005, 18, 306–325. [Google Scholar] [CrossRef]
- De Angelis, G.; Del Giacomo, P.; Posteraro, B.; Sanguinetti, M.; Tumbarello, M. Molecular Mechanisms, Epidemiology, and Clinical Importance of β-Lactam Resistance in Enterobacteriaceae. Int. J. Mol. Sci. 2020, 21, 5090. [Google Scholar] [CrossRef]
- Girija, S.A.; Jayaseelan, V.P.; Arumugam, P. Prevalence of VIM- and GIM-Producing Acinetobacter baumannii from Patients with Severe Urinary Tract Infection. Acta Microbiol. Immunol. Hung. 2018, 65, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Massik, A.; Hibaoui, L.; Moussa, B.; Yahyaoui, G.; Oumokhtar, B.; Mahmoud, M. First Report of SPM Metallo-β-Lactamases Producing Acinetobacter baumannii Isolates in Morocco. Iran. J. Microbiol. 2022, 14, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Halat, D.H.; Moubareck, C.A. The Intriguing Carbapenemases of Pseudomonas aeruginosa: Current Status. Yale J. Biol. Med. 2022, 95, 507–515. [Google Scholar]
- Pongchaikul, P.; Mongkolsuk, P. Comprehensive Analysis of Imipenemase (IMP)-Type Metallo-β-Lactamase: A Global Distribution Threatening Asia. Antibiotics 2022, 11, 236. [Google Scholar] [CrossRef] [PubMed]
- Jean, S.-S.; Harnod, D.; Hsueh, P.-R. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front. Cell. Infect. Microbiol. 2022, 12, 823684. [Google Scholar] [CrossRef] [PubMed]
- Palzkill, T. Metallo-β-lactamase Structure and Function. Ann. N. Y. Acad. Sci. 2013, 1277, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Feng, Y.; Tang, G.; Qiao, F.; McNally, A.; Zong, Z. NDM Metallo-β-Lactamases and Their Bacterial Producers in Health Care Settings. Clin. Microbiol. Rev. 2019, 32, 2. [Google Scholar] [CrossRef]
- Hansen, G.T. Continuous Evolution: Perspective on the Epidemiology of Carbapenemase Resistance Among Enterobacterales and Other Gram-Negative Bacteria. Infect. Dis. Ther. 2021, 10, 75–92. [Google Scholar] [CrossRef]
- Walther-Rasmussen, J.; Høiby, N. OXA-Type Carbapenemases. J. Antimicrob. Chemother. 2006, 57, 373–383. [Google Scholar] [CrossRef]
- Suay-García, B.; Pérez-Gracia, M.T. Present and Future of Carbapenem-Resistant Enterobacteriaceae (CRE) Infections. Antibiotics 2019, 8, 122. [Google Scholar] [CrossRef]
- Pitout, J.D.D.; Peirano, G.; Kock, M.M.; Strydom, K.-A.; Matsumura, Y. The Global Ascendency of OXA-48-Type Carbapenemases. Clin. Microbiol. Rev. 2019, 33, 1. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.J.; Correia, M.; Vital, C.; Ribeiro, G.; Sousa, J.C.; Leitão, R.; Peixe, L.; Duarte, A. Molecular Characterization of BlaIMP-5, a New Integron-Borne Metallo-β-Lactamase Gene from an Acinetobacter baumannii Nosocomial Isolate in Portugal. FEMS Microbiol. Lett. 2002, 215, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Manageiro, V.; Romão, R.; Moura, I.B.; Sampaio, D.A.; Vieira, L.; Ferreira, E.; the Network EuSCAPE-Portugal; Caniça, M. Molecular Epidemiology and Risk Factors of Carbapenemase-Producing Enterobacteriaceae Isolates in Portuguese Hospitals: Results From European Survey on Carbapenemase-Producing Enterobacteriaceae (EuSCAPE). Front. Microbiol. 2018, 9, 2834. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, O.; Alves, A.F.; Leitão, R. Metallo-β-Lactamase VIM-2 in Pseudomonas aeruginosa Isolates from a Cystic Fibrosis Patient. Int. J. Antimicrob. Agents 2008, 31, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Kieffer, N.; Poirel, L.; Bessa, L.J.; Barbosa-Vasconcelos, A.; Da Costa, P.M.; Nordmann, P. VIM-1, VIM-34, and IMP-8 Carbapenemase-Producing Escherichia coli Strains Recovered from a Portuguese River. Antimicrob. Agents Chemother. 2016, 60, 2585–2586. [Google Scholar] [CrossRef]
- Brízio, A.; Conceição, T.; Pimentel, M.; Da Silva, G.; Duarte, A. High-Level Expression of IMP-5 Carbapenemase Owing to Point Mutation in the -35 Promoter Region of Class 1 Integron among Pseudomonas aeruginosa Clinical Isolates. Int. J. Antimicrob. Agents 2006, 27, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Botelho, J.; Grosso, F.; Quinteira, S.; Brilhante, M.; Ramos, H.; Peixe, L. Two Decades of BlaVIM-2-Producing Pseudomonas aeruginosa Dissemination: An Interplay between Mobile Genetic Elements and Successful Clones. J. Antimicrob. Chemother. 2018, 73, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.; Tacão, M.; Pureza, L.; Gonçalves, J.; Silva, A.; Cruz-Schneider, M.P.; Henriques, I. Occurrence of Carbapenemase-Producing Enterobacteriaceae in a Portuguese River: BlaNDM, BlaKPC and BlaGES among the Detected Genes. Environ. Pollut. 2020, 260, 113913. [Google Scholar] [CrossRef]
- Gomi, R.; Matsumura, Y.; Tanaka, M.; Ihara, M.; Sugie, Y.; Matsuda, T.; Yamamoto, M. Emergence of Rare Carbapenemases (FRI, GES-5, IMI, SFC and SFH-1) in Enterobacterales Isolated from Surface Waters in Japan. J. Antimicrob. Chemother. 2022, 77, 1237–1246. [Google Scholar] [CrossRef]
- Saavedra, M.J.; Peixe, L.; Sousa, J.C.; Henriques, I.; Alves, A.; Correia, A. Sfh-I, a Subclass B2 Metallo-β-Lactamase from a Serratia fonticola Environmental Isolate. Antimicrob. Agents Chemother. 2003, 47, 2330–2333. [Google Scholar] [CrossRef]
- Gorgulho, A.; Grilo, A.M.; De Figueiredo, M.; Selada, J. Carbapenemase-Producing Enterobacteriaceae in a Portuguese Hospital—A Five-Year Retrospective Study. Germs 2020, 10, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Kopotsa, K.; Osei Sekyere, J.; Mbelle, N.M. Plasmid Evolution in Carbapenemase-producing Enterobacteriaceae: A Review. Ann. N. Y. Acad. Sci. 2019, 1457, 61–91. [Google Scholar] [CrossRef] [PubMed]
- Mendes, G.; Ramalho, J.F.; Duarte, A.; Pedrosa, A.; Silva, A.C.; Méndez, L.; Caneiras, C. First Outbreak of NDM-1-Producing Klebsiella pneumoniae ST11 in a Portuguese Hospital Centre during the COVID-19 Pandemic. Microorganisms 2022, 10, 251. [Google Scholar] [CrossRef] [PubMed]
- Manageiro, V.; Ferreira, E.; Pinto, M.; Caniça, M. First Description of OXA-48 Carbapenemase Harbored by Escherichia coli and Enterobacter cloacae from a Single Patient in Portugal. Antimicrob. Agents Chemother. 2014, 58, 7613–7614. [Google Scholar] [CrossRef] [PubMed]
- Brilhante, M.; Menezes, J.; Belas, A.; Feudi, C.; Schwarz, S.; Pomba, C.; Perreten, V. OXA-181-Producing Extraintestinal Pathogenic Escherichia coli Sequence Type 410 Isolated from a Dog in Portugal. Antimicrob. Agents Chemother. 2020, 64, 4. [Google Scholar] [CrossRef]
- Pomba, C.; Endimiani, A.; Rossano, A.; Saial, D.; Couto, N.; Perreten, V. First Report of OXA-23-Mediated Carbapenem Resistance in Sequence Type 2 Multidrug-Resistant Acinetobacter baumannii Associated with Urinary Tract Infection in a Cat. Antimicrob. Agents Chemother. 2014, 58, 1267–1268. [Google Scholar] [CrossRef] [PubMed]
- Machado, P.; Silva, A.; Lito, L.; Melo-Cristino, J.; Duarte, A. Emergence of Klebsiella pneumoniae ST11-Producing KPC-3 Carbapenemase at a Lisbon Hospital. Clin. Microbiol. Infect. 2010, 16, S28. [Google Scholar]
- Poirel, L.; Barbosa-Vasconcelos, A.; Simões, R.R.; Da Costa, P.M.; Liu, W.; Nordmann, P. Environmental KPC-Producing Escherichia coli Isolates in Portugal. Antimicrob. Agents Chemother. 2012, 56, 1662–1663. [Google Scholar] [CrossRef] [PubMed]
- Aires-de-Sousa, M.; Fournier, C.; Lopes, E.; De Lencastre, H.; Nordmann, P.; Poirel, L. High Colonization Rate and Heterogeneity of ESBL- and Carbapenemase-Producing Enterobacteriaceae Isolated from Gull Feces in Lisbon, Portugal. Microorganisms 2020, 8, 1487. [Google Scholar] [CrossRef]
- Dantas Palmeira, J.; Do Arte, I.; Ragab Mersal, M.M.; Carneiro Da Mota, C.; Ferreira, H.M.N. KPC-Producing Enterobacterales from Douro River, Portugal—Persistent Environmental Contamination by Putative Healthcare Settings. Antibiotics 2022, 12, 62. [Google Scholar] [CrossRef]
- Sabença, C.; Costa, E.; Sousa, S.; Barros, L.; Oliveira, A.; Ramos, S.; Igrejas, G.; Torres, C.; Poeta, P. Evaluation of the Ability to Form Biofilms in KPC-Producing and ESBL-Producing Klebsiella pneumoniae Isolated from Clinical Samples. Antibiotics 2023, 12, 1143. [Google Scholar] [CrossRef]
- Manageiro, V.; Ferreira, E.; Almeida, J.; Barbosa, S.; Simões, C.; Antibiotic Resistance Surveillance Program in Portugal (ARSIP); Bonomo, R.A.; Caniça, M. Predominance of KPC-3 in a Survey for Carbapenemase-Producing Enterobacteriaceae in Portugal. Antimicrob. Agents Chemother. 2015, 59, 3588–3592. [Google Scholar] [CrossRef] [PubMed]
- Vubil, D.; Figueiredo, R.; Reis, T.; Canha, C.; Boaventura, L.; Da Silva, G.J. Outbreak of KPC-3-Producing ST15 and ST348 Klebsiella pneumoniae in a Portuguese Hospital. Epidemiol. Infect. 2017, 145, 595–599. [Google Scholar] [CrossRef]
- Peres, D.; Figueiredo, P.; Andrade, P.; Rocha-Pereira, N.; Carvalho, C.; Ferraz, R.; Duro, R.; Dias, A.; Gomes, A.; Pereira, C.; et al. Outbreak of KPC-Producing Klebsiella pneumoniae at a Portuguese University Hospital: Epidemiological Characterization and Containment Measures. Porto Biomed. J. 2022, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Aires-de-Sousa, M.; Ortiz De La Rosa, J.M.; Gonçalves, M.L.; Pereira, A.L.; Nordmann, P.; Poirel, L. Epidemiology of Carbapenemase-Producing Klebsiella pneumoniae in a Hospital, Portugal. Emerg. Infect. Dis. 2019, 25, 1632–1638. [Google Scholar] [CrossRef] [PubMed]
- Mendes, G.; Ramalho, J.F.; Bruschy-Fonseca, A.; Lito, L.; Duarte, A.; Melo-Cristino, J.; Caneiras, C. Whole-Genome Sequencing Enables Molecular Characterization of Non-Clonal Group 258 High-Risk Clones (ST13, ST17, ST147 and ST307) among Carbapenem-Resistant Klebsiella pneumoniae from a Tertiary University Hospital Centre in Portugal. Microorganisms 2022, 10, 416. [Google Scholar] [CrossRef]
- Guerra, A.M.; Lira, A.; Lameirão, A.; Selaru, A.; Abreu, G.; Lopes, P.; Mota, M.; Novais, Â.; Peixe, L. Multiplicity of Carbapenemase-Producers Three Years after a KPC-3-Producing K. pneumoniae ST147-K64 Hospital Outbreak. Antibiotics 2020, 9, 806. [Google Scholar] [CrossRef]
- Perdigão, J.; Caneiras, C.; Elias, R.; Modesto, A.; Spadar, A.; Phelan, J.; Campino, S.; Clark, T.G.; Costa, E.; Saavedra, M.J.; et al. Genomic Epidemiology of Carbapenemase Producing Klebsiella pneumoniae Strains at a Northern Portuguese Hospital Enables the Detection of a Misidentified Klebsiella variicola KPC-3 Producing Strain. Microorganisms 2020, 8, 1986. [Google Scholar] [CrossRef]
- Caneiras, C.; Calisto, F.; Jorge Da Silva, G.; Lito, L.; Melo-Cristino, J.; Duarte, A. First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Antibiotics 2018, 7, 96. [Google Scholar] [CrossRef]
- Rodrigues, C.; Bavlovič, J.; Machado, E.; Amorim, J.; Peixe, L.; Novais, Â. KPC-3-Producing Klebsiella pneumoniae in Portugal Linked to Previously Circulating Non-CG258 Lineages and Uncommon Genetic Platforms (Tn4401d-IncFIA and Tn4401d-IncN). Front. Microbiol. 2016, 7, 1000. [Google Scholar] [CrossRef]
- Moreira Da Silva, J.; Menezes, J.; Mendes, G.; Santos Costa, S.; Caneiras, C.; Poirel, L.; Amaral, A.J.; Pomba, C. KPC-3-Producing Klebsiella pneumoniae Sequence Type 392 from a Dog’s Clinical Isolate in Portugal. Microbiol. Spectr. 2022, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Hernández-García, M.; García-Castillo, M.; Bou, G.; Cercenado, E.; Delgado-Valverde, M.; Oliver, A.; Pitart, C.; Rodríguez-Lozano, J.; Tormo, N.; Melo-Cristino, J.; et al. Imipenem-Relebactam Susceptibility in Enterobacterales Isolates Recovered from ICU Patients from Spain and Portugal (SUPERIOR and STEP Studies). Microbiol. Spectr. 2022, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Hernández-García, M.; García-Fernández, S.; García-Castillo, M.; Pássaro, L.; Cantón, R.; STEP study group; Melo-Cristino, J.; Pinto, M.F.; Marcelo, C.; Peres, H.; et al. In Vitro Characterization of Pseudomonas aeruginosa Recovered in Portugal from Low Respiratory Tract Infections in ICU Patients (STEP Study). FEMS Microbiol. Lett. 2021, 368, 5. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, E.; Ribeiro, R.; Silva, C.J.C.; Alves, R.; Baptista, R.; Condinho, S.; Rosa, M.J.; Perdigão, J.; Caneiras, C.; Duarte, A. An Update on Wastewater Multi-Resistant Bacteria: Identification of Clinical Pathogens Such as Escherichia coli O25b:H4-B2-ST131-Producing CTX-M-15 ESBL and KPC-3 Carbapenemase-Producing Klebsiella oxytoca. Microorganisms 2021, 9, 576. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.; Pinto, N.; Henriques, I.; Tacão, M. KPC-3-, GES-5-, and VIM-1-Producing Enterobacterales Isolated from Urban Ponds. Int. J. Environ. Res. Public. Health 2022, 19, 5848. [Google Scholar] [CrossRef] [PubMed]
- Loiodice, M.; Ribeiro, M.; Peixe, L.; Novais, Â. Emergence of NDM-1 and KPC-3 Carbapenemases in Kluyvera cryocrescens: Investigating Genetic Heterogeneity and Acquisition Routes of BlaNDM-1 in Enterobacterales Species in Portugal. J. Glob. Antimicrob. Resist. 2023, 34, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Karlowsky, J.A.; Lob, S.H.; Siddiqui, F.; Akrich, B.; DeRyke, C.A.; Young, K.; Motyl, M.R.; Hawser, S.P.; Sahm, D.F. In Vitro Activity of Ceftolozane/Tazobactam against Multidrug-Resistant Pseudomonas aeruginosa from Patients in Western Europe: SMART 2017-2020. Int. J. Antimicrob. Agents 2023, 61, 106772. [Google Scholar] [CrossRef] [PubMed]
- Papagiannitsis, C.C.; Dolejska, M.; Izdebski, R.; Dobiasova, H.; Studentova, V.; Esteves, F.J.; Derde, L.P.G.; Bonten, M.J.M.; Hrabák, J.; Gniadkowski, M. Characterization of pKP-M1144, a Novel ColE1-Like Plasmid Encoding IMP-8, GES-5, and BEL-1 β-Lactamases, from a Klebsiella pneumoniae Sequence Type 252 Isolate. Antimicrob. Agents Chemother. 2015, 59, 5065–5068. [Google Scholar] [CrossRef]
- Botelho, J.; Grosso, F.; Peixe, L. Unravelling the Genome of a Pseudomonas aeruginosa Isolate Belonging to the High-Risk Clone ST235 Reveals an Integrative Conjugative Element Housing a BlaGES-6 Carbapenemase. J. Antimicrob. Chemother. 2018, 73, 77–83. [Google Scholar] [CrossRef]
- Botelho, J.; Grosso, F.; Sousa, C.; Peixe, L. Characterization of a New Genetic Environment Associated with GES-6 Carbapenemase from a Pseudomonas aeruginosa Isolate Belonging to the High-Risk Clone ST235. J. Antimicrob. Chemother. 2015, 70, 615–617. [Google Scholar] [CrossRef]
- Manageiro, V.; Sampaio, D.A.; Pereira, P.; Rodrigues, P.; Vieira, L.; Palos, C.; Caniça, M. Draft Genome Sequence of the First NDM-1-Producing Providencia stuartii Strain Isolated in Portugal. Genome Announc. 2015, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Novais, Â.; Ferraz, R.V.; Viana, M.; Da Costa, P.M.; Peixe, L. NDM-1 Introduction in Portugal through a ST11 KL105 Klebsiella pneumoniae Widespread in Europe. Antibiotics 2022, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Aires-de-Sousa, M.; Ortiz De La Rosa, J.M.; Goncalves, M.L.; Costa, A.; Nordmann, P.; Poirel, L. Occurrence of NDM-1-Producing Morganella morganii and Proteus mirabilis in a Single Patient in Portugal: Probable in Vivo Transfer by Conjugation. J. Antimicrob. Chemother. 2020, 75, 903–906. [Google Scholar] [CrossRef] [PubMed]
- Tavares, R.D.S.; Tacão, M.; Ramalheira, E.; Ferreira, S.; Henriques, I. Report and Comparative Genomics of an NDM-5-Producing Escherichia coli in a Portuguese Hospital: Complex Class 1 Integrons as Important Players in BlaNDM Spread. Microorganisms 2022, 10, 2243. [Google Scholar] [CrossRef] [PubMed]
- Grosso, F.; Silva, L.; Sousa, C.; Ramos, H.; Quinteira, S.; Peixe, L. Extending the Reservoir of blaIMP-5: The Emerging Pathogen Acinetobacter bereziniae. Future Microbiol. 2015, 10, 1609–1613. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Caetano, T.; Ferreira, S.; Mendo, S. First Description of blaIMP-8 in a Pseudomonas mendocina Isolated at the Hospital Infante D. Pedro, Aveiro, Portugal. Res. Microbiol. 2010, 161, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, D.; Cecílio, P.; Faustino, A.; Iglesias, C.; Branca, F.; Estrada, A.; Ferreira, H. Intra- and Extra-Hospital Dissemination of IMP-22-Producing Klebsiella pneumoniae in Northern Portugal: The Breach of the Hospital Frontier Toward the Community. Front. Microbiol. 2021, 12, 777054. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Ramalheira, E.; Da Silva, G.; Mendo, S. Genetically Unrelated Multidrug- and Carbapenem-Resistant Citrobacter freundii Detected in Outpatients Admitted to a Portuguese Hospital. J. Glob. Antimicrob. Resist. 2017, 8, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, O.; Leitão, R.; Figueiredo, A.; Sousa, J.C.; Duarte, A.; Peixe, L.V. Metallo-β-Lactamase VIM-2 in Clinical Isolates of Pseudomonas aeruginosa from Portugal. Microb. Drug Resist. 2002, 8, 93–97. [Google Scholar] [CrossRef]
- Conceição, T.; Brízio, A.; Duarte, A.; Barros, R. First Isolation of BlaVIM-2 in Klebsiella oxytoca Clinical Isolates from Portugal. Antimicrob. Agents Chemother. 2005, 49, 476. [Google Scholar] [CrossRef]
- Da Silva, G.J.; Duarte, A. Carbapenemases em bactérias de Gram-negativo o novo desafio terapêutico. Rev. Port. Doenças Infeciosas 2011, 7, 3. [Google Scholar]
- Rodrigues, C.; Novais, Â.; Machado, E.; Peixe, L. Detection of VIM-34, a Novel VIM-1 Variant Identified in the Intercontinental ST15 Klebsiella pneumoniae Clone. J. Antimicrob. Chemother. 2014, 69, 274–275. [Google Scholar] [CrossRef] [PubMed]
- Quinteira, S.; Grosso, F.; Ramos, H.; Peixe, L. Molecular Epidemiology of Imipenem-Resistant Acinetobacter haemolyticus and Acinetobacter baumannii Isolates Carrying Plasmid-Mediated OXA-40 from a Portuguese Hospital. Antimicrob. Agents Chemother. 2007, 51, 3465–3466. [Google Scholar] [CrossRef] [PubMed]
- Grosso, F.; Quinteira, S.; Peixe, L. Understanding the Dynamics of Imipenem-Resistant Acinetobacter baumannii Lineages within Portugal. Clin. Microbiol. Infect. 2011, 17, 1275–1279. [Google Scholar] [CrossRef] [PubMed]
- Moreira Da Silva, J.; Menezes, J.; Salas, C.; Marques, C.; Teodoro, S.; Amaral, A.J.; Pomba, C.F. Soft Skin and Tissue Infection Caused by OXA-181-Producing Klebsiella pneumoniae ST273 in Portugal. J. Feline Med. Surg. 2021, 23, 851–858. [Google Scholar] [CrossRef]
- Lima, T.; Domingues, S.; Da Silva, G.J. Manure as a Potential Hotspot for Antibiotic Resistance Dissemination by Horizontal Gene Transfer Events. Vet. Sci. 2020, 7, 110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-J.; Hu, H.-W.; Chen, Q.-L.; Singh, B.K.; Yan, H.; Chen, D.; He, J.-Z. Transfer of Antibiotic Resistance from Manure-Amended Soils to Vegetable Microbiomes. Environ. Int. 2019, 130, 104912. [Google Scholar] [CrossRef] [PubMed]
- Direção-Geral da Saúde/Programa de Prevenção e Controlo das Infeções e Resistência aos Antimicrobianos; Direção Geral de Alimentação e Veterinária; Agência Portuguesa do Ambiente. Plano Nacional de Combate à Resistência Aos Antimicrobianos 2019–2023; PPCIRA/DGS: Lisbon, Portugal, 2019. [Google Scholar]
- World Organization for Animal Health One Health. Available online: https://www.woah.org/en/what-we-do/global-initiatives/one-health/#ui-id-2 (accessed on 5 February 2024).
- Direção-Geral da Saúde; Norma nº 004/2013 de 08/08/2013 atualizada a 27/07/2022 Vigilância Epidemiológica das Resistências aos Antimicrobianos 2022. Available online: https://normas.dgs.min-saude.pt/wp-content/uploads/2013/02/norma_004_2013_resistencias_antibioticos_atualizada_27_07_2022.pdf (accessed on 5 April 2024).
- Jechalke, S.; Heuer, H.; Siemens, J.; Amelung, W.; Smalla, K. Fate and Effects of Veterinary Antibiotics in Soil. Trends Microbiol. 2014, 22, 536–545. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control; World Health Organization. Antimicrobial Resistance Surveillance in Europe 2023–2021 Data; World Health Organization: Geneva, Switzerland; European Centre for Disease Prevention and Control: Solna, Sweden, 2023. [Google Scholar]
- European Centre for Disease Prevention and Control Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report for 2022; ECDC: Stockholm, SE, USA, 2023.
- Manageiro, V.; Paiva, J.A.; Caniça, M. Vigilância da resistência aos antibióticos em Portugal de 2015 a 2022. Bol. Epidemiológico Obs. 2023, 12, 39–45. [Google Scholar]
- European Centre for Disease Prevention and Control; World Health Organization. Antimicrobial Resistance Surveillance in Europe 2022–2020 Data; World Health Organization: Geneva, Switzerland; European Centre for Disease Prevention and Control: Solna, Sweden, 2022. [Google Scholar]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net) Annual Epidemiol. Report 2021; ECDC: Stockholm, SE, USA, 2022. [Google Scholar]
- Programa de Prevenção e Controlo de Infeções e de Resistências aos Antimicrobianos. Infeções e Resistências a Antimicrobianos—Relatório Do Programa Prioritário PPCIRA 2021; PPCIRA: Lisbon, PT, USA, 2022. [Google Scholar]
- European Centre for Disease Prevention and Control. Antimicrobial Consumption in the EU/EEA (ESAC-Net)—Annual Epidemiological Report 2020; ECDC: Stockholm, SE, USA, 2021. [Google Scholar]
- European Centre for Disease Prevention and Control. Antimicrobial Consumption in the EU/EEA (ESAC-Net)—Annual Epidemiological Report 2022; ECDC: Stockholm, SE, USA, 2023. [Google Scholar]
- Cižman, M.; Plankar Srovin, T. Antibiotic Consumption and Resistance of Gram-Negative Pathogens (Collateral Damage). GMS Infect. Dis. 2018, 6, 5. [Google Scholar] [CrossRef]
- Direção-Geral da Saúde Diário Da República n.o 111/2023, Série II de 2023-06-09 2023. Available online: https://diariodarepublica.pt/dr/detalhe/decreto-lei/137-2023-835864045 (accessed on 6 April 2024).
- European Medicines Agency. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2021: Trends from 2010 to 2021: Twelfth ESVAC Report; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Elizalde-Velázquez, A.; Gómez-Oliván, L.M.; Galar-Martínez, M.; Islas-Flores, H.; Dublán-García, O.; SanJuan-Reyes, N. Amoxicillin in the Aquatic Environment, Its Fate and Environmental Risk. In Environmental Health Risk—Hazardous Factors to Living Species; Larramendy, M., Soloneski, S., Eds.; InTech: Houston, TX, USA, 2016; pp. 247–267. ISBN 978-953-51-2401-6. [Google Scholar]
- Reis-Santos, P.; Pais, M.; Duarte, B.; Caçador, I.; Freitas, A.; Vila Pouca, A.S.; Barbosa, J.; Leston, S.; Rosa, J.; Ramos, F.; et al. Screening of Human and Veterinary Pharmaceuticals in Estuarine Waters: A Baseline Assessment for the Tejo Estuary. Mar. Pollut. Bull. 2018, 135, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Viana, P.; Meisel, L.; Lopes, A.; De Jesus, R.; Sarmento, G.; Duarte, S.; Sepodes, B.; Fernandes, A.; Dos Santos, M.M.C.; Almeida, A.; et al. Identification of Antibiotics in Surface-Groundwater. A Tool towards the Ecopharmacovigilance Approach: A Portuguese Case-Study. Antibiotics 2021, 10, 888. [Google Scholar] [CrossRef]
- Fortunato, G.; Vaz-Moreira, I.; Nunes, O.C.; Manaia, C.M. Effect of Copper and Zinc as Sulfate or Nitrate Salts on Soil Microbiome Dynamics and Bla-Positive Pseudomonas Aeruginosa Survival. J. Hazard. Mater. 2021, 415, 125631. [Google Scholar] [CrossRef] [PubMed]
- Cacace, D.; Fatta-Kassinos, D.; Manaia, C.M.; Cytryn, E.; Kreuzinger, N.; Rizzo, L.; Karaolia, P.; Schwartz, T.; Alexander, J.; Merlin, C.; et al. Antibiotic Resistance Genes in Treated Wastewater and in the Receiving Water Bodies: A Pan-European Survey of Urban Settings. Water Res. 2019, 162, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, A.A.; Amoah, I.D.; Stenström, T.A.; Verbyla, M.E.; Mihelcic, J.R. Epidemiological Evidence and Health Risks Associated With Agricultural Reuse of Partially Treated and Untreated Wastewater: A Review. Front. Public Health 2018, 6, 337. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention About One Health. Available online: https://www.cdc.gov/onehealth/basics/index.html (accessed on 15 May 2024).
- Casale, R.; Bianco, G.; Bastos, P.; Comini, S.; Corcione, S.; Boattini, M.; Cavallo, R.; Rosa, F.G.D.; Costa, C. Prevalence and Impact on Mortality of Colonization and Super-Infection by Carbapenem-Resistant Gram-Negative Organisms in COVID-19 Hospitalized Patients. Viruses 2023, 15, 1934. [Google Scholar] [CrossRef]
- Abubakar, U.; Al-Anazi, M.; Alanazi, Z.; Rodríguez-Baño, J. Impact of COVID-19 Pandemic on Multidrug Resistant Gram Positive and Gram Negative Pathogens: A Systematic Review. J. Infect. Public Health 2023, 16, 320–331. [Google Scholar] [CrossRef]
- Council of the European Union. Recomendação do Conselho Sobre a Intensificação das Ações da UE. Available online: https://data.consilium.europa.eu/doc/document/ST-9581-2023-INIT/pt/pdf (accessed on 3 March 2024).
- Bassetti, M.; Giacobbe, D.R.; Giamarellou, H.; Viscoli, C.; Daikos, G.L.; Dimopoulos, G.; De Rosa, F.G.; Giamarellos-Bourboulis, E.J.; Rossolini, G.M.; Righi, E.; et al. Management of KPC-Producing Klebsiella pneumoniae Infections. Clin. Microbiol. Infect. 2018, 24, 133–144. [Google Scholar] [CrossRef]
- Wang, C.-H.; Hsieh, Y.-H.; Powers, Z.M.; Kao, C.-Y. Defeating Antibiotic-Resistant Bacteria: Exploring Alternative Therapies for a Post-Antibiotic Era. Int. J. Mol. Sci. 2020, 21, 1061. [Google Scholar] [CrossRef]
- Vázquez-Ucha, J.C.; Arca-Suárez, J.; Bou, G.; Beceiro, A. New Carbapenemase Inhibitors: Clearing the Way for the β-Lactams. Int. J. Mol. Sci. 2020, 21, 9308. [Google Scholar] [CrossRef]
- Karaiskos, I.; Lagou, S.; Pontikis, K.; Rapti, V.; Poulakou, G. The “Old” and the “New” Antibiotics for MDR Gram-Negative Pathogens: For Whom, When, and How. Front. Public Health 2019, 7, 151. [Google Scholar] [CrossRef] [PubMed]
- Duda-Madej, A.; Viscardi, S.; Topola, E. Meropenem/Vaborbactam: β-Lactam/β-Lactamase Inhibitor Combination, the Future in Eradicating Multidrug Resistance. Antibiotics 2023, 12, 1612. [Google Scholar] [CrossRef] [PubMed]
- Shoulders, B.R.; Casapao, A.M.; Venugopalan, V. An Update on Existing and Emerging Data for Meropenem-Vaborbactam. Clin. Ther. 2020, 42, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Kanj, S.S.; Bassetti, M.; Kiratisin, P.; Rodrigues, C.; Villegas, M.V.; Yu, Y.; Van Duin, D. Clinical Data from Studies Involving Novel Antibiotics to Treat Multidrug-Resistant Gram-Negative Bacterial Infections. Int. J. Antimicrob. Agents 2022, 60, 106633. [Google Scholar] [CrossRef] [PubMed]
- Zhen, S.; Wang, H.; Feng, S. Update of Clinical Application in Ceftazidime–Avibactam for Multidrug-Resistant Gram-Negative Bacteria Infections. Infection 2022, 50, 1409–1423. [Google Scholar] [CrossRef]
- Ferous, S.; Anastassopoulou, C.; Pitiriga, V.; Vrioni, G.; Tsakris, A. Antimicrobial and Diagnostic Stewardship of the Novel β-Lactam/β-Lactamase Inhibitors for Infections Due to Carbapenem-Resistant Enterobacterales Species and Pseudomonas Aeruginosa. Antibiotics 2024, 13, 285. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Yamawaki, K. Cefiderocol: Discovery, Chemistry, and In Vivo Profiles of a Novel Siderophore Cephalosporin. Clin. Infect. Dis. 2019, 69, S538–S543. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.B.; Wang, J.; Doi, Y.; Velkov, T.; Bergen, P.J.; Li, J. Novel Polymyxin Combination With Antineoplastic Mitotane Improved the Bacterial Killing Against Polymyxin-Resistant Multidrug-Resistant Gram-Negative Pathogens. Front. Microbiol. 2018, 9, 721. [Google Scholar] [CrossRef]
- Lomovskaya, O.; Warren, M.S.; Lee, A.; Galazzo, J.; Fronko, R.; Lee, M.; Blais, J.; Cho, D.; Chamberland, S.; Renau, T.; et al. Identification and Characterization of Inhibitors of Multidrug Resistance Efflux Pumps in Pseudomonas aeruginosa: Novel Agents for Combination Therapy. Antimicrob. Agents Chemother. 2001, 45, 105–116. [Google Scholar] [CrossRef]
- Gordillo Altamirano, F.; Forsyth, J.H.; Patwa, R.; Kostoulias, X.; Trim, M.; Subedi, D.; Archer, S.K.; Morris, F.C.; Oliveira, C.; Kielty, L.; et al. Bacteriophage-Resistant Acinetobacter baumannii Are Resensitized to Antimicrobials. Nat. Microbiol. 2021, 6, 157–161. [Google Scholar] [CrossRef]
- Gordillo Altamirano, F.L.; Kostoulias, X.; Subedi, D.; Korneev, D.; Peleg, A.Y.; Barr, J.J. Phage-Antibiotic Combination Is a Superior Treatment against Acinetobacter baumannii in a Preclinical Study. eBioMedicine 2022, 80, 104045. [Google Scholar] [CrossRef] [PubMed]
- Direção Geral da Alimentação e Veterinária Plano Nacional de Controlo de Utilização de Medicamentos. Available online: https://www.dgav.pt/wp-content/uploads/2021/03/Plano-Nacional-Controlo-de-Utilizacao-de-Medicamentos-2018.pdf (accessed on 2 March 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mó, I.; da Silva, G.J. Tackling Carbapenem Resistance and the Imperative for One Health Strategies—Insights from the Portuguese Perspective. Antibiotics 2024, 13, 557. https://doi.org/10.3390/antibiotics13060557
Mó I, da Silva GJ. Tackling Carbapenem Resistance and the Imperative for One Health Strategies—Insights from the Portuguese Perspective. Antibiotics. 2024; 13(6):557. https://doi.org/10.3390/antibiotics13060557
Chicago/Turabian StyleMó, Inês, and Gabriela Jorge da Silva. 2024. "Tackling Carbapenem Resistance and the Imperative for One Health Strategies—Insights from the Portuguese Perspective" Antibiotics 13, no. 6: 557. https://doi.org/10.3390/antibiotics13060557
APA StyleMó, I., & da Silva, G. J. (2024). Tackling Carbapenem Resistance and the Imperative for One Health Strategies—Insights from the Portuguese Perspective. Antibiotics, 13(6), 557. https://doi.org/10.3390/antibiotics13060557