Alternatives to Antimicrobial Treatment in Bovine Mastitis Therapy: A Review
Abstract
:1. Introduction
2. Conventional Strategies of Control and Treatment of Bovine Mastitis
2.1. Biosecurity
2.2. Antibiotic Therapy
2.3. Vaccination
3. Alternative Strategies—Potential Solutions
3.1. Nanotherapy
3.2. Bacteriophage Therapy
3.3. Phytotherapy
3.4. Homeopathy
3.5. Bacteria-Derived Antimicrobials
3.6. Animal-Derived Antimicrobials
3.7. Other Alternatives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boboš, S.; Radinović, M.; Vidić, B.; Pajić, M.; Vidić, V.; Galfi, A. Mastitis therapy: Direct and indirect costs. Biotechnol. Anim. Husb. 2013, 29, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Ali, T.; Raziq, A.; Wazir, I.; Ullah, R.; Shah, P.; Ali, M.I.; Han, B.; Liu, G. Prevalence of mastitis pathogens and antimicrobial susceptibility of isolates from cattle and buffaloes in Northwest of Pakistan. Front. Vet. Sci. 2021, 8, 1148. [Google Scholar] [CrossRef] [PubMed]
- Rogožarski, D.; Dimitrijević, G.; Dobrosavljević, I. Participation of diagnosed mastitits in cows in milk hygiene of Branicevo district in 2002. Arch. Vet. Med. 2011, 4, 65–71. [Google Scholar] [CrossRef]
- Neculai-Valeanu, A.S.; Ariton, A.M.; Mădescu, B.M.; Rîmbu, C.M.; Creangă, Ş. Nanomaterials and essential oils as candidates for developing novel treatment options for bovine mastitis. Animals 2021, 11, 1625. [Google Scholar] [CrossRef]
- Bradley, A.J. Bovine mastitis: An evolving disease. Vet. J. 2002, 164, 116–128. [Google Scholar] [CrossRef]
- Krömker, V.; Leimbach, S. Mastitis treatment—Reduction in antibiotic usage in dairy cows. Reprod. Domest. Anim. 2017, 52, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Cvetnić, L.; Samardžija, M.; Habrun, B.; Kompes, G.; Benić, M. Microbiological monitoring of mastitis pathogens in the control of udder health in dairy cows. Slov. Vet. Res. 2016, 53, 131–140. [Google Scholar]
- Costa, E.O.d.; Gandra, C.; Pires, M.; Coutinho, S.; Castilho, W.; Teixeira, C. Survey of bovine mycotic mastitis in dairy herds in the State of São Paulo, Brazil. Mycopathologia 1993, 124, 13–17. [Google Scholar] [CrossRef]
- Huilca-Ibarra, M.P.; Vasco-Julio, D.; Ledesma, Y.; Guerrero-Freire, S.; Zurita, J.; Castillejo, P.; Barceló Blasco, F.; Yanez, L.; Changoluisa, D.; Echeverría, G. High Prevalence of Prototheca bovis Infection in Dairy Cattle with Chronic Mastitis in Ecuador. Vet. Sci. 2022, 9, 659. [Google Scholar] [CrossRef]
- Prusa, B. Alternative solutions to antibiotics in mastitis treatment for dairy cows-a review. Anim. Sci. Pap. Rep. 2020, 38, 117–133. [Google Scholar]
- Lopes, T.S.; Fontoura, P.S.; Oliveira, A.; Rizzo, F.A.; Silveira, S.; Streck, A.F. Use of plant extracts and essential oils in the control of bovine mastitis. Res. Vet. Sci. 2020, 131, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, R.R.; Krömker, V.; Bjarnsholt, T.; Dahl-Pedersen, K.; Buhl, R.; Jørgensen, E. Biofilm research in bovine mastitis. Front. Vet. Sci. 2021, 8, 656810. [Google Scholar] [CrossRef] [PubMed]
- Tezera, M.; Aman Ali, E. Prevalence and associated risk factors of Bovine mastitis in dairy cows in and around Assosa town, Benishangul-Gumuz Regional State, Western Ethiopia. Vet. Med. Sci. 2021, 7, 1280–1286. [Google Scholar] [CrossRef] [PubMed]
- Pascu, C.; Herman, V.; Iancu, I.; Costinar, L. Etiology of Mastitis and Antimicrobial Resistance in Dairy Cattle Farms in the Western Part of Romania. Antibiotics 2022, 11, 57. [Google Scholar] [CrossRef] [PubMed]
- Kovačević, Z.; Samardžija, M.; Horvat, O.; Tomanić, D.; Radinović, M.; Bijelić, K.; Vukomanović, A.G.; Kladar, N. Is There a Relationship between Antimicrobial Use and Antibiotic Resistance of the Most Common Mastitis Pathogens in Dairy Cows? Antibiotics 2022, 12, 3. [Google Scholar] [CrossRef]
- Gajdács, M.; Urbán, E.; Stájer, A.; Baráth, Z. Antimicrobial resistance in the context of the sustainable development goals: A brief review. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 71–82. [Google Scholar] [CrossRef]
- Mestrovic, T.; Aguilar, G.R.; Swetschinski, L.R.; Ikuta, K.S.; Gray, A.P.; Weaver, N.D.; Han, C.; Wool, E.E.; Hayoon, A.G.; Hay, S.I. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: A cross-country systematic analysis. Lancet Public Health 2022, 7, e897–e913. [Google Scholar] [CrossRef]
- European Commission. EU Action on Antimicrobial Resistance. Available online: https://health.ec.europa.eu/antimicrobial-resistance/eu-action-antimicrobial-resistance_en (accessed on 1 March 2023).
- Lancet, T. Antimicrobial resistance: Time to repurpose the Global Fund. Lancet 2022, 399, 335. [Google Scholar] [CrossRef]
- Rajamanickam, K.; Yang, J.; Chidambaram, S.B.; Sakharkar, M.K. Enhancing Drug Efficacy against Mastitis Pathogens—An In Vitro Pilot Study in Staphylococcus aureus and Staphylococcus epidermidis. Animals 2020, 10, 2117. [Google Scholar] [CrossRef]
- Gomes, F.; Henriques, M. Control of bovine mastitis: Old and recent therapeutic approaches. Curr. Microbiol. 2016, 72, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.N.; Han, S.G. Bovine mastitis: Risk factors, therapeutic strategies, and alternative treatments—A review. Asian-Australas. J. Anim. Sci. 2020, 33, 1699–1713. [Google Scholar] [CrossRef] [PubMed]
- Barkema, H.W.; Green, M.; Bradley, A.J.; Zadoks, R. Invited review: The role of contagious disease in udder health. J. Dairy Sci. 2009, 92, 4717–4729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alarcón, L.V.; Allepuz, A.; Mateu, E. Biosecurity in pig farms: A review. Porc. Health Manag. 2021, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Butucel, E.; Balta, I.; McCleery, D.; Morariu, F.; Pet, I.; Popescu, C.A.; Stef, L.; Corcionivoschi, N. Farm Biosecurity Measures and Interventions with an Impact on Bacterial Biofilms. Agriculture 2022, 12, 1251. [Google Scholar] [CrossRef]
- Reshi, A.A.; Husain, I.; Bhat, S.; Rehman, M.U.; Razak, R.; Bilal, