Development, Optimization, and In Vitro/In Vivo Evaluation of Azelaic Acid Transethosomal Gel for Antidermatophyte Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Experimental Design
2.2.2. Preparation of AzA-Loaded TEs
2.2.3. Characterization and Optimization of the Prepared AzA-Loaded TEs Formulations
Particle Size (PS), Polydispersity Index (PDI), and Zeta Potential (ZP) Measurement
Entrapment Efficiency (EE%) Measurement
2.2.4. Optimization of Formulation Variables
Transmission Electron Microscopy
Fourier Transform Infrared (FTIR) Spectroscopy
In Vitro Release of AzA from the Optimized Formula
Ex Vivo Permeation of AzA from the Optimized Formula
2.2.5. Formulation of AzA and AzA-TEs Gels
2.2.6. Evaluation of Antidermatophyte Activity
Dermatophyte Clinical Isolates
In Vitro Evaluation of Antidermatophyte Activity of AzA-TEs
In Vivo Evaluation of Antidermatophyte Activity of AzA-TEs
2.2.7. Data Analysis
3. Results and Discussion
3.1. Effect of Formulation Variables on the Observed Responses
3.1.1. Particle Size and Size Distribution
3.1.2. Zeta Potential
3.1.3. Entrapment Efficiency
3.2. Optimization of Formulation Variables
3.2.1. Transmission Electron Microscopy
3.2.2. Fourier Transform Infrared (FTIR) Spectroscopy
3.2.3. In Vitro Release of AzA from the Optimized Formula
3.2.4. Ex Vivo Permeation of AzA from the Optimized Formula
3.3. Evaluation of Antidermatophyte Activity
3.3.1. In Vitro Evaluation of Antidermatophyte Activity of AzA-TEs
3.3.2. In Vivo Evaluation of Antidermatophyte Activity of AzA-TEs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases-estimate precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef]
- White, T.; Findley, K.; Dawson, T.; Scheynius, A.; Boekhout, T.; Cuomo, C.; Xu, J.; Saunders, C.W. Fungi on the skin: Dermatophytes and Malassezia. Cold Spring Harb. Perspect. Med. 2014, 4, a019802. [Google Scholar] [CrossRef] [Green Version]
- Havlickova, B.; Czaika, V.A.; Friedrich, M. Epidemiological trends in skin mycoses worldwide. Mycoses 2008, 51, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Dogra, S.; Kaul, S.; Yadav, S. Treatment of dermatophytosis in elderly, children, and pregnant women. Indian Dermatol. Online J. 2017, 8, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Aditya, K.G.; Jennifer, E.R.; Melody, C.; Elizabeth, A.C. Dermatophytosis: The management of fungal infections. SKINmed: Dermatol. Clin. 2005, 4, 305–310. [Google Scholar] [CrossRef]
- Kim, J.-Y. Human fungal pathogens: Why should we learn? J. Microbiol. 2016, 54, 145–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotla, N.G.; Chandrasekar, B.; Rooney, P.; Sivaraman, G.; Larrañaga, A.; Krishna, K.V.; Pandit, A.; Rochev, Y. Biomimetic lipid-based nanosystems for enhanced dermal delivery of drugs and bioactive agents. ACS Biomater. Sci. Eng. 2017, 3, 1262–1272. [Google Scholar] [CrossRef] [PubMed]
- Malamatari, M.; Taylor, K.M.; Malamataris, S.; Douroumis, D.; Kachrimanis, K. Pharmaceutical nanocrystals: Production by wet milling and applications. Drug Discov. Today 2018, 23, 534–547. [Google Scholar] [CrossRef]
- Jain, S.; Tiwary, A.K.; Sapra, B.; Jain, N.K. Formulation and evaluation of ethosomes for transdermal delivery of lamivudine. AAPS PharmSciTech 2007, 8, 249–257. [Google Scholar] [CrossRef] [Green Version]
- El Maghraby, G.; Williams, A.; Barry, B.W. Skin delivery of 5-fluorouracil from ultradeformable and standard liposomes in-vitro. J. Pharm. Pharmacol. 2001, 53, 1069–1077. [Google Scholar] [CrossRef]
- Song, C.K.; Balakrishnan, P.; Shim, C.K.; Chung, S.J.; Chong, S.; Kim, D.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation. Colloids Surf. B Biointerfaces 2012, 92, 299–304. [Google Scholar] [CrossRef] [PubMed]
- El-Menshawe, S.F.; Sayed, O.M.; Abou-Taleb, H.A.; El Tellawy, N. Skin permeation enhancement of nicotinamide through using fluidization and deformability of positively charged ethosomal vesicles: A new approach for treatment of atopic eczema. J. Drug Deliv. Sci. Technol. 2019, 52, 687–701. [Google Scholar] [CrossRef]
- Mahmood, S.; Mandal, U.K.; Chatterjee, B. Transdermal delivery of raloxifene HCl via ethosomal system: Formulation, advanced characterizations and pharmacokinetic evaluation. Int. J. Pharm. 2018, 542, 36–46. [Google Scholar] [CrossRef]
- Garg, V.; Singh, H.; Bhatia, A.; Raza, K.; Singh, S.; Singh, B.; Beg, S. Systematic development of transethosomal gel system of piroxicam: Formulation optimization, in vitro evaluation, and ex vivo assessment. AAPS PharmSciTech 2016, 18, 58–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, N.; Irfan, M.; Zahoor, A.F.; Iqbal, M.S.; Syed, H.K.; Khan, I.U.; Rasul, A.; Khan, S.-U.; Alqahtani, A.M.; Ikram, M.; et al. Improved bioavailability of ebastine through development of transfersomal oral films. Pharmaceutics 2021, 13, 1315. [Google Scholar] [CrossRef]
- Kohli, A.; Alpar, H. Potential use of nanoparticles for transcutaneous vaccine delivery: Effect of particle size and charge. Int. J. Pharm. 2004, 275, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Qi, X.; Mao, R.; Pan, W.; Zhang, M.; Wu, X.; Chen, G.; Shen, J.; Deng, H.; Hu, R. Construction of functional curdlan hydrogels with bio-inspired polydopamine for synergistic periodontal antibacterial therapeutics. Carbohydr. Polym. 2020, 245, 116585. [Google Scholar] [CrossRef]
- Su, T.; Zhao, W.; Wu, L.; Dong, W.; Qi, X. Facile fabrication of functional hydrogels consisting of pullulan and polydopamine fibers for drug delivery. Int. J. Biol. Macromol. 2020, 163, 366–374. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, Y.; Pan, W.; Tong, X.; Zeng, Q.; Su, T.; Qi, X.; Shen, J. Polydopamine-incorporated dextran hydrogel drug carrier with tailorable structure for wound healing. Carbohydr. Polym. 2021, 253, 117213. [Google Scholar] [CrossRef] [PubMed]
- Tomić, I.; Juretić, M.; Jug, M.; Pepić, I.; Čižmek, B.C.; Filipović-Grčić, J. Preparation of in situ hydrogels loaded with azelaic acid nanocrystals and their dermal application performance study. Int. J. Pharm. 2019, 563, 249–258. [Google Scholar] [CrossRef]
- Moolakkadath, T.; Aqil, M.; Ahad, A.; Imam, S.S.; Iqbal, B.; Sultana, Y.; Mujeeb, M.; Iqbal, Z. Development of transethosomes formulation for dermal fisetin delivery: Box–Behnken design, optimization, in vitro skin penetration, vesicles–skin interaction and dermatokinetic studies. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. S2), 755–765. [Google Scholar] [CrossRef] [Green Version]
- Salem, H.F.; Kharshoum, R.M.; Awad, S.M.; Mostafa, M.A.; Abou-Taleb, H.A. Tailoring of retinyl palmitate-based ethosomal hydrogel as a novel nanoplatform for acne vulgaris management: Fabrication, optimization, and clinical evaluation employing a split-face comparative study. Int. J. Nanomed. 2021, 16, 4251–4276. [Google Scholar] [CrossRef]
- Kadam, T.; Darekar, A.; Gondkar, S.; Saudagar, R. Development and validation of spectrophotometric method for determination of azelaic acid. Asian J. Res. Pharm. Sci. 2015, 5, 83. [Google Scholar] [CrossRef]
- Sudhakar, K.; Mishra, V.; Jain, S.; Rompicherla, N.C.; Malviya, N.; Tambuwala, M.M. Development and evaluation of the effect of ethanol and surfactant in vesicular carriers on Lamivudine permeation through the skin. Int. J. Pharm. 2021, 610, 121226. [Google Scholar] [CrossRef]
- Albash, R.; Abdellatif, M.M.; Hassan, M.; Badawi, N.M. Tailoring Terpesomes and Leciplex for the Effective Ocular Conveyance of Moxifloxacin Hydrochloride (Comparative Assessment): In-vitro, Ex-vivo, and In-vivo Evaluation. Int. J. Nanomed. 2021, 16, 5247–5263. [Google Scholar] [CrossRef]
- Nasr, A.M.; Elhady, S.S.; Swidan, S.A.; Badawi, N.M. Celecoxib Loaded In-Situ Provesicular Powder and Its In-Vitro Cytotoxic Effect for Cancer Therapy: Fabrication, Characterization, Optimization and Pharmacokinetic Evaluation. Pharmaceutics 2020, 12, 1157. [Google Scholar] [CrossRef]
- Teaima, M.; Abdelmonem, R.; Adel, Y.A.; El-Nabarawi, M.A.; El-Nawawy, T.M. Transdermal Delivery of Telmisartan: Formulation, in vitro, ex vivo, Iontophoretic Permeation Enhancement and Comparative Pharmacokinetic Study in Rats. Drug Des. Dev. Ther. 2021, 15, 4603–4614. [Google Scholar] [CrossRef] [PubMed]
- Hung, W.-H.; Chen, P.-K.; Fang, C.-W.; Lin, Y.-C.; Wu, P.-C. Preparation and evaluation of azelaic acid topical microemulsion formulation: In vitro and in vivo study. Pharmaceutics 2021, 13, 410. [Google Scholar] [CrossRef]
- Teaima, M.H.; Badawi, N.M.; Attia, D.A.; El-Nabarawi, M.A.; Elmazar, M.M.; Mousa, S.A. Efficacy of pomegranate extract loaded solid lipid nanoparticles transdermal emulgel against Ehrlich ascites carcinoma. Nanomed. Nanotechnol. Biol. Med. 2022, 39, 102466. [Google Scholar] [CrossRef] [PubMed]
- Albash, R.; Abdelbary, A.A.; Refai, H.; El-Nabarawi, M.A. Use of transethosomes for enhancing the transdermal delivery of olmesartan medoxomil: In vitro, ex vivo, and in vivo evaluation. Int. J. Nanomed. 2019, 14, 1953–1968. [Google Scholar] [CrossRef] [Green Version]
- Malik, D.S.; Kaur, G. Nanostructured gel for topical delivery of azelaic acid: Designing, characterization, and in-vitro evaluation. J. Drug Deliv. Sci. Technol. 2018, 47, 123–136. [Google Scholar] [CrossRef]
- de Hoog, G.S.; Guarro, J. Atlas of Clinical Fungi; Centraalbureau Voor Schimmelcultures: Baarn, The Netherlands, 1995. [Google Scholar]
- Gozubuyuk, G.; Aktas, E.; Yigit, N. An ancient plant Lawsonia inermis (henna): Determination of in vitro antifungal activity against dermatophytes species. J. Med. Mycol. 2014, 24, 313–318. [Google Scholar] [CrossRef]
- Taha, M.; Tartor, Y.H.; Abdul-Haq, S.I.M.; El-Maati, M.F.A. Characterization and Antidermatophyte Activity of Henna Extracts: A Promising Therapy for Humans and Animals Dermatophytoses. Curr. Microbiol. 2022, 79, 59. [Google Scholar] [CrossRef]
- Brasch, J.; Christophers, E. Azelaic acid has antimycotic properties in vitro. Dermatology 1993, 186, 55–58. [Google Scholar] [CrossRef]
- Silva, M.R.R.; Oliveira, J.G.; Fernandes, O.F.L.; Passos, X.S.; Costa, C.R.; Souza, L.K.H.; Lemos, J.A.; de Paula, J.R. Antifungal activity of Ocimum gratissimum towards dermatophytes. Mycoses 2005, 48, 172–175. [Google Scholar] [CrossRef] [PubMed]
- CLSI. M38–A2 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous fungi; CLSI: Berwyn, PA, USA, 2017; Available online: https://clsi.org/media/1894/m38ed3_sample.pdf (accessed on 20 February 2023).
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; Van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Assessing the antimicrobial susceptibility of bacteria obtained from animals. J. Antimicrob. Chemother. 2010, 65, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Saunte, D.M.; Hasselby, J.P.; Brillowska-Dabrowska, A.; Frimodt-Møller, N.; Svejgaard, E.L.; Linnemann, D.; Nielsen, S.S.; Hædersdal, M.; Arendrup, M.C. Experimental guinea pig model of dermatophytosis: A simple and useful tool for the evaluation of new diagnostics and antifungals. Med. Mycol. 2008, 46, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borgers, M.; Xhonneux, B.; Van Cutsem, J. Oral itraconazole versus topical bifonazole treatment in experimental dermatophytosis: Orale Itraconazol-vs topische Bifonazol-Behandlung bei experirnenteller Dermatophytose. Mycoses 1993, 36, 105–115. [Google Scholar] [CrossRef]
- Soleimanian, Y.; Goli, S.A.H.; Varshosaz, J.; Sahafi, S.M. Formulation and characterization of novel nanostructured lipid carriers made from beeswax, propolis wax and pomegranate seed oil. Food Chem. 2018, 244, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Ahad, A.; Aqil, M.; Kohli, K.; Sultana, Y.; Mujeeb, M.; Ali, A. Formulation and optimization of nanotransfersomes using experimental design technique for accentuated transdermal delivery of valsartan. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Vasanth, S.; Dubey, A.; Ravi, G.S.; Lewis, S.A.; Ghate, V.M.; El-Zahaby, S.A.; Hebbar, S. Development and investigation of vitamin C-enriched adapalene-loaded transfersome gel: A collegial approach for the treatment of acne vulgaris. AAPS PharmSciTech 2020, 21, 61. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.A.; Alzahrani, M.M.; Sirwi, A.; Alhakamy, N.A. Study the antifungal and ocular permeation of ketoconazole from ophthalmic formulations containing trans-ethosomes nanoparticles. Pharmaceutics 2021, 13, 151. [Google Scholar] [CrossRef] [PubMed]
- Limsuwan, T.; Amnuaikit, T. Development of ethosomes containing mycophenolic acid. Procedia Chem. 2012, 4, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Nasr, A.M.; Moftah, F.; Abourehab, M.A.S.; Gad, S. Design, Formulation, and Characterization of Valsartan Nanoethosomes for Improving Their Bioavailability. Pharmaceutics 2022, 14, 2268. [Google Scholar] [CrossRef]
- Qushawy, M.; Nasr, A.; Abd-Alhaseeb, M.; Swidan, S.A. Design, optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of candida skin infections. Pharmaceutics 2018, 10, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balata, G.F.; Faisal, M.M.; Elghamry, H.A.; Sabry, S.A. Preparation and characterization of ivabradine HCl transfersomes for enhanced transdermal delivery. J. Drug Deliv. Sci. Technol. 2020, 60, 101921. [Google Scholar] [CrossRef]
- Ogiso, T.; Yamaguchi, T.; Iwaki, M.; Tanino, T.; Miyake, Y. Effect of positively and negatively charged liposomes on skin permeation of drugs. J. Drug Target. 2001, 9, 49–59. [Google Scholar] [CrossRef]
- Jain, S.; Umamaheshwari, R.B.; Bhadra, D.; Jain, N.K. Ethosomes: A novel vesicular carrier for enhanced transdermal delivery of an antiHIV agent. Indian J. Pharm. Sci. 2004, 66, 72. [Google Scholar]
- Salem, H.F.; Kharshoum, R.M.; Abou-Taleb, H.; Aboutaleb, H.A.; Abouelhassan, K.M. Progesterone-loaded nanosized transethosomes for vaginal permeation enhancement: Formulation, statistical optimization, and clinical evaluation in anovulatory polycystic ovary syndrome. J. Liposome Res. 2019, 29, 183–194. [Google Scholar] [CrossRef]
- van den Bergh, B.A.; Wertz, P.W.; Junginger, H.E.; Bouwstra, J.A. Elasticity of vesicles assessed by electron spin resonance, electron microscopy and extrusion measurements. Int. J. Pharm. 2001, 217, 13–24. [Google Scholar] [CrossRef]
- El Zaafarany, G.M.; Awad, G.A.S.; Holayel, S.M.; Mortada, N.D. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int. J. Pharm. 2010, 397, 164–172. [Google Scholar] [CrossRef]
- Amnuaikit, T.; Limsuwan, T.; Khongkow, P.; Boonme, P. Vesicular carriers containing phenylethyl resorcinol for topical delivery system; liposomes, transfersomes and invasomes. Asian J. Pharm. Sci. 2018, 13, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Heidari, H.; Razmi, H. Multi-response optimization of magnetic solid phase extraction based on carbon coated Fe3O4 nanoparticles using desirability function approach for the determination of the organophosphorus pesticides in aquatic samples by HPLC–UV. Talanta 2012, 99, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Tarassoli, Z.; Najjar, R.; Amani, A. Formulation and optimization of lemon balm extract loaded azelaic acid-chitosan nanoparticles for antibacterial applications. J. Drug Deliv. Sci. Technol. 2021, 65, 102687. [Google Scholar] [CrossRef]
- Eissa, M.A.; Hashim, Y.Z.H.-Y.; Nasir, M.H.M.; Nor, Y.A.; Salleh, H.M.; Isa, M.L.; Abd-Azziz, S.S.S.; Warif, N.M.A.; Ramadan, E.; Badawi, N.M. Fabrication and characterization of Agarwood extract-loaded nanocapsules and evaluation of their toxicity and anti-inflammatory activity on RAW 264.7 cells and in zebrafish embryos. Drug Deliv. 2021, 28, 2618–2633. [Google Scholar] [CrossRef]
- Badawi, N.M.; Attia, Y.M.; El-Kersh, D.M.; Hammam, O.A.; Khalifa, M.K. Investigating the Impact of Optimized Trans-Cinnamic Acid-Loaded PLGA Nanoparticles on Epithelial to Mesenchymal Transition in Breast Cancer. Int. J. Nanomed. 2022, 17, 733–750. [Google Scholar] [CrossRef]
- Bisht, A.; Hemrajani, C.; Upadhyay, N.; Nidhi, P.; Rolta, R.; Rathore, C.; Gupta, G.; Dua, K.; Chellappan, D.K.; Dev, K.; et al. Azelaic acid and Melaleuca alternifolia essential oil co-loaded vesicular carrier for combinational therapy of acne. Ther. Deliv. 2021, 13, 13–29. [Google Scholar] [CrossRef]
- Chittasobhon, N.; Smith, J.M. The production of experimental dermatophyte lesions in guinea pigs. J. Investig. Dermatol. 1979, 73, 198–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Cutsem, J. Animal models for dermatomycotic infections. Curr. Top. Med. Mycol. 1989, 3, 1–35. [Google Scholar]
