Treatment of Enterococcus faecalis Infective Endocarditis: A Continuing Challenge
Abstract
:1. Introduction
2. Mechanisms of Resistance
2.1. Beta-Lactams
2.2. Aminoglycosides
2.3. Glycopeptides
2.4. Daptomycin
2.5. Quinolones
2.6. Oxazolidinones
2.7. Tigecycline
3. Therapeutic Choices
3.1. Beta with-Lactams with Aminoglycosides (A + G)
3.2. Dual Beta-Lactam Therapy (A + C)
3.3. Glycopeptides
3.4. Daptomycin
3.5. Fosfomycin
3.6. Linezolid and Tedizolid
3.7. Quinolones
3.8. Tigecycline
3.9. Dalbavancin and Oritavancin
4. Duration of Treatment
5. Outpatient Parenteral Antimicrobial Therapy (OPAT)
6. Oral Treatment
7. Conclusions and Future Perspective
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murdoch, D.R.; Corey, G.R.; Hoen, B.; Miró, J.M.; Fowler, V.G., Jr.; Bayer, A.S.; Karchmer, A.W.; Olaison, L.; Pappas, P.A.; Moreillon, P.; et al. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: The International Collaboration on Endocarditis-Prospective Cohort Study. Arch. Intern. Med. 2009, 169, 463–473. [Google Scholar] [CrossRef] [Green Version]
- Habib, G.; Erba, P.A.; Iung, B.; Donal, E.; Cosyns, B.; Laroche, C.; Popescu, B.A.; Prendergast, B.; Tornos, P.; Sadeghpour, A.; et al. Clinical presentation, aetiology and outcome of infective endocarditis. Results of the ESC-EORP EURO-ENDO (European infective endocarditis) registry: A prospective cohort study. Eur. Heart J. 2019, 40, 3222–3232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, P.; Kestler, M.; de Alarcón, A.; Miró, J.M.; Bermejo, J.; Rodríguez-Abella, H.; Fariñas, M.C.; Cobo-Belaustegui, M.; Mestres, C.; Llinares, P.; et al. Current Epidemiology and Outcome of Infective Endocarditis: A Multicenter, Prospective, Cohort Study. Medicine 2015, 4, e1816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Hidalgo, N.; Escolà-Vergé, L.; Pericàs, J.M. Enterococcus faecalis endocarditis: What’s next? Future Microbiol. 2020, 15, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Pericàs, J.M.; Llopis, J.; Muñoz, P.; Gálvez-Acebal, J.; Kestler, M.; Valerio, M.; Hernández-Meneses, M.; Goenaga, M.A.; Cobo-Belaustegui, M.; Montejo, M.; et al. A Contemporary Picture of Enterococcal Endocarditis: A comparison of 516 cases with, 308 cases of non-enterococcal endocarditis from the GAMES Cohort (2008–2016). J. Am. Coll. Cardiol. 2020, 75, 482–494. [Google Scholar] [CrossRef]
- Dahl, A.; Fowler, V.G.; Miro, J.M.; Bruun, N.E. Sign of the Times: Updating Infective Endocarditis Diagnostic Criteria to Recognize Enterococcus faecalis as a Typical Endocarditis Bacterium. Clin. Infect. Dis. 2022, 75, 1097–1102. [Google Scholar] [CrossRef]
- Fernández-Guerrero, M.L.; Herrero, L.; Bellver, M.; Gadea, I.; Roblas, R.F.; de Górgolas, M. Nosocomial enterococcal endocarditis: A serious hazard for hospitalized patients with enterococcal bacteraemia. J. Intern. Med. 2002, 252, 510–515. [Google Scholar] [CrossRef]
- Lomas, J.M.; Martínez-Marcos, F.J.; Plata, A.; Ivanova, R.; Gálvez, J.; Ruiz, J.; Reguera, J.M.; Noureddine, M.; de la Torre, J.; de Alarcón, A. Healthcare-associated infective endocarditis: An undesirable effect of healthcare universalization. Clin. Microbiol. Infect. 2010, 16, 1683–1690. [Google Scholar] [CrossRef]
- Pericàs, J.M.; Ambrosioni, J.; Muñoz, P.; de Alarcón, A.; Kestler, M.; Mari-Hualde, A.; Moreno, A.; Goenaga, M.A.; Fariñas, M.C.; Rodríguez-Álvarez, R.; et al. Prevalence of Colorectal Neoplasms Among Patients with Enterococcus faecalis Endocarditis in the GAMES Cohort (2008–2017). Mayo Clin. Proc. 2021, 96, 132–146. [Google Scholar] [CrossRef]
- Escolà-Vergé, L.; Peghin, M.; Givone, F.; Pérez-Rodríguez, M.T.; Suárez-Varela, M.; Meije, Y.; Abelenda, G.; Almirante, B.; Fernádez-Hidalgo, N. Prevalence of colorectal disease in Enterococcus faecalis infective endocarditis: Results of an observational multicenter study. Rev. Esp. Cardiol. 2020, 73, 711–717. [Google Scholar] [CrossRef]
- Khan, A.; Aslam, A.; Satti, K.N.; Ashiq, S. Infective endocarditis post-transcatheter aortic valve implantation (TAVI), microbiological profile and clinical outcomes: A systematic review. PLoS ONE 2020, 15, e0225077. [Google Scholar] [CrossRef]
- McDonald, J.R.; Olaison, L.; Anderson, D.J.; Hoen, B.; Miro, J.M.; Eykyn, S.; Abrutyn, E.; Fowler, V.G., Jr.; Habib, G.; Selton-Suty, C.; et al. Enterococcal endocarditis: 107 cases from the international collaboration on endocarditis merged database. Am. J. Med. 2005, 118, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Fernández Guerrero, M.L.; Goyenechea, A.; Verdejo, C.; Roblas, R.F.; de Górgolas, M. Enterococcal endocarditis on native and prosthetic valves: A review of clinical and prognostic factors with emphasis on hospital-acquired infections as a major determinant of outcome. Medicine 2007, 86, 363–377. [Google Scholar] [CrossRef]
- Martínez-Marcos, F.J.; Lomas-Cabezas, J.M.; Hidalgo-Tenorio, C.; de la Torre-Lima, J.; Plata-Ciézar, A.; Reguera-Iglesias, J.M.; Ruiz-Morales, J.; Márquez-Solero, M.; Gávez-Acebal, J.; de Alarcón, A. Enterococcal endocarditis: A multicenter study of 76 cases. Enferm. Infecc. Microbiol. Clin. 2009, 27, 571–579. [Google Scholar] [CrossRef]
- Conwell, M.; Dooley, J.S.G.; Naughton, P.J. Enterococcal biofilm-A nidus for antibiotic resistance transfer? J. Appl. Microbiol. 2022, 132, 3444–3460. [Google Scholar] [CrossRef] [PubMed]
- García-Solache, M.; Rice, L.B. The Enterococcus: A Model of Adaptability to Its Environment. Clin. Microbiol. Rev. 2019, 32, e00058-18. [Google Scholar] [CrossRef] [Green Version]
- Heath, C.H.; Blackmore, T.K.; Gordon, D.L. Emerging resistance in Enterococcus spp. Med. J. Aust. 1996, 164, 116–120. [Google Scholar] [CrossRef]
- Casalta, J.P.; Thuny, F.; Fournier, P.E.; Lepidi, H.; Habib, G.; Grisoli, D.; Raoult, D. DNA persistence and relapses questions on the treatment strategies of Enterococcus infections of prosthetic valves. PLoS ONE 2012, 7, e53335. [Google Scholar] [CrossRef]
- Lecomte, R.; Laine, J.B.; Issa, N.; Revest, M.; Gaborit, B.; Le Turnier, P.; Deschanvres, C.; Benezit, F.; Asserai, N.; Le Tournau, T.; et al. Long-term Outcome of Patients with Non-operated Prosthetic Valve Infective Endocarditis: Is Relapse the Main Issue? Clin. Infect. Dis. 2020, 71, 1316–1319. [Google Scholar] [CrossRef]
- Calderón-Parra, J.; Kestler, M.; Ramos-Martínez, A.; Bouza, E.; Valerio, M.; de Alarcón, A.; Luque, R.; Goenaga, M.A.; Echeverría, T.; Fariñas, M.C.; et al. Clinical Factors Associated with Reinfection versus Relapse in Infective Endocarditis: Prospective Cohort Study. J. Clin. Med. 2021, 10, 748. [Google Scholar]
- Danneels, P.; Hamel, J.F.; Picard, L.; Rezig, S.; Martinet, P.; Lorleac’h, A.; Talarmin, J.F.; Buzelé, R.; Guimard, T.; Le Moal, G.; et al. Impact of Enterococcus faecalis Endocarditis Treatment on Risk of Relapse. Clin. Infect. Dis. 2023, 76, 281–290. [Google Scholar] [CrossRef]
- López-Cortés, L.E.; Fernández-Cuenca, F.; Luque-Márquez, R.; de Alarcón, A. Enterococcal Endocarditis: Relapses or Reinfections? Clin. Infect. Dis. 2021, 72, 360–361. [Google Scholar] [CrossRef]
- Bonten, M.J.; Willems, R.; Weinstein, R.A. Vancomycin-resistant enterococci: Why are they here, and where do they come from? Lancet Infect. Dis. 2001, 1, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Mascini, E.M.; Bonten, M.J. Vancomycin-resistant enterococci: Consequences for therapy and infection control. Clin. Microbiol. Infect. 2005, 11, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Fontana, R.; Ligozzi, M.; Pittaluga, F.; Satta, G. Intrinsic penicillin resistance in enterococci. Microb. Drug. Resist. 1996, 2, 209–213. [Google Scholar] [CrossRef]
- Sonne, M.; Jawetz, E. Comparison of the action of ampicillin and benzylpenicillin on enterococci in vitro. Appl. Microbiol. 1968, 16, 645–648. [Google Scholar] [CrossRef] [PubMed]
- Arias, C.A.; Singh, K.V.; Panesso, D.; Murray, B.E. Evaluation of ceftobiprole medocaril against Enterococcus faecalis in a mouse peritonitis model. J. Antimicrob. Chemother. 2007, 60, 594–598. [Google Scholar] [CrossRef] [Green Version]
- Arias, C.A.; Singh, K.V.; Panesso, D.; Murray, B.E. Time-kill and synergism studies of ceftobiprole against Enterococcus faecalis, including beta-lactamase-producing and vancomycin-resistant isolates. Antimicrob. Agents Chemother. 2007, 51, 2043–2047. [Google Scholar] [CrossRef] [Green Version]
- Jacqueline, C.; Caillon, J.; Le Mabecque, V.; Miègeville, A.F.; Ge, Y.; Biek, D.; Batard, E.; Potel, G. In Vivo activity of a novel anti-methicillin-resistant Staphylococcus aureus cephalosporin, ceftaroline, against vancomycin-susceptible and -resistant Enterococcus faecalis strains in a rabbit endocarditis model: A comparative study with linezolid and vancomycin. Antimicrob. Agents Chemother. 2009, 53, 5300–5302. [Google Scholar]
- Wilson, W.R.; Geraci, J.E. Treatment of streptococcal infective endocarditis. Am. J. Med. 1985, 78, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Fernández Guerrero, M.L.; Núñez García, A. Enterococcal endocarditis, a model of therapeutic difficulty. Rev. Clin. Esp. 1995, 195, 41–45. [Google Scholar]
- Shah, P. Paradoxical effect of antibiotics. I. The “Eagle effect”. J. Antimicrob. Chemother 1980, 10, 259–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontana, R.; Grossato, A.; Ligozzi, M.; Tonin, E.A. In Vitro response to bactericidal activity of cell wall-active antibiotics does not support the general opinion that enterococci are naturally tolerant to these antibiotics. Antimicrob. Agents Chemother. 1990, 34, 1518–1522. [Google Scholar] [CrossRef] [Green Version]
- Tomayko, J.F.; Zscheck, K.K.; Singh, K.V.; Murray, B.E. Comparison of the beta-lactamase gene cluster in clonally distinct strains of Enterococcus faecalis. Antimicrob. Agents Chemother. 1996, 40, 1170–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coudron, P.E.; Markowitz, S.M.; Wong, E.S. Isolation of a beta-lactamase producing strain of Enterococcus faecium. Antimicrob. Agents Chemother. 1992, 36, 1125–1126. [Google Scholar] [CrossRef] [Green Version]
- Duez, C.; Zorzi, W.; Sapunaric, F.; Amoroso, A.; Thamm, I.; Coyette, J. The penicillin resistance of Enterococcus faecalis JH2-2R results from an overproduction of the low-affinity penicillin-binding protein PBP4 and does not involve a psr-like gene. Microbiology 2001, 147, 2561–2569. [Google Scholar] [CrossRef] [Green Version]
- Rice, L.B.; Desbonnet, C.; Tait-Kamradt, A.; Garcia-Solache, M.; Lonks, J.; Moon, T.M.; D’Andréa, E.D.; Page, R.; Peti, W. Structural and regulatory changes in PBP4 trigger decreased beta-lactam susceptibility in Enterococcus faecalis. mBio 2018, 9, e00361-18. [Google Scholar] [CrossRef] [Green Version]
- Rice, L.B.; Bellais, S.; Carias, L.L.; Hutton-Thomas, R.; Bonomo, R.A.; Caspers, P.; Page, M.G.P.; Gutmann, L. Impact of specific pbp5 mutations on expression of beta-lactam resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 2004, 48, 3028–3032. [Google Scholar] [CrossRef] [Green Version]
- Murray, B.E. The life and times of the Enterococcus. Clin. Microbiol. Rev. 1990, 3, 46–65. [Google Scholar] [CrossRef]
- Geraci, J.E.; Martin, W.J. Subacute enterococcal endocarditis: Clinical, pathologic, and therapeutic considerations in 33 patients. Circulation 1954, 10, 173–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jawetz, E.; Sonne, M. Penicillin-streptomycin treatment of enterococcal endocarditis: A reevaluation. N. Engl. J. Med. 1966, 274, 710–715. [Google Scholar] [CrossRef]
- Moellering, R.C.; Weinberg, A.N. Studies on antibiotic synergism against enterococci. II. Effect of various antibiotics on the uptake of 14C-labelled streptomycin by enterococci. J. Clin. Investig. 1971, 50, 2580–2584. [Google Scholar] [CrossRef] [Green Version]
- Shaw, K.J.; Rather, P.N.; Hare, R.S.; Miller, G.H. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol. Rev. 1993, 57, 138–163. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.W. Aminoglycoside resistance in enterococci. Clin. Infect. Dis. 2001, 31, 586–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cetinkaya, Y.; Falk, P.; Mayhall, C.G. Vancomycin-resistant enterococci. Clin. Microbiol. Rev. 2000, 13, 686–707. [Google Scholar] [CrossRef] [PubMed]
- Kühn, I.; Iversen, A.; Finn, M.; Greko, C.; Burman, L.G.; Blanch, A.R.; Vilanova, X.; Manero, A.; Taylor, H.; Caplin, J.; et al. Occurrence and relatedness of vancomycin-resistant enterococci in animals, humans, and the environment in different European regions. Appl. Enviorn. Microbiol. 2005, 71, 5383–5390. [Google Scholar] [CrossRef] [Green Version]
- Phillips, I.; Casewell, M.; Cox, T.; De Groot, B.; Friis, C.; Jones, R.; Nightingale, C.; Preston, R.; Waddell, J. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J. Antimicrob. Chemother. 2004, 53, 28–52. [Google Scholar] [CrossRef]
- Mendes, R.E.; Castanheira, M.; Farrell, D.J.; Flamm, R.K.; Sader, H.S.; Jones, R.N. Longitudinal (2001–14) analysis of enterococci and VRE causing invasive infections in European and US hospitals, including a contemporary (2010–13) analysis of oritavancin in vitro potency. J. Antimicrob. Chemother. 2016, 71, 3453–3458. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, C.F.; Chambers, H.F. Daptomycin: Another novel agent for treating infections due to drug-resistant gram-positive pathogens. Clin. Infect. Dis. 2004, 38, 994–1000. [Google Scholar] [CrossRef] [Green Version]
- Satlin, M.J.; Nicolau, D.P.; Humphries, R.M.; Kuti, J.L.; Campeau, S.A.; Lewis Li, J.S.; Weinstein, M.P.; Jorgensen, J.H. Development of Daptomycin Susceptibility Breakpoints for Enterococcus faecium and Revision of the Breakpoints for Other Enterococcal Species by the Clinical and Laboratory Standards Institute. Clin. Infect. Dis. 2020, 70, 1240–1246. [Google Scholar] [CrossRef]
- Turnidge, J.; GKahlmeter, G.; Cantón, R.; MacGowan, A.; Giske, C.G.; European Committee on Antimicrobial Susceptibility Testing. Daptomycin in the treatment of enterococcal bloodstream infections and endocarditis: A EUCAST position paper. Clin. Microbiol. Infect. 2020, 26, 1039–1043. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, M.; Cohen, N.; Gilhuley, K.; Babady, N.E.; Seo, S.K.; Sepkowitz, K.A. Emergence of daptomycin-resistant VRE: Experience of a single institution. Infect. Control. Hosp. Epidemiol. 2011, 32, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Kelesidis, T.; Humphries, R.; Uslan, D.Z.; Pegues, D.A. Daptomycin non-susceptible enterococci: An emerging challenge for clinicians. Clin. Infect. Dis. 2011, 52, 228–234. [Google Scholar] [PubMed] [Green Version]
- Miller, W.R.; Bayer, A.S.; Arias, C.A. Mechanism of action and resistance to daptomycin in Staphylococcus aureus and enterococci. Cold. Spring. Harb. Perspect. Med. 2016, 6, a026997. [Google Scholar] [CrossRef] [Green Version]
- Mishra, N.N.; Bayer, A.S.; Tran, T.T.; Shamoo, Y.; Mileykovskaya, E.; Dowhan, W.; Guan, Z.; Arias, C.A. Daptomycin resistance in enterococci is associated with distinct alterations of cell membrane phospholipid content. PLoS ONE 2012, 7, e43958. [Google Scholar] [CrossRef] [PubMed]
- Tankovic, J.; Bachoual, R.; Ouabdesselam, S.; Boudjadja, A.; Soussy, C.J. In-Vitro activity of moxifloxacin against fluoroquinolone-resistant strains of aerobic gram-negative bacilli and Enterococcus faecalis. J. Antimicrob. Chemother. 1999, 43, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Kanematsu, E.; Deguchi, T.; Yasuda, M.; Kawamura, T.; Nishino, Y.; Kawada, Y. Alterations in the GyrA subunit of DNA gyrase and the ParC subunit of DNA topoisomerase IV associated with quinolone resistance in Enterococcus faecalis. Antimicrob. Agents Chemother. 1998, 42, 433–435. [Google Scholar] [CrossRef] [Green Version]
- Oyamada, Y.; Ito, H.; Fujimoto, K.; Asada, R.; Niga, T.; Okamoto, R.; Inoue, M.; Yamagishi, J.I. Combination of known and unknown mechanisms confers high-level resistance to fluoroquinolones in Enterococcus faecium. J. Med. Microbiol. 2006, 55, 729–736. [Google Scholar] [CrossRef]
- Dadashi, M.; Sharifian, P.; Bostanshirin, N.; Hajikhani, B.; Bostanghadiri, N.; Khosravi-Dehaghi, N.; van Belkum, A.; Darban-Sarokhalil, D. The Global Prevalence of Daptomycin, Tigecycline, and Linezolid-Resistant Enterococcus faecalis and Enterococcus faecium Strains from Human Clinical Samples: A Systematic. Rev. Meta-Anal. Front Med. 2021, 8, 720647. [Google Scholar] [CrossRef]
- Marshall, S.H.; Donskey, C.J.; Hutton-Thomas, R.; Salata, R.A.; Rice, L.B. Gene dosage and linezolid resistance in Enterococcus faecium and Enterococcus faecalis. Antimicrob. Agents Chemother. 2002, 46, 3334–3336. [Google Scholar] [CrossRef] [Green Version]
- Kehrenberg, C.; Schwarz, S.; Jacobsen, L.; Hansen, L.H.; Vester, B. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: Methylation of 23S ribosomal RNA at A2503. Mol. Microbiol. 2005, 57, 1064–1073. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, Y.; Cai, J.; Schwarz, S.; Cui, L.; Hu, Z.; Li, J.; Zhao, Q.; He, T.; Wang, D.; et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J. Antimicrob. Chemother. 2015, 70, 2182–2190. [Google Scholar] [CrossRef] [Green Version]
- Vester, B. The cfr and cfr-like multiple resistance genes. Res. Microbiol. 2018, 169, 61–66. [Google Scholar] [CrossRef]
- Yaghoubi, S.; Zekiy, A.O.; Krutova, M.; Gholami, M.; Kouhsari, E.; Sholeh, M.; Ghafouri, Z.; Maleki, F. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: Narrative review. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 1003–1022. [Google Scholar] [CrossRef]
- Baddour, L.M.; Wilson, W.R.; Bayer, A.S.; Fowler, V.G., Jr.; Tleyjeh, I.M.; Rybak, M.J.; Barsic, B.; Lockhart, P.B.; Gewitz, M.H.; Levison, M.E.; et al. Infective Endocarditis in Adults: Diagnosis, Antimicrobial Therapy, and Management of Complications: A Scientific Statement for Healthcare Professionals from the American Heart Association. Circulation 2015, 132, 1435–1486. [Google Scholar] [CrossRef]
- Habib, G.; Lancellotti, P.; Antunes, M.J.; Bongiorni, M.G.; Casalta, J.P.; Del Zotti, F.; Dulgheru, R.; El Khoury, G.; Erba, P.A.; Iung, B.; et al. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur. Heart J. 2015, 36, 3075–3128. [Google Scholar] [PubMed]
- Landman, D.; Quale, J.M.; Mobarakai, N.; Zaman, M.M. Ampicillin plus ciprofloxacin therapy of experimental endocarditis caused by multidrug-resistant Enterococcus faecium. J. Antimicrob. Chemother. 1995, 36, 253–258. [Google Scholar] [CrossRef]
- Fernández-Guerrero, M.; Rouse, M.S.; Henry, N.K.; Geraci, J.E.; Wilson, W.R. In Vitro and in vivo activity of ciprofloxacin against enterococci isolated from patients with infective endocarditis. Antimicrob. Agents Chemother. 1987, 31, 430–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luther, M.K.; Rice, L.B.; LaPlante, K.L. Ampicillin in combination with ceftaroline, cefepime, or ceftriaxone demonstrates equivalent activities in a high-inoculum Enterococcus faecalis infection model. Antimicrob. Agents Chemother. 2016, 60, 3178–3182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werth, B.J.; Shireman, L.M. Pharmacodynamics of ceftaroline plus ampicillin against Enterococcus faecalis in an in vitro pharmacokinetic/pharmacodynamic model of simulated endocardial vegetations. Antimicrob. Agents Chemother. 2017, 61, e02235-16. [Google Scholar] [CrossRef] [Green Version]
- Chow, A.W.; Jewesson, P.J.; Kureishi, A.; Phillips, G.L. Teicoplanin versus vancomycin in the empirical treatment of febrile neutropenic patients. Eur. J. Haematol. Suppl. 1993, 54, 18–24. [Google Scholar] [CrossRef]
- Van der Auwera, P.; Aoun, M.; Meunier, F. Randomized study of vancomycin versus teicoplanin for the treatment of gram-positive bacterial infections in immunocompromised hosts. Antimicrob. Agents Chemother. 1991, 35, 451–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escolà-Vergé, L.; Fernández-Hidalgo, N.; Rodríguez-Pardo, D.; Pigrau, C.; González-López, J.J.; Bartolomé, R.; Almirante, B. Teicoplanin for treating enterococcal infective endocarditis: A retrospective observational study from a referral centre in Spain. Int. J. Antimicrob. Agents. 2019, 53, 165–170. [Google Scholar] [CrossRef]
- De Nadaï, T.; François, M.; Sommet, A.; Dubois, D.; Metsu, D.; Grare, M.; Marchou, B.; Delobel, P.; Martin-Blondel, G. Efficacy of teicoplanin monotherapy following initial standard therapy in Enterococcus faecalis infective endocarditis: A retrospective cohort study. Infection 2019, 47, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Presterl, E.; Graninger, W.; Georgopoulos, A. The efficacy of teicoplanin in the treatment of endocarditis caused by Gram-positive bacteria. J. Antimicrob. Chemother. 1993, 31, 755–766. [Google Scholar] [CrossRef]
- Gatti, M.; Andreoni, M.; Pea, F.; Viale, P. Real-World Use of Dalbavancin in the Era of Empowerment of Outpatient Antimicrobial Treatment: A Careful Appraisal Beyond Approved Indications Focusing on Unmet Clinical Needs. Drug Des. Dev. Ther. 2021, 15, 3349–3378. [Google Scholar] [CrossRef]
- Tobudic, S.; Forstner, C.; Burgmann, H.; Lagler, H.; Ramharter, M.; Steininger, C.; Vossen, M.G.; Winkler, S.; Thalhammer, F. Dalbavancin as Primary and Sequential Treatment for Gram-Positive Infective Endocarditis: 2-Year Experience at the General Hospital of Vienna. Clin. Infect. Dis. 2018, 67, 795–798. [Google Scholar] [CrossRef]
- Hidalgo-Tenorio, C.; Vinuesa, D.; Plata, A.; Dávila, P.M.; Iftimie, S.; Sequera, S.; Loeches, B.; Lopez-Cortés, L.E.; Fariñas, M.C.; Fernández-Roldan, C.; et al. DALBACEN cohort: Dalbavancin as consolidation therapy in patients with endocarditis and/or bloodstream infection produced by gram-positive cocci. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 30. [Google Scholar] [CrossRef] [Green Version]
- Bassetti, M.; Labate, L.; Vena, A.; Giacobbe, D.R. Role or oritavancin and dalbavancin in acute bacterial skin and skin structure infections and other potential indications. Curr. Opin. Infect. Dis. 2021, 34, 96–108. [Google Scholar] [CrossRef]
- Stewart, C.L.; Turner, M.S.; Frens, J.J.; Snider, C.B.; Smith, J.R. Real-World Experience with Oritavancin Therapy in Invasive Gram-Positive Infections. Infect. Dis. Ther. 2017, 6, 277–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.A.; Feeney, E.R.; Kubiak, D.W.; Corey, G.R. Prolonged Use of Oritavancin for Vancomycin-Resistant Enterococcus faecium Prosthetic Valve Endocarditis. Open Forum. Infect. Dis. 2015, 2, ofv156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, M.C.; Grayson, M.L.; Eliopoulos, G.M.; Bayer, A.S. Comparison of daptomycin, vancomycin, and ampicillin-gentamicin for treatment of experimental endocarditis caused by penicillin-resistant enterococci. Antimicrob. Agents Chemother. 1992, 36, 1864–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakoulas, G.; Nonejuie, P.; Nizet, V.; Pogliano, J.; Crum-Cianflone, N.; Haddad, F. Treatment of high-level gentamicin-resistant Enterococcus faecalis endocarditis with daptomycin plus ceftaroline. Antimicrob. Agents. Chemother. 2013, 57, 4042–4045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.R.; Barber, K.E.; Raut, A.; Aboutaleb, M.; Sakoulas, G.; Rybak, M.J. β-Lactam combinations with daptomycin provide synergy against vancomycin-resistant Enterococcus faecalis and Enterococcus faecium. J. Antimicrob. Chemother. 2015, 70, 1738–1743. [Google Scholar] [CrossRef] [Green Version]
- Rice, L.B.; Eliopoulos, G.M.; Moellering, R.C., Jr. In Vitro synergism between daptomycin and fosfomycin against Enterococcus faecalis isolates with high-level gentamicin resistance. Antimicrob. Agents Chemother. 1989, 33, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Rice, L.B.; Eliopoulos, C.T.; Yao, J.D.; Eliopoulos, G.M.; Moellering, R.C., Jr. In Vivo activity of the combination of daptomycin and fosfomycin compared with daptomycin alone against a strain of Enterococcus faecalis with high-level gentamicin resistance in the rat endocarditis model. Diagn. Microbiol. Infect. Dis. 1992, 15, 173–176. [Google Scholar] [CrossRef]
- Farina, C.; Russello, G.; Chinello, P.; Pasticci, B.; Raglio, A.; Ravasio, V.; Rizzi, M.; Scarparo, C.; Vailati, F.; Suter, F.; et al. In Vitro activity effects of twelve antibiotics alone and in association against twenty-seven Enterococcus faecalis strains isolated from Italian patients with infective endocarditis: High in vitro synergistic effect of the association ceftriaxone-fosfomycin. Chemotherapy 2011, 57, 426–433. [Google Scholar]
- Tang, H.J.; Chen, C.C.; Zhang, C.C.; Su, B.A.; Li, C.M.; Weng, T.C.; Chiang, S.R.; Ko, W.C.; Chuang, Y.C. In vitro efficacy of fosfomycin-based combinations against clinical vancomycin-resistant Enterococcus isolates. Diagn. Microbiol. Infect. Dis. 2013, 77, 254–257. [Google Scholar] [CrossRef]
- Pujol, M.; Miró, J.M.; Shaw, E.; Aguado, J.M.; San-Juan, R.; Puig-Asensio, M.; Pigrau, C.; Calbo, E.; Montejo, M.; Rodriguez-Álvarez, R.; et al. Daptomycin Plus Fosfomycin Versus Daptomycin Alone for Methicillin-resistant Staphylococcus aureus Bacteremia and Endocarditis: A Randomized Clinical Trial. Clin. Infect. Dis. 2021, 72, 1517–1525. [Google Scholar] [CrossRef]
- García-de-la-Mària, C.; Gasch, O.; García-Gonzalez, J.; Soy, D.; Shaw, E.; Ambrosioni, J.; Almela, M.; Pericàs, J.M.; Tellez, A.; Falces, C.; et al. The Combination of Daptomycin and Fosfomycin has Synergistic, Potent, and Rapid Bactericidal Activity against Methicillin-Resistant Staphylococcus aureus in a Rabbit Model of Experimental Endocarditis. Antimicrob. Agents Chemother. 2018, 62, e02633-17. [Google Scholar] [CrossRef] [Green Version]
- García-de-la-Mària, C.; Gasch, O.; Castañeda, X.; García-González, J.; Soy, D.; Cañas, M.A.; Ambrosioni, J.; Almela, M.; Pericàs, J.M.; Téllez, A.; et al. Cloxacillin or fosfomycin plus daptomycin combinations are more active than cloxacillin monotherapy or combined with gentamicin against MSSA in a rabbit model of experimental endocarditis. J. Antimicrob. Chemother. 2020, 75, 3586–3592. [Google Scholar] [CrossRef]
- Jenkins, I. Linezolid- and vancomycin-resistant Enterococcus faecium endocarditis: Successful treatment with tigecycline and daptomycin. J. Hosp. Med. 2007, 2, 343–344. [Google Scholar] [CrossRef]
- Polidori, M.; Nuccorini, A.; Tascini, C.; Gemignani, G.; Iapoce, R.; Leonildi, A.; Tagliaferri, E.; Menichetti, F. Vancomycin-resistant Enterococcus faecium (VRE) bacteremia in infective endocarditis successfully treated with combination daptomycin and tigecycline. J. Chemother. 2011, 23, 240–241. [Google Scholar] [CrossRef]
- Schutt, A.C.; Bohm, N.M. Multidrug-resistant Enterococcus faecium endocarditis treated with combination tigecycline and high-dose daptomycin. Ann. Pharmacother. 2009, 43, 2108–2112. [Google Scholar] [CrossRef] [PubMed]
- Barber, K.E.; Smith, J.R.; Raut, A.; Rybak, M.J. Evaluation of tedizolid against Staphylococcus aureus and enterococci with reduced susceptibility to vancomycin, daptomycin or linezolid. J. Antimicrob. Chemother. 2016, 71, 152–155. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, K.; Rohde, H.; Huang, J.; Tikiso, T.; Amann, L.F.; Zeitlinger, M.; Wicha, S.G. A pharmacokinetic-pharmacodynamic (PKPD) model-based analysis of tedizolid against enterococci using the hollow-fibre infection model. J. Antimicrob. Chemother. 2022, 77, 2470–2478. [Google Scholar] [CrossRef]
- Iversen, K.; Høst, N.; Bruun, N.E.; Elming, H.; Pump, B.; Christensen, J.J.; Gill, S.; Rosenvinge, F.; Wiggers, H.; Fuursted, K.; et al. Partial oral treatment of endocarditis. Am. Heart J. 2013, 165, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Iversen, K.; Ihlemann, N.; Gill, S.U.; Madsen, T.; Elming, H.; Jensen, K.T.; Bruun, N.E.; Høfsten, D.E.; Fursted, K.; Christensen, J.J.; et al. Partial Oral versus Intravenous Antibiotic Treatment of Endocarditis. N. Engl. J. Med. 2019, 380, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.R.; Wilkowske, C.J.; Wright, A.J.; Sande, M.A.; Geraci, J.E. Treatment of streptomycin-susceptible and streptomycin-resistant enterococcal endocarditis. Ann. Intern. Med. 1984, 100, 816–823. [Google Scholar] [CrossRef]
- Serra, P.; Brandimarte, C.; Martino, P.; Carlone, S.; Giunchi, G. Synergistic treatment of enterococcal endocarditis: In Vitro and in vivo studies. Arch. Intern. Med. 1977, 137, 1562–1567. [Google Scholar] [CrossRef]
- Mainardi, J.L.; Gutmann, L.; Acar, J.F.; Goldstein, F.W. Synergistic effect of amoxicillin and cefotaxime against Enterococcus faecalis. Antimicrob. Agents Chemother. 1995, 39, 1984–1987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavaldà, J.; Torres, C.; Tenorio, C.; López, P.; Zaragoza, M.; Capdevila, J.A.; Almirante, B.; Ruiz, F.; Borrell, N.; Gomis, X.; et al. Efficacy of ampicillin plus ceftriaxone in treatment of experimental endocarditis due to Enterococcus faecalis strains highly resistant to aminoglycosides. Antimicrob. Agents Chemother. 1999, 43, 639–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, C.H.; Huang, Y.T.; Tsai, H.Y.; Hsueh, P.R. In Vitro synergy of ampicillin with gentamicin, ceftriaxone, and ciprofloxacin against Enterococcus faecalis. Int. J. Antimicrob. Agents 2014, 44, 85–86. [Google Scholar] [CrossRef]
- Gavaldà, J.; Len, O.; Miró, J.M.; Muñoz, P.; Montejo, M.; de Alarcón, A.; de la Torre-Cisneros, J.; Peña, C.; Martínez-Lacasa, X.; Sarriá, C.; et al. Brief communication: Treatment of Enterococcus faecalis endocarditis with ampicillin plus ceftriaxone. Ann. Intern. Med. 2007, 146, 574–579. [Google Scholar] [CrossRef]
- Gavaldá, J.; Onrubia, P.L.; Gómez, M.T.; Gomis, X.; Ramírez, J.L.; Len, O.; Rodríguez, D.; Crespo, M.; Ruíz, I.; Pahissa, A. Efficacy of ampicillin combined with ceftriaxone and gentamicin in the treatment of experimental endocarditis due to Enterococcus faecalis with no high-level resistance to aminoglycosides. J. Antimicrob. Chemother. 2003, 52, 514–517. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Hidalgo, N.; Almirante, B.; Gavaldà, J.; Gurgui, M.; Peña, C.; de Alarcón, A.; Ruiz, J.; Vilacosta, I.; Montejo, M.; Vallejo, N.; et al. Ampicillin plus ceftriaxone is as effective as ampicillin plus gentamicin for treating Enterococcus faecalis infective endocarditis. Clin. Infect. Dis. 2013, 56, 1261–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pericàs, J.M.; Cervera, C.; del Rio, A.; Moreno, A.; Garcia de la Maria, C.; Almela, M.; Falces, C.; Ninot, S.; Castañeda, X.; Armero, Y.; et al. Changes in the treatment of Enterococcus faecalis infective endocarditis in Spain in the last 15 years: From ampicillin plus gentamicin to ampicillin plus ceftriaxone. Clin. Microbiol. Infect. 2014, 20, O1075–O1083. [Google Scholar] [CrossRef] [Green Version]
- Owens, R.C., Jr.; Donskey, C.J.; Gaynes, R.P.; Loo, V.G.; Muto, C.A. Antimicrobial associated risk factors for Clostridium difficile infection. Clin. Infect. Dis. 2008, 46, S19–S31. [Google Scholar] [CrossRef] [Green Version]
- Amberpet, R.; Sistla, S.; Parija, S.C.; Thabah, M.M. Screening for intestinal colonization with vancomycin resistant enterococci and associated risk factors among patients admitted to an adult intensive care unit of a large teaching hospital. J. Clin. Diagn. Res. 2016, 10, DC06–DC09. [Google Scholar] [CrossRef]
- McKinnell, J.A.; Kunz, D.F.; Chamot, E.; Patel, M.; Shirley, R.M.; Moser, S.A.; Baddley, J.W.; Pappas, P.G.; Miller, L.G. Association between vancomycin-resistant enterococci bacteremia and ceftriaxone usage. Infect. Control Hosp. Epidemiol. 2012, 33, 718–724. [Google Scholar] [CrossRef] [Green Version]
- Lakticová, V.; Hutton-Thomas, R.; Meyer, M.; Gurkan, E.; Rice, L.B. Antibiotic-induced enterococcal expansion in the mouse intestine occurs throughout the small bowel and correlates poorly with suppression of competing flora. Antimicrob. Agents Chemother. 2006, 50, 3117–3123. [Google Scholar] [CrossRef] [Green Version]
- Rice, L.B.; Hutton-Thomas, R.; Lakticova, V.; Helfand, M.S.; Donskey, C.J. Beta-lactam antibiotics and gastrointestinal colonization with vancomycin-resistant enterococci. J. Infect. Dis. 2004, 189, 1113–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagiotidis, G.; Bäckström, T.; Asker-Hagelberg, C.; Jandourek, A.; Weintraub, A.; Nord, C.E. Effect of ceftaroline on normal human intestinal microflora. Antimicrob. Agents Chemother. 2010, 54, 1811–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.Y.; Williams, J.D. The activity of vancomycin and teicoplanin alone and in combination with gentamicin or ampicillin against Streptococcus faecalis. Eur. J. Clin. Microbiol. 1984, 3, 436–438. [Google Scholar] [CrossRef]
- Chandrasekar, P.H.; Price, S.; Levine, D.P. In-Vitro evaluation of cefpirome (HR 810), teicoplanin and four other antimicrobials against enterococci. J. Antimicrob. Chemother. 1985, 16, 179–182. [Google Scholar] [CrossRef]
- Pohlod, D.J.; Saravolatz, L.D.; Somerville, M.M. In-Vitro susceptibility of Gram-positive cocci to LY146032 teicoplanin, sodium fusidate, vancomycin, and rifampicin. J. Antimicrob. Chemother. 1987, 20, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Spencer, R.C.; Goering, R. A critical review of the in-vitro activity of teicoplanin. Int. J. Antimicrob. Agents. 1995, 5, 169–177. [Google Scholar] [CrossRef]
- Sullam, P.M.; Täuber, M.G.; Hackbarth, C.J.; Sande, M.A. Therapeutic efficacy of teicoplanin in experimental enterococcal endocarditis. Antimicrob. Agents Chemother. 1985, 27, 135–136. [Google Scholar] [CrossRef] [Green Version]
- López, P.; Gavaldà, J.; Martin, M.T.; Almirante, B.; Gomis, X.; Azuaje, C.; Borrell, N.; Pou, L.; Falcó, V.; Pigrau, C.; et al. Efficacy of teicoplanin-gentamicin given once a day on the basis of pharmacokinetics in humans for treatment of enterococcal experimental endocarditis. Antimicrob. Agents Chemother. 2001, 45, 1387–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.R.; Cheesbrough, J.S.; Makris, M.; Davies, J.M. Teicoplanin administration in patients experiencing reactions to vancomycin. J. Antimicrob. Chemother. 1989, 23, 810–812. [Google Scholar] [CrossRef]
- Hayden, M.K.; Trenholme, G.M.; Schultz, J.E.; Sahm, D.F. In Vivo development of teicoplanin resistance in a VanB Enterococcus faecium isolate. J. Infect. Dis. 1993, 167, 1224–1227. [Google Scholar] [CrossRef]
- Cerón, I.; Muñoz, P.; Marín, M.; Segado, A.; Roda, J.; Valerio, M.; Bouza, E. Efficacy of daptomycin in the treatment of enterococcal endocarditis: A 5 year comparison with conventional therapy. J. Antimicrob. Chemother. 2014, 69, 1669–1674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carugati, M.; Bayer, A.S.; Miró, J.M.; Park, L.P.; Guimarães, A.C.; Skoutelis, A.; Fortes, C.Q.; Durante-Mangoni, E.; Hannan, M.M.; Nacinovich, F.; et al. High-Dose Daptomycin Therapy for Left-Sided Infective Endocarditis: A Prospective Study from the International Collaboration on Endocarditis. Antimicrob. Agents Chemother. 2013, 57, 6213–6222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peghin, M.; Russo, A.; Givone, F.; Ingani, M.; Graziano, E.; Bassetti, M. Should High-dose Daptomycin be an Alternative Treatment Regimen for Enterococcal Endocarditis? Infect. Dis. Ther. 2019, 8, 695–702. [Google Scholar] [CrossRef] [Green Version]
- Cervera, C.; Castañeda, X.; Pericàs, J.M.; Del Río, A.; de la Maria, C.G.; Mestres, C.; Falces, C.; Marco, F.; Moreno, A.; Miró, J.M. Clinical utility of daptomycin in infective endocarditis caused by Gram-positive cocci. Int. J. Antimicrob. Agents. 2011, 38, 365–370. [Google Scholar] [CrossRef]
- Pericàs, J.M.; García-de-la-Mària, C.; Brunet, M.; Armero, Y.; García-González, J.; Casals, G. Early in vitro development of daptomycin non-susceptibility in high-level aminoglycoside-resistant Enterococcus faecalis predicts the efficacy of the combination of high-dose daptomycin plus ampicillin in an in vivo model of experimental endocarditis. J. Antimicrob. Chemother. 2017, 72, 1714–1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, A.D.; Steed, M.E.; Arias, C.A.; Murray, B.E.; Rybak, M.J. Evaluation of standard- and high-dose daptomycin versus linezolid against vancomycin-resistant Enterococcus isolates in an in vitro pharmacokinetic/pharmacodynamic model with simulated endocardial vegetations. Antimicrob. Agents Chemother. 2012, 56, 3174–3180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias, C.A.; Panesso, D.; McGrath, D.M.; Qin, X.; Mojica, M.F.; Miller, C.; Lorena Diaz, L.; Tran, T.T.; Rincon, S.; Barbu, E.M.; et al. Genetic Basis for In Vivo Daptomycin Resistance in Enterococci. N. Engl. J. Med. 2011, 365, 892–900. [Google Scholar] [CrossRef] [Green Version]
- Storm, J.C.; Diekema, D.J.; Kroeger, J.S.; Johnson, S.J.; Johannsson, B. Daptomycin exposure precedes infection and/or colonization with daptomycin non-susceptible enterococcus. Antimicrob. Resist. Infect. Control 2012, 1, 19. [Google Scholar] [CrossRef] [Green Version]
- Sierra-Hoffman, M.; Iznaola, O.; Goodwin, M.; Mohr, J. Combination therapy with ampicillin and daptomycin for treatment of Enterococcus faecalis endocarditis. Antimicrob. Agents Chemother. 2012, 56, 6064. [Google Scholar] [CrossRef] [Green Version]
- Pericàs, J.M.; Moreno, A.; Almela, M.; García-de-la-Mària, C.; Marco, F.; Muñoz, P.; Peña, C.; de Alarcón, A.; Del Río, A.; Eworo, A.; et al. Efficacy and safety of fosfomycin plus imipenem versus vancomycin for complicated bacteraemia and endocarditis due to methicillin-resistant Staphylococcus aureus: A randomized clinical trial. Clin. Microbiol. Infect. 2018, 24, 673–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliva, A.; Furustrand Tafin, U.; Maiolo, E.M.; Jeddari, S.; Bétrisey, B.; Trampuz, A. Activities of fosfomycin and rifampin on planktonic and adherent Enterococcus faecalis strains in an experimental foreign-body infection model. Antimicrob. Agents Chemother. 2014, 58, 1284–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias, C.A.; Murray, B.E. Emergence and management of drug resistant enterococcal infections. Expert. Rev. Anti. Infect. Ther. 2008, 6, 637–655. [Google Scholar] [CrossRef] [PubMed]
- Scheetz, M.H.; Knechtel, S.A.; Malczynski, M.; Postelnick, M.J.; Qi, C. Increasing incidence of linezolid-intermediate or -resistant, vancomycin-resistant Enterococcus faecium strains parallels increasing linezolid consumption. Antimicrob. Agents Chemother. 2008, 52, 2256–2259. [Google Scholar] [CrossRef] [Green Version]
- Bender, J.K.; Cattoir, V.; Hegstad, K.; Sadowy, E.; Coque, T.M.; Westh, H.; Hammerum, A.M.; Schaffer, K.; Burns, K.; Murchan, S.; et al. Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist. Updat. 2018, 40, 25–39. [Google Scholar] [CrossRef]
- Birmingham, M.C.; Rayner, V.R.; Meagher, A.K.; Flavin, S.M.; Batts, D.H.; Schentag, J.J. Linezolid for the treatment of multidrug-resistant, gram-positive infections: Experience from a compassionate-use program. Clin. Infect. Dis. 2003, 36, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Falagas, M.E.; Manta, K.G.; Ntziora, F.; Vardakas, K.Z. Linezolid for the treatment of patients with endocarditis: A systematic review of the published evidence. J. Antimicrob. Chemother. 2006, 58, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Stevens, M.P.; Edmond, M.B. Endocarditis due to vancomycin-resistant enterococci: Case report and review of the literature. Clin. Infect. Dis. 2005, 41, 1134–1142. [Google Scholar] [CrossRef] [Green Version]
- Tsigrelis, C.; Singh, K.V.; Coutinho, T.D.; Murray, B.E.; Baddour, L.M. Vancomycin-resistant Enterococcus faecalis endocarditis: Linezolid failure and strain characterization of virulence factors. J. Clin. Microbiol. 2007, 45, 631–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berdal, J.E.; Eskesen, A. Short-term success, but long-term treatment failure with linezolid for enterococcal endocarditis. Scand. J. Infect. Dis. 2008, 40, 765–766. [Google Scholar] [CrossRef]
- Lauridsen, T.K.; Bruun, L.E.; Rasmussen, R.V.; Arpi, M.; Risum, N.; Moser, C.; Johansen, H.K.; Bundgaard, H.; Hassager, C.; Bruun, N.E.; et al. Linezolid as rescue treatment for left-sided infective endocarditis: An observational, retrospective, multicenter study. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2567–2574. [Google Scholar] [CrossRef] [PubMed]
- Tascini, C.; Bongiorni, M.G.; Doria, R.; Polidori, M.; Lapoce, R.; Fondelli, S.; Tagliaferri, E.; Soldati, E.; Di Paolo, A.; Leonildi, A.; et al. Linezolid for endocarditis: A case series of 14 patients. J. Antimicrob. Chemother. 2011, 66, 679–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, P.; Rodriguez-Creixems, M.; Moreno, M.; Marín, M.; Ramallo, V.; Bouza, E. Linezolid therapy for infective endocarditis. Clin. Microbiol. Infect. 2007, 13, 211–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, P.; De la Villa, S.; Martínez-Sellés, M.; Goenaga, M.A.; Reviejo-Jaka, K.; Arnáiz de Las Revillas, F.; García-Cuello, L.; Hidalgo-Tenorio, C.; Rodríguez-Esteban, M.A.; Antorrena, I.; et al. Linezolid for infective endocarditis: A structured approach based on a national database experience. Medicine 2021, 100, e27597. [Google Scholar] [CrossRef]
- Silva-Del Toro, S.L.; Greenwood-Quaintance, K.E.; Patel, R. In Vitro activity of tedizolid against linezolid-resistant staphylococci and enterococci. Diagn. Microbiol. Infect. Dis. 2016, 85, 102–104. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Love, R.; Adam, H.; Golden, A.; Zelenitsky, S.; Schweizer, F.; Gorityala, B.; Lagacé-Wiens, P.R.; Rubinstein, E.; Walkty, A.; et al. Tedizolid: A novel oxazolidinone with potent activity against multidrug-resistant gram-positive pathogens. Drugs 2015, 75, 253–270. [Google Scholar] [CrossRef]
- Singh, K.V.; Arias, C.A.; Murray, B.E. Efficacy of Tedizolid against Enterococci and Staphylococci, Including cfr+ Strains, in a Mouse Peritonitis Model. Antimicrob. Agents Chemother. 2019, 63, e02627-18. [Google Scholar] [CrossRef] [Green Version]
- Van Nieuwkoop, C.; Visser, L.G.; Groeneveld, J.H.; Kuijper, E.J. Chronic bacterial prostatitis and relapsing Enterococcus faecalis bacteraemia successfully treated with moxifloxacin. J. Infect. 2008, 56, 155–156. [Google Scholar] [CrossRef] [PubMed]
- Markham, A. Delafloxacin: First Global Approval. Drugs 2017, 77, 1481–1486. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.R.; Burton, C.E.; Bevel, K.R. Delafloxacin for the Treatment of Acute Bacterial Skin and Skin Structure Infections. J. Pharm. Technol. 2019, 35, 110–118. [Google Scholar] [CrossRef]
- Bassetti, M.; Melchio, M.; Giacobbe, D.R. Delafloxacin for the treatment of adult patients with community-acquired bacterial pneumonia. Expert. Rev. Anti. Infect. Ther. 2022, 20, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Ellis-Grosse, E.J.; Babinchak, T.; Dartois, N.; Rose, G.; Loh, E. The efficacy and safety of tigecycline in the treatment of skin and skin-structure infections: Results of 2 double-blind phase 3 comparison studies with vancomycin-aztreonam. Clin. Infect. Dis. 2005, 5, S341–S353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babinchak, T.; Ellis-Grosse, E.; Dartois, N.; Rose, G.M.; Loh, E. The efficacy and safety of tigecycline for the treatment of complicated intra-abdominal infections: Analysis of pooled clinical trial data. Clin. Infect. Dis. 2005, 5, S354–S367. [Google Scholar] [CrossRef]
- Entenza, J.M.; Moreillon, P. Tigecycline in combination with other antimicrobials: A review of in vitro, animal and case report studies. Int. J. Antimicrob. Agents 2009, 34, e1–e9. [Google Scholar] [CrossRef]
- Peleg, A.Y.; Potoski, B.A.; Rea, R.; Adams, J.; Sethi, J.; Capitano, B.; Husain, S.; Kwak, E.J.; Bhat, S.V.; Paterson, D.L. Acinetobacter baumannii bloodstream infection while receiving tigecycline: A cautionary report. J. Antimicrob. Chemother. 2007, 59, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Lefort, A.; Lafaurie, M.; Massias, L.; Petegnief, Y.; Saleh-Mghir, A.; Muller-Serieys, C.; Le Guludec, D.; Fantin, B. Activity and diffusion of tigecycline (GAR-936) in experimental enterococcal endocarditis. Antimicrob. Agents Chemother. 2003, 47, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Molina, K.C.; Miller, M.A.; Mueller, S.W.; Van Matre, E.T.; Krsak, M.; Kiser, T.H. Clinical Pharmacokinetics and Pharmacodynamics of Dalbavancin. Clin. Pharmacokinet. 2022, 61, 363–374. [Google Scholar] [CrossRef]
- Oliva, A.; Stefani, S.; Venditti, M.; Di Domenico, E.G. Biofilm-Related Infections in Gram-Positive Bacteria and the Potential Role of the Long-Acting Agent Dalbavancin. Front. Microbiol. 2021, 12, 749685. [Google Scholar] [CrossRef]
- Sader, H.S.; Mendes, R.E.; Pfaller, M.A.; Flamm, R.K. Antimicrobial activity of dalbavancin tested against Gram-positive organisms isolated from patients with infective endocarditis in US and European medical centres. J. Antimicrob. Chemother. 2019, 74, 1306–1310. [Google Scholar] [CrossRef]
- Arhin, F.F.; Draghi, D.C.; Pillar, C.M.; Parr, T.R., Jr.; Moeck, G.; Sahm, D.F. Comparative in vitro activity profile of oritavancin against recent gram-positive clinical isolates. Antimicrob. Agents. Chemother. 2009, 53, 4762–4771. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Sader, H.S.; Flamm, R.K.; Castanheira, M.; Mendes, R.E. Oritavancin in vitro activity against gram-positive organisms from European and United States medical centers: Results from the SENTRY Antimicrobial Surveillance Program for 2010–2014. Diagn. Microbiol. Infect. Dis. 2018, 91, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Saravolatz, L.D.; Stein, G.E. Oritavancin: A Long-Half-Life Lipoglycopeptide. Clin. Infect. Dis. 2015, 61, 627–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Q.; Karau, M.J.; Patel, R. In vitro activity of oritavancin against planktonic and biofilm states of vancomycin-susceptible and vancomycin-resistant enterococci. Diagn. Microbiol. Infect. Dis. 2018, 91, 348–350. [Google Scholar] [CrossRef]
- Scoble, P.J.; Reilly, J.; Tillotson, G.S. Real-World Use of Oritavancin for the Treatment of Osteomyelitis. Drugs Real World Outcomes 2020, 7, 46–54. [Google Scholar] [CrossRef]
- Morrisette, T.; Miller, M.A.; Montague, B.T.; Barber, G.R.; McQueen, R.B.; Krsak, M. On- and off-label utilization of dalbavancin and oritavancin for Gram-positive infections. J. Antimicrob. Chemother. 2019, 74, 2405–2416. [Google Scholar] [CrossRef]
- Pericàs, J.M.; Cervera, C.; Moreno, A.; Garcia-de-la-Mària, C.; Almela, M.; Falces, C.; Quintana, E.; Vidal, B.; Llopis, J.; Fuster, D.; et al. Outcome of Enterococcus faecalis infective endocarditis according to the length of antibiotic therapy: Preliminary data from a cohort of 78 patients. PLoS ONE 2018, 13, e0192387. [Google Scholar]
- Ramos-Martínez, A.; Pericàs, J.M.; Fernández-Cruz, A.; Muñoz, P.; Valerio, M.; Kestler, M.; Montejo, M.; Fariñas, M.C.; Sousa, D.; Domínguez, F.; et al. Four weeks versus six weeks of ampicillin plus ceftriaxone in Enterococcus faecalis native valve endocarditis: A prospective cohort study. PLoS ONE 2020, 15, e0237011. [Google Scholar] [CrossRef]
- Herzstein, J.; Ryan, J.L.; Mangi, R.J.; Greco, T.P.; Andriole, V.T. Optimal therapy for enterococcal endocarditis. Am. J. Med. 1984, 76, 186–191. [Google Scholar] [CrossRef]