- Kumar, P.; Ramteke, P.; Pandey, A.C.; Pandey, H. Evaluation of antifungal activity of blended cinnamon oil and usnic acid nanoemulsion using candidiasis and dermatophytosis models. Biocatal. Agric. Biotechnol. 2019, 18, 101062. [Google Scholar] [CrossRef]
- Treiber, A.; Pittermann, W.; Schuppe, H.-C. Efficacy testing of antimycotic prophylactics in an animal model. Int. J. Hyg. Environ. Health 2001, 204, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Ghannoum, M.A.; Hossain, M.A.; Long, L.; Mohamed, S.; Reyes, G.; Mukherjee, P.K. Evaluation of antifungal efficacy in an optimized animal model of Trichophyton mentagrophytes-dermatophytosis. J. Chemother. 2004, 16, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Sieber, M.; Hegel, J. Azelaic acid: Properties and mode of action. Ski. Pharmacol. Physiol. 2014, 27 (Suppl. S1), 9–17. [Google Scholar]
- Tartor, Y.H.; El-Neshwy, W.M.; Merwad, A.M.A.; El-Maati, M.F.A.; Mohamed, R.E.; Dahshan, H.M.; Mahmoud, H.I. Ringworm in calves: Risk factors, improved molecular diagnosis, and therapeutic efficacy of an Aloe vera gel extract. BMC Vet. Res. 2020, 16, 421. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, J. Oral and parenteral treatment with itraconazole in various superficial and systemic experimental fungal infections. Comparisons with other antifungals and combination therapy. Br. J. Clin. Pract. 1990, 44 (Suppl. S71), 32–40. [Google Scholar]
- Nagino, K.; Shimohira, H.; Ogawa, M.; Uchida, K.; Yamaguchi, H. Comparison of the therapeutic efficacy of oral doses of fluconazole and itraconazole in a guinea pig model of dermatophytosis. J. Infect. Chemother. 2000, 6, 41–44. [Google Scholar] [CrossRef]
- Nayak, D.; Tawale, R.M.; Aranjani, J.M.; Tippavajhala, V.K. Formulation, optimization and evaluation of novel ultra-deformable vesicular drug delivery system for an anti-fungal drug. AAPS PharmSciTech 2020, 21, 140. [Google Scholar]
- Lalvand, M.; Hashemi, S.J.; Bayat, M. Effect of fluconazole and terbinafine nanoparticles on the treatment of dermatophytosis induced by Trichophyton mentagrophytes in guinea pig. Iran. J. Microbiol. 2021, 13, 608. [Google Scholar] [CrossRef]
- Maheshwari, R.G.S.; Tekade, R.K.; Sharma, P.A.; Darwhekar, G.; Tyagi, A.; Patel, R.P.; Jain, D.K. Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: A comparative assessment. Saudi Pharm. J. 2012, 20, 161–170. [Google Scholar] [CrossRef] [Green Version]
Independent Variables | Low | High |
---|---|---|
X1: SAA type | Labrafil | SDC |
X2: SAA:Lecithin ratio X3: Ethanol concentration% | 15:85 20 | 5:95 40 |
Dependent Variables | Desirability Constraints | |
Y1: PS Y2: ZP | Minimize Maximize | |
Y3: EE% | Maximize |
Formulae Code | AzA Amount (mg) | Oleic Acid Amount (mg) | SAA Type | SAA: Lecithin Ratio | Ethanol Concentration (%) |
---|---|---|---|---|---|
F1 | 50 | 10 | Labrafil | 5:95 | 20 |
F2 | 50 | 10 | SDC | 15:85 | 40 |
F3 | 50 | 10 | Labrafil | 5:95 | 40 |
F4 | 50 | 10 | SDC | 15:85 | 20 |
F5 | 50 | 10 | Labrafil | 15:85 | 20 |
F6 | 50 | 10 | SDC | 5:95 | 40 |
F7 | 50 | 10 | SDC | 5:95 | 20 |
F8 | 50 | 10 | Labrafil | 15:85 | 40 |
PS (nm) | PDI | ZP (mV) | EE (%) | |
---|---|---|---|---|
F1 | 309.0 ± 7.8 | 0.414 ± 0.067 | −37.5 ± 0.35 | 69.5 ± 2.0 |
F2 | 281.2 ± 3.7 | 0.390 ± 0.002 | −31.9 ± 0.23 | 71.6 ± 1.3 |
F3 | 219.8 ± 4.7 | 0.372 ± 0.015 | −36.5 ± 0.73 | 81.9 ± 1.4 |
F4 | 403.5 ± 8.5 | 0.249 ± 0.022 | −33.9 ± 0.77 | 57.6 ± 0.8 |
F5 | 335.9 ± 3.9 | 0.292 ± 0.029 | −37.3 ± 0.61 | 59.7 ± 0.9 |
F6 | 270.2 ± 8.0 | 0.375 ± 0.013 | −34.5 ± 1.03 | 77.2 ± 3.1 |
F7 | 338.5 ± 1.0 | 0.346 ± 0.014 | −33.0 ± 0.66 | 62.8 ± 1.1 |
F8 | 298.4 ± 1.6 | 0.269 ± 0.013 | −34.6 ± 0.78 | 77.1 ± 2.4 |
Independent Variables | Responses | Desirability | |||||
---|---|---|---|---|---|---|---|
SAA Type | SAA Ratio | Ethanol Conc. | PS | ZP | EE% | ||
Predicted formula | Labrafil | 5.0 | 40.0 | 228.425 | −36.475 | 82.5 | 0.920 |
Practically prepared formula | Labrafil | 5.0 | 40.0 | 219.8 | −36.5 | 81.9 | |
Residual error (%) | 3.78% | 0.07% | −0.73% |
Day 3 | Day 7 | Day 14 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G1 | G2 | G3 | G4 | G5 | G1 | G2 | G3 | G4 | G5 | G1 | G2 | G3 | G4 | G5 | ||
T. mentagrophytes | M | 6 | 6 | 6 | 6 | 5 | 5 | 4 | 1 † | 4 | 5 | 6 | 2 † | 1 † | 2 † | 6 |
C | 5 | 1 † | 1 † | 1 † | 4 | 6 | 1 † | 1 † | 1 † | 6 | 6 | 2 † | 1 † | 2 † | 6 | |
M&C | 5 | 1 † | 1 † | 1 † | 4 | 6 | 1 † | 1 † | 1 † | 6 | 6 | 2 † | 1 † | 2 † | 6 | |
M. canis | M | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 3 | 3 | 6 | 6 | 1 † | 3 | 3 | 6 |
C | 3 | 2 | 0 | 0 | 3 | 6 | 4 | 1 † | 1 † | 6 | 6 | 1 † | 1 † | 1 † | 6 | |
M&C | 3 | 2 | 0 | 0 | 3 | 6 | 4 | 1 † | 1 † | 6 | 6 | 1 † | 1 † | 1 † | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasr, A.M.; Badawi, N.M.; Tartor, Y.H.; Sobhy, N.M.; Swidan, S.A. Development, Optimization, and In Vitro/In Vivo Evaluation of Azelaic Acid Transethosomal Gel for Antidermatophyte Activity. Antibiotics 2023, 12, 707. https://doi.org/10.3390/antibiotics12040707
Nasr AM, Badawi NM, Tartor YH, Sobhy NM, Swidan SA. Development, Optimization, and In Vitro/In Vivo Evaluation of Azelaic Acid Transethosomal Gel for Antidermatophyte Activity. Antibiotics. 2023; 12(4):707. https://doi.org/10.3390/antibiotics12040707
Chicago/Turabian StyleNasr, Ali M., Noha M. Badawi, Yasmine H. Tartor, Nader M. Sobhy, and Shady A. Swidan. 2023. "Development, Optimization, and In Vitro/In Vivo Evaluation of Azelaic Acid Transethosomal Gel for Antidermatophyte Activity" Antibiotics 12, no. 4: 707. https://doi.org/10.3390/antibiotics12040707
APA StyleNasr, A. M., Badawi, N. M., Tartor, Y. H., Sobhy, N. M., & Swidan, S. A. (2023). Development, Optimization, and In Vitro/In Vivo Evaluation of Azelaic Acid Transethosomal Gel for Antidermatophyte Activity. Antibiotics, 12(4), 707. https://doi.org/10.3390/antibiotics12040707