- Olaison, L.; Schadewitz, K.; Swedish Society of Infectious Diseases Quality Assurance Study Group for Endocarditis. Enterococcal endocarditis in Sweden, 1995–1999, can shorter therapy with aminoglycosides be used? Clin. Infect. Dis. 2002, 34, 159–166. [Google Scholar] [PubMed] [Green Version]
- Dahl, A.; Rasmussen, R.V.; Bundgaard, H.; Hassager, C.; Bruun, L.E.; Lauridsen, T.K.; Moser, C.; Sogaard, P.; Arpi, M.; Bruun, N.E. Enterococcus faecalis infective endocarditis: A pilot study of the relationship between duration of gentamicin treatment and outcome. Circulation 2013, 127, 1810–1817. [Google Scholar] [CrossRef] [Green Version]
- Buchholtz, K.; Larsen, C.T.; Hassager, C.; Bruun, N.E. Severity of gentamicin’s nephrotoxic effect on patients with infective endocarditis: A prospective observational cohort study of 373 patients. Clin. Infect. Dis. 2009, 48, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, S.E.; Vigliani, G.A.; Fowler, V.G., Jr.; Abrutyn, E.; Corey, G.R.; Levine, D.P.; Rupp, M.E.; Chambers, H.F.; Karchmer, A.W.; Boucher, H.W. Initial low-dose gentamicin for Staphylococcus aureus bacteremia and endocarditis is nephrotoxic. Clin. Infect. Dis. 2009, 48, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Buchholtz, K.; Larsen, C.T.; Hassager, C.; Bruun, N.E. Infective endocarditis: Long-term reversibility of kidney function impairment. A 1-y post-discharge follow-up study. Scand. J. Infect. Dis. 2010, 42, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Chirouze, C.; Athan, E.; Alla, F.; Chu, V.H.; Ralph Corey, G.; Selton-Suty, C.; Erpelding, M.L.; Miro, J.M.; Olaison, L.; Hoen, B.; et al. Enterococcal endocarditis in the beginning of the 21st century: Analysis from the International Collaboration on Endocarditis-Prospective Cohort Study. Eur. Heart J. 2019, 40, 3222–3232. [Google Scholar]
- Steckelberg, J.M.; Murphy, J.G.; Ballard, D.; Bailey, K.; Tajik, A.J.; Taliercio, C.P.; Giuliani, E.R.; Wilson, W.R. Emboli in infective endocarditis: The prognostic value of echocardiography. Ann. Intern. Med. 1991, 114, 635–640. [Google Scholar] [CrossRef] [PubMed]
- García-Cabrera, E.; Fernández-Hidalgo, N.; Almirante, B.; Ivanova-Georgieva, R.; Noureddine, M.; Plata, A.; Lomas, J.M.; Gálvez-Acebal, J.; Hidalgo-Tenorio, C.; Ruíz-Morales, J.; et al. Neurological complications of infective endocarditis: Risk factors, outcome, and impact of cardiac surgery: A multicenter observational study. Circulation 2013, 127, 2272–2284. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.N.; Baker, C.A.; Kind, A.C.; Sannes, M.R. The history and evolution of outpatient parenteral antibiotic therapy (OPAT). Int. J. Antimicrob. Agents 2015, 46, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Andrews, M.M.; von Reyn, C.F. Patient selection criteria and management guidelines for outpatient parenteral antibiotic therapy for native valve infective endocarditis. Clin. Infect. Dis. 2001, 33, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Pericàs, J.M.; Llopis, J.; González-Ramallo, V.; Goenaga, M.Á.; Muñoz, P.; García-Leoni, M.E.; Fariñas, M.C.; Pajarón, M.; Ambrosioni, J.; Luque, R.; et al. Outpatient Parenteral Antibiotic Treatment for Infective Endocarditis: A Prospective Cohort Study from the GAMES Cohort. Clin. Infect. Dis. 2019, 69, 1690–1700. [Google Scholar] [CrossRef] [PubMed]
- Pericàs, J.M.; Llopis, J.; Muñoz, P.; González-Ramallo, V.; García-Leoni, M.E.; de Alarcón, A.; Luque, R.; Fariñas, M.C.; Goenaga, M.Á.; Hernández-Meneses, M.; et al. Outpatient Parenteral Antibiotic Treatment vs. Hospitalization for Infective Endocarditis: Validation of the OPAT-GAMES Criteria. Open Forum. Infect. Dis. 2022, 9, ofac442. [Google Scholar] [CrossRef]
- Dubé, L.; Caillon, J.; Jacqueline, C.; Bugnon, D.; Potel, G.; Asseray, N. The optimal aminoglycoside and its dosage for the treatment of severe Enterococcus faecalis infection. An experimental study in the rabbit endocarditis model. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2545–2547. [Google Scholar] [CrossRef] [PubMed]
- Fantin, B.; Carbon, C. Importance of the aminoglycoside dosing regimen in the penicillin-netilmicin combination for treatment of Enterococcus faecalis-induced experimental endocarditis. Antimicrob. Agents Chemother. 1990, 34, 2387–2391. [Google Scholar] [CrossRef] [Green Version]
- Marangos, M.N.; Nicolau, D.P.; Quintiliani, R.; Nightingale, C.H. Influence of gentamicin dosing interval on the efficacy of penicillin-containing regimens in experimental Enterococcus faecalis endocarditis. J. Antimicrob. Chemother. 1997, 39, 519–522. [Google Scholar] [CrossRef] [Green Version]
- Hessen, M.T.; Pitsakis, P.G.; Levison, M.E. Postantibiotic effect of penicillin plus gentamicin versus Enterococcus faecalis in vitro and in vivo. Antimicrob. Agents Chemother. 1989, 33, 608–611. [Google Scholar] [CrossRef] [Green Version]
- Gavaldà, J.; Cardona, P.J.; Almirante, B.; Capdevila, J.A.; Laguarda, M.; Pou, L.; Crespo, E.; Pigrau, C.; Pahissa, A. Treatment of experimental endocarditis due to Enterococcus faecalis using once-daily dosing regimen of gentamicin plus simulated profiles of ampicillin in human serum. Antimicrob. Agents Chemother. 1996, 40, 173–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwank, S.; Blaser, J. Once-versus thrice-daily netilmicin combined with amoxicillin, penicillin, or vancomycin against Enterococcus faecalis in a pharmacodynamic in vitro model. Antimicrob. Agents Chemother. 1996, 40, 2258–2261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagkalis, S.; Mantadakis, E.; Mavros, M.N.; Ammari, C.; Falagas, M.E. Pharmacological considerations for the proper clinical use of aminoglycosides. Drugs 2011, 71, 2277–2294. [Google Scholar] [CrossRef]
- Goenaga-Sánchez, M.A.; Kortajarena-Urkola, X.; Bouza-Santiago, E.; Muñoz-García, P.; Verde-Moreno, E.; Fariñas-Álvarez, M.C.; Teira-Cobo, R.; Pericás-Pulido, J.M.; de Alarcón-González, A.; Sousa-Regueiro, D.; et al. Aetiology of renal failure in patients with infective endocarditis. The role of antibiotics. Med. Clin. 2017, 149, 331–338. [Google Scholar] [CrossRef]
- Gil-Navarro, M.V.; Lopez-Cortes, L.E.; Luque-Marquez, R.; Galvez-Acebal, J.; de Alarcón-González, A. Outpatient parenteral antimicrobial therapy in Enterococcus faecalis infective endocarditis. J. Clin. Pharm. Ther. 2018, 43, 220–223. [Google Scholar] [CrossRef]
- Herrera-Hidalgo, L.; de Alarcón, A.; López-Cortes, L.E.; Luque-Márquez, R.; López-Cortes, L.F.; Gutiérrez-Valencia, A.; Gil-Navarro, M.V. Is Once-Daily High-Dose Ceftriaxone plus Ampicillin an Alternative for Enterococcus faecalis Infective Endocarditis in Outpatient Parenteral Antibiotic Therapy Programs? Antimicrob. Agents Chemother. 2020, 65, e02099-20. [Google Scholar] [CrossRef]
- Patel, I.H.; Miller, K.; Weinfeld, R.; Spicehandler, J. Multiple intravenous dose pharmacokinetics of ceftriaxone in man. Chemotherapy 1981, 27, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Perry, T.R.; Schentag, J.J. Clinical use of ceftriaxone: A pharmacokinetic-pharmacodynamic perspective on the impact of minimum inhibitory concentration and serum protein binding. Clin. Pharmacokinet. 2001, 40, 685–694. [Google Scholar] [CrossRef]
- Grégoire, M.; Dailly, E.; Le Turnier, P.; Garot, D.; Guimard, T.; Bernard, L.; Tattevin, P.; Vandamme, Y.M.; Hoff, J.; Lemaitre, F.; et al. High-Dose Ceftriaxone for Bacterial Meningitis and Optimization of Administration Scheme Based on Nomogram. Antimicrob. Agents. Chemother. 2019, 63, e00634-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luderer, J.R.; Patel, I.H.; Durkin, J.; Schneck, D.W. Age and ceftriaxone kinetics. Clin. Pharm. Ther. 1984, 35, 19–25. [Google Scholar] [CrossRef]
- Patel, I.H.; Sugihara, J.G.; Weinfeld, R.E.; Wong, E.G.; Siemsen, A.W.; Berman, S.J. Ceftriaxone pharmacokinetics in patients with various degrees of renal impairment. Antimicrob. Agents Chemother. 1984, 25, 438–442. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Hidalgo, L.; Lomas-Cabezas, J.M.; López-Cortés, L.E.; Luque-Márquez, R.; López-Cortés, L.F.; Martínez-Marcos, F.J.; de la Torre-Lima, J.; Plata-Ciézar, A.; Hidalgo-Tenorio, C.; García-López, M.V.; et al. Ampicillin Plus Ceftriaxone Combined Therapy for Enterococcus faecalis Infective Endocarditis in OPAT. J. Clin. Med. 2021, 11, 7. [Google Scholar] [CrossRef]
- Jimenez-Toro, I.; Rodriguez, C.A.; Zuluaga, A.F.; Otalvaro, J.D.; Perez-Madrid, H.; Vesga, O. Pharmacokinetic/Pharmacodynamic Index Linked to In Vivo Efficacy of the Ampicillin-Ceftriaxone Combination against Enterococcus faecalis. Antimicrob. Agents Chemother. 2023, 67, e0096622. [Google Scholar] [CrossRef]
- Jimenez-Toro, I.; Rodriguez, C.A.; Zuluaga, A.F.; Otalvaro, J.D.; Vesga, O. A new pharmacodynamic approach to study antibiotic combinations against enterococci in vivo: Application to ampicillin plus ceftriaxone. PLoS ONE 2020, 15, e0243365. [Google Scholar] [CrossRef]
- Maher, M.; Jensen, K.J.; Lee, D.; Nix, D.E. Stability of Ampicillin in Normal Saline and Buffered Normal Saline. Int. J. Pharm. Compd. 2016, 20, 338–342. [Google Scholar] [PubMed]
- Hellinger, W.C.; Rouse, M.S.; Rabadan, P.M.; Henry, N.K.; Steckelberg, J.M.; Wilson, W.R. Continuous intravenous versus intermittent ampicillin therapy of experimental endocarditis caused by aminoglycoside-resistant enterococci. Antimicrob. Agents Chemother. 1992, 36, 1272–1275. [Google Scholar] [CrossRef] [Green Version]
- Lewis, P.O.; Jones, A.; Amodei, R.J.; Youssef, D. Continuous Infusion Ampicillin for the Outpatient Management of Enterococcal Endocarditis: A Case Report and Literature Review. J. Pharm Pract. 2020, 33, 392–394. [Google Scholar] [CrossRef]
- Nickolai, D.J.; Lammel, C.J.; Byford, B.A.; Morris, J.H.; Kaplan, E.B.; Hadley, W.K.; Brooks, G.F. Effects of storage temperature and pH on the stability of eleven beta-lactam antibiotics in MIC trays. J. Clin. Microbiol. 1985, 21, 366–370. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Hidalgo, L.; Gil-Navarro, M.V.; Dilly Penchala, S.; López-Cortes, L.E.; de Alarcón, A.; Luque-Márquez, R.; López-Cortes, L.F.; Gutiérrez-Valencia, A. Ceftriaxone pharmacokinetics by a sensitive and simple LC-MS/MS method: Development and application. J. Pharm. Biomed. Anal. 2020, 189, 113484. [Google Scholar] [CrossRef]
- Herrera-Hidalgo, L.; López-Cortes, L.E.; Luque-Márquez, R.; Gálvez-Acebal, J.; de Alarcón, A.; López-Cortes, L.F.; Gutiérrez-Valencia, A.; Gil-Navarro, M.V. Ampicillin and Ceftriaxone Solution Stability at Different Temperatures in Outpatient Parenteral Antimicrobial Therapy. Antimicrob. Agents Chemother. 2020, 64, e00309-20. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Rubio, B.; Herrera-Hidalgo, L.; Luque-Márquez, R.; de Alarcón, A.; López-Cortés, L.E.; Luque-Pardos, S.; Gutiérrez-Urbón, J.M.; Fernández-Polo, A.; Gil-Navarro, M.V.; Gutiérrez-Valencia, A. Stability of Ampicillin plus Ceftriaxone Combined in Elastomeric Infusion Devices for Outpatient Parenteral Antimicrobial Therapy. Antibiotics 2023, 12, 432. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Hidalgo, L.; de Alarcón, A.; López-Cortes, L.E.; Luque-Márquez, R.; López-Cortes, L.F.; Gutiérrez-Valencia, A.; Gil-Navarro, M.V. Enterococcus faecalis Endocarditis and Outpatient Treatment: A Systematic Review of Current Alternatives. Antibiotics 2020, 9, 657. [Google Scholar] [CrossRef]
- Phillips, B.; Watson, G.H. Oral treatment of subacute bacterial endocarditis in children. Arch. Dis. Child. 1977, 52, 235–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chetty, S.; Mitha, A.S. High-dose oral amoxycillin in the treatment of infective endocarditis. S. Afr. Med. J. 1988, 73, 709–710. [Google Scholar]
- Stamboulian, D.; Bonvehi, P.; Arevalo, C.; Bologna, R.; Cassetti, I.; Scilingo, V.; Efron, E. Antibiotic management of outpatients with endocarditis due to penicillin-susceptible streptococci. Rev. Infect. Dis. 1991, 13, S160–S163. [Google Scholar] [CrossRef]
- Tissot-Dupont, H.; Gouriet, F.; Oliver, L.; Jamme, M.; Casalta, J.P.; Jimeno, M.T.; Arregle, F.; Lavoute, C.; Hubert, S.; Philip, M.; et al. High-dose trimethoprim sulfamethoxazole and clindamycin for Staphylococcus aureus endocarditis. Int. J. Antimicrob. Agents 2019, 54, 143–148. [Google Scholar] [CrossRef]
- Mzabi, A.; Kerneis, S.; Richaud, C.; Podglajen, I.; Fernandez-Gerlinger, M.P.; Mainardi, J.L. Switch to oral antibiotics in the treatment of infective endocarditis is not associated with increased risk of mortality in non-severely ill patients. Clin. Microbiol. Infect. 2016, 22, 607–612. [Google Scholar] [CrossRef] [Green Version]
- Demonchy, E.; Dellamonica, P.; Roger, P.M.; Bernard, E.; Cua, E.; Pulcini, C. Audit of antibiotic therapy used in 66 cases of endocarditis. Med. Mal. Inf. 2011, 41, 602–607. [Google Scholar] [CrossRef]
- Parker, R.H.; Fossieck, B.E. Intravenous followed by oral antimicrobial therapy for staphylococcal endocarditis. Ann. Intern. Med. 1980, 93, 832–834. [Google Scholar] [CrossRef]
- Dworkin, R.J.; Lee, B.L.; Sande, M.A.; Chambers, H.F. Treatment of right-sided Staphylococcus aureus endocarditis in intravenous drug users with ciprofloxacin and rifampicin. Lancet 1989, 334, 1071–1073. [Google Scholar] [CrossRef] [PubMed]
- Heldman, A.W.; Hartert, T.V.; Ray, S.C.; Daoud, E.G.; Kowalski, T.E.; Pompili, V.J.; Sisson, S.D.; Tidmore, W.C.; vom Eigen, K.A.; Goodman, S.N.; et al. Oral antibiotic treatment of right sided staphylococcal endocarditis in injection drug users: Prospective randomized comparison with parenteral therapy. Am. J. Med. 1996, 101, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Colli, A.; Campodonico, R.; Gherli, T. Early switch from vancomycin to oral linezolid for treatment of Gram-positive heart valve endocarditis. Ann. Thorac. Surg. 2007, 84, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Pries-Heje, M.M.; Wiingaard, C.; Ihlemann, N.; Gill, S.U.; Bruun, N.E.; Elming, H.; Povlsen, J.A.; Madsen, T.; Jensen, K.T.; Fursted, K.; et al. Five-Year Outcomes of the Partial Oral Treatment of Endocarditis (POET) Trial. N. Engl. J. Med. 2022, 386, 601–602. [Google Scholar] [CrossRef]
- Bundgaard, J.S.; Iversen, K.; Pries-Heje, M.; Ihlemann, N.; Bak, T.S.; Østergaard, L.; Gill, S.U.; Madsen, T.; Elming, H.; Jensen, K.T.; et al. The impact of partial-oral endocarditis treatment on anxiety and depression in the POET trial. J. Psychosom. Res. 2022, 154, 110718. [Google Scholar] [CrossRef]
Antimicrobial Class | Mechanism of Resistance Genes/Operons | Species | Comments |
---|---|---|---|
Beta-lactams -High level resistance * but susceptibility to beta-lactamase inhibitors -High level resistance ** | Production of constitutive bet-lactamase or plasmid-mediated -Low-affinity PBP4 -Overproduction of PBP5 | E. faecalis (rare in E. faecium) E. faecalis E. faecium | *: High level resistance to penicillin, ampicillin, and piperacillin. Sensitive to beta-lactamase inhibitors and carbapenems **: High level resistance to penicillin, ampicillin, piperacillin and carbapenems |
Aminoglycosides -Low-level resistance -High-level resistance | -Defective aerobic transport across the cell membrane -Modification of the aminoglycoside by different enzymes (phosphotransferase, nucleotidyl transferase, acetyltransferase.) induced by self- transferable plasmids -Alteration of the ribosomal target site | Enterococcus spp. | -Structural resistance in all species -Resistance to several (gentamycin) or all aminoglycosides -Chromosomal mutation. Confers resistance to Streptomycin |
Glycopeptides (principal phenotypes) -VanA (R to high levels of vancomycin and teicoplanin) -VanB (R to variable levels of vancomycin and susceptible to teicoplanin) -VanC (Low level R to vancomycin and susceptible to teicoplanin) -VanD (R to intermediate levels of vancomycin and low levels of teicoplanin) -VanE (R to low levels of vancomycin and susceptible to teicoplanin) -VanG (R to low levels of vancomycin and susceptible to teicoplanin) -VanN (R to low levels of vancomycin and susceptible to teicoplanin) -VanM (R to high levels of vancomycin and teicoplanin) | Transposons inserted into the chromosome or on plasmids. Induced by either vancomycin or teicoplanin Transposons inserted into the chromosome or on plasmids. Induced only by teicoplanin Located in the chromosome and non-transferable. Located in the chromosome and non-transferable. Expressed constitutively. Located in the chromosome and not transferable. Located on the chromosome and transferable. Expressed constitutively. Could be transferred by conjugation. Plasmid-encoded resistance. Could be transferred by conjugation | E. faecium, E. faecalis E. faecium, E. faecalis E. gallinarum, E. casseliflavus, E. flavescens E. faecium E. faecalis E. faecium E. faecalis E. faecalis E. faecium E. faecium | Synthesis of peptidoglycan precursors with low affinity for pentaglycopeptides ending in D-Ala-D-lac instead of D-Ala-D-Ala Synthesis of peptidoglycan precursors with low affinity for pentaglycopeptides ending in D-Ala-D-Ser instead of D-Ala-D-Ala |
Quinolones | -Alterations in the GyrA or GyrB subunits of DNA gyrase (gene gyrA/gyrB) and/or the partC subunit of DNA topoisomerase Iv (gene parC) -qnr’-like gene -Efflux pump | E. faecalis E. faecalis, E. faecium E. faecalis, E. faecium | Most resistant strains have mutations in the two genes, that may be followed by additional mutations that increase the level of resistance. -Encodes protein that protects DNA gyrase from inhibition by the drug -Efflux pumps are yet not identified but are strongly suspected (Low-level resistance) |
Oxazolidines | -rRNA genes -cfr (plasmid-mediated) -optrA (plasmid-mediated) | E. faecalis, E. faecium E. faecalis, E. faecium E. faecalis, E. faecium | -Multiple mutations reducing affinity in ribosomal subunit. -Methylation of 23S rRNA. Confers resistance to other antimicrobials. -Encodes an ABC transporter |
Daptomycin | -YycFGHIJ/LiaFSR -Mutation in gene encoding cardiolipin synthase | E. faecalis, E. faecium | -Stress-sensing response system -Alteration in membrane charge and fluidity |
Macrolides and clindamycin | Methylation of an adenosine residue in the 23S rRNA (gene ermB) | Enterococcus spp. | Located on plasmids and transposons. Constitutive or inducible. Confers resistance to various antimicrobials |
Tetracyclines | -Active eflflux (gene tetL) -Protection of the ribosome (genes tetN and tetM) -Overexpression of gene tet(L) and tet (M) | Enterococcus spp. Enterococcus spp. E. faecium | -Low-level resistance -Located on plasmid and transposons. Constitutive or inducible. Confers high-level resistance. -Reported with Tigecycline |
Chloramphenicol | Chloramphenicol acetyltransferase (gene cat) | Enterococcus spp. | Produces acetylation of chloramphenicol. Plasmid-mediated |
Sulphonamides and trimethoprim | No gene identified. | Enterococcus spp. | Enterococci can use exogenous folates |
Indication | Recommendation | Dosage and Route | Duration (Weeks) | Comments |
---|---|---|---|---|
Strains susceptible to Penicillin and Gentamicin in patients who can tolerate β-Lactam therapy | Ampicillin/amoxicillin or penicillin G plus gentamicin | 2 g IV every 4 h 18–30 million U/24 h IV either continuously or in 6 equally divided doses 3 mg/kg ideal body weight in 2–3 equally divided doses IV/IM [65] or in one dose [66] | 4–6 4–6 2–6 | 4-wk therapy recommended for patients with native valve and symptoms of illness < 3 months. 6-wk therapy recommended for native valve symptoms > 3 months and for patients with prosthetic valve or prosthetic material. - Gentamycin is less toxic in single administration eviting drug levels monitorization and could be given for two weeks with similar efficacy [66]. |
Ampicillin plus ceftriaxone | 2 g IV every 4 h 2 g IV/IM every 12 h | 6 6 | - This combination is active against E. faecalis strains with and without HLAR *, being the combination of choice in patients with HLAR E. faecalis endocarditis. - Recommended for patients with initial creatinine clearance < 50 mL/min or who develop creatinine clearance < 50 mL/min during therapy with gentamicin-containing regimen. This combination is not active against E. faecium | |
Strains susceptible to Penicillin and resistant to Aminoglycosides or Streptomycin-susceptible/ Gentamicin-resistant in patients able to tolerate β-Lactam therapy [65] | Ampicillin plus ceftriaxone | 2 g IV every 4 h 2 g IV/IM every 12 h | 6 6 | |
Ampicillin or penicillin G plus Streptomycin # | 2 g IV every 4 h 18–30 million U/24 h IV either continuously or in 6 equally divided doses 15 mg/kg ideal body weight per 24 h IV or IM in 2 equally divided doses | 4–6 4–6 4–6 | Use is reasonable only for patients with availability of rapid Streptomycin serum concentrations. Patients with creatinine clearance < 50 mL/min or who develop creatinine clearance < 50 mL/min during treatment should be treated with double–β-lactam regimen. Patients with abnormal cranial nerve VIII function should be treated with double–β-lactam regimen. | |
Patients unable to tolerate β-Lactam or Penicillin-resistant Enterococcus species and Aminoglycoside-susceptible strains | Vancomycin plus gentamycin ¶ | 30 mg/kg per 24 h IV in 2 equally divided doses 3 mg/kg per 24 h IV in 3 equally divided doses [65] or in a single dose [66] | 6 6 | For β-lactamase–producing strain, if able to tolerate a β-lactam antibiotic, ampicillin-sulbactam plus aminoglycoside therapy may be used § If resistance is due to PBP5 alteration, use vancomycin-based regimens |
Enterococcus species caused by strains resistant to Penicillin, Aminoglycosides, and Vancomycin | Linezolid or Daptomycin (plus) Ampicillin | 600 mg IV or orally every 12 h 10–12 mg/kg IV per dose 200 mg/kg/day IV in 4–6 doses | >6 >6 | Linezolid use may be associated with potentially severe bone marrow suppression, neuropathy, and numerous drug interactions. haematological toxicity must be monitored. Patients with IE caused by these strains should be treated by a care team including specialists in infectious diseases, cardiology, cardiac surgery, clinical pharmacy, and, in children, pediatrics. Cardiac valve replacement may be necessary for cure. |
Quinupristin–dalfopristin | 7.5 mg/kg IV every 8 h | >6 | Quinupristin–dalfopristin is not active against E. faecalis |
Recommendation | Dosage and Route | Duration (Weeks) | References | Comments |
---|---|---|---|---|
Beta-lactam combined | ||||
Ampicillin plus Ciprofloxacin/ofloxacin | 2 g IV every 4 h 500 mg/8–12 h | 6–8 | [67,68] | Very few experience in E. faecalis bacteremia |
Ceftobiprole or Ceftarolin With/without gentamycin | 500–1000 mg/12 h IV 400 mg IV every 12 h 3 mg/kg/day IV or IM | 6–9 2 | [28,69,70] | Only in vitro studies and in experimental model of peritonitis |
Lipo/Glucopeptides | ||||
Teicoplanin with/without gentamycin | 6–10 mg/Kg/d IV or IM per dose 3 mg/kg/day IV or IM | 6–8 2 | [71,72,73,74,75] | Good results in experimental models and in humans as sequential therapy for IE |
Dalbavancin | 1500 mg in a single dose IV, then 1000 mg every two weeks | 6–8 | [76,77,78] | Good results in humans as sequentially therapy for IE |
Oritavancin | 1200 mg in a single dose IV, then 800 mg every week | 6–8 | [79,80,81] | Very scarce experience reported in human IE |
Daptomycin-based regimens | ||||
Daptomycin plus ceftaroline or ceftobiprole | 10–12 mg/kg IV per dose 400 mg IV every 12 h 500 mg IV every 8 h | 6–8 | [69,70,82,83,84] | Synergistic effects in vitro and experimental models. Very few experience in human IE. |
Daptomycin plus imipenem | 10–12 mg/kg IV per dose 1 gr IV every 6 h | 6–8 | [84] | Synergistic effects in vitro and experimental models |
Daptomycin plus Fosfomycin with/without gentamycin | 10–12 mg/kg IV per dose 3 g IV every 6 h 3 mg/kg/day IV or IM | 6–8 | [85,86,87,88,89,90,91] | Synergistic effects in vitro and experimental models. Good results for S. aureus IE |
Daptomycin plus Tigecycline | 10–12 mg/kg IV per dose 50–100 mg/12 h | 6–8 | [92,93,94] | Always Consider the use of higher doses of tigecycline |
Oxazolidines | ||||
Tedizolid | 200 mg IV or PO/24 h | [67,68,95,96] | Less toxic and more active in vitro than linezolid. There is no experience among IE in humans | |
Oral regimens | ||||
Amoxicillin plus moxifloxacin | 1 g. every 6 h 400 mg every 12 h | 4–6 | [97,98] | Oral treatment must be considered as a sequentially strategy in selected patients. |
Amoxicillin plus Linezolid | 1 g. every 6 h 600 mg very 12 h | 4–6 | [97,98] | Oral treatment must be considered as a sequentially strategy in selected patients. |
Amoxicillin plus Rifampicin | 1 g. every 6 h 600 mg every 12 h | 4–6 | [97,98] | Oral treatment must be considered as a sequentially strategy in selected patients. |
Moxifloxacin plus Linezolid | 400 mg every 12 h 600 mg very 12 h | 4–6 | [97,98] | Oral treatment must be considered as a sequentially strategy in selected patients. |
Antimicrobial | GFR > 50 | GFR = 50–30 | GFR = 30–10 | GFR < 10 ¶ |
---|---|---|---|---|
Beta-lactams | ||||
Penicillin | 4 M UI/4 h IV | 4 M UI/6 h IV | 3 M UI/8 h IV | 2 M UI/12 h IV |
Ampicillin | 2 g/4 h IV | 2 g/6 h IV | 2 g/8 h IV | 1 g/12 h IV |
Amoxicilin | 2 g/4 h IV 1 g/6 h po | 2 g/6 h IV 1 g/8 h po | 2 g/8 h IV 0.5–1 g/12 h po | 1 g/12 h IV 0.5–1 g/24 h po |
Ceftriaxone | 2 g/12 h IV | 2 g/12 h IV | 2 g/12 h IV | 2 g/24 h IV |
Ceftriboprole | 500–1000 mg/12 h IV | 500 mg/12 h IV | 250 mg/12 h IV | 250 mg/12 h IV |
Ceftaroline | 400 mg/8–12 h IV | 400 mg/8–12 h IV | 300 mg/8–12 h IV | 200 mg/8–12 h IV |
Imipenem | 1 g/6–8 h IV | 0.5–1 g/8 h IV | 0.5 g/8–12 h IV | 0.5 g/12 h IV |
Meropenem | 1 g/6–8 h IV | 1 g/8 h IV | 1 g/12 h IV | 1 g/24 h IV |
Aminoglycosides | ||||
Gentamycin * | 3 mg/kg/24 h IV | 3 mg/kg/24–36 h IV | 3 mg/kg/48 h IV | 1–2 mg/kg/48 h IV |
Glucopeptides | ||||
Vancomycin * | 15–20 mg/kg/8–12 h IV | 15 mg/kg/24 h IV | 15 mg/kg/24–48 h IV | 15 mg/kg/72 h IV |
Teicoplanin * | 10–12 mg/Kg/24 h IV | 10–12 mg/kg/48 h IV | 10–12 mg/kg/72 h IV | 10–12 mg/kg/72 h IV |
Gluco/lipo peptides | ||||
Daptomycin | 8–12 mg/Kg/24 h IV | 8–12 mg/kg/24 h IV | 8–12 mg/kg/48 h IV | 8–12 mg/kg/48 h IV |
Dalbabancin | 1500 mg/2 weeks IV | 1000–1500 mg/2 weeks IV | 1000 mg/2 weeks IV | 1000 mg/2 weeks IV |
Oritavancin | 1200 mg/2 weeks IV | 1200 mg/2 weeks IV | 1200 mg/2 weeks IV | 1200 mg/2 weeks IV |
Oxazolidines | ||||
Linezolid | 600 mg/12 h IV/po | 600 mg/12 h IV/po | 600 mg/12 h IV/po | 600 mg/12 h IV/po |
Tedizolid | 200 mg/24 h IV/po | 200 mg/24 h IV/po | 200 mg/24 h IV/po | 200 mg/24 h IV/po |
Quinolones | ||||
Ciprofloxacin | 400 mg/8 h IV 750 mg/12 h po | 400 mg/12 h IV 500 mg/12 h po | 200 mg/8–12 h IV 500 mg/12 h po | 400 mg/24 h IV 750 mg/24 h po |
Levofloxacin | 500 mg/12 h IV/po | 500 mg/24 h IV/po | 250 mg/24 h IV/po | 250 mg/24–48 h IV/po |
Moxifloxacin | 400 mg/24 h po | 400 mg/24 h po | 400 mg/24 h po | 400 mg/24 h po |
Others | ||||
Fosfomycin | 4 g/8 h IV | 4 g/12 h IV | 4 g/24 h IV | 2–4 g/24–48 h IV |
Tigecycline | 50–100 mg/12 h IV | 50–100 mg/12 h IV | 50–100 mg/12 h IV | 50–100 mg/12 h IV |
Rifampin | 600–1200 mg/24 h IV/po | 600–1200 mg/24 h IV/po | 600 mg/24 h IV/po | 600 mg/24 h IV/po |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera-Hidalgo, L.; Fernández-Rubio, B.; Luque-Márquez, R.; López-Cortés, L.E.; Gil-Navarro, M.V.; de Alarcón, A. Treatment of Enterococcus faecalis Infective Endocarditis: A Continuing Challenge. Antibiotics 2023, 12, 704. https://doi.org/10.3390/antibiotics12040704
Herrera-Hidalgo L, Fernández-Rubio B, Luque-Márquez R, López-Cortés LE, Gil-Navarro MV, de Alarcón A. Treatment of Enterococcus faecalis Infective Endocarditis: A Continuing Challenge. Antibiotics. 2023; 12(4):704. https://doi.org/10.3390/antibiotics12040704
Chicago/Turabian StyleHerrera-Hidalgo, Laura, Beatriz Fernández-Rubio, Rafael Luque-Márquez, Luis E. López-Cortés, Maria V. Gil-Navarro, and Arístides de Alarcón. 2023. "Treatment of Enterococcus faecalis Infective Endocarditis: A Continuing Challenge" Antibiotics 12, no. 4: 704. https://doi.org/10.3390/antibiotics12040704
APA StyleHerrera-Hidalgo, L., Fernández-Rubio, B., Luque-Márquez, R., López-Cortés, L. E., Gil-Navarro, M. V., & de Alarcón, A. (2023). Treatment of Enterococcus faecalis Infective Endocarditis: A Continuing Challenge. Antibiotics, 12(4), 704. https://doi.org/10.3390/antibiotics12040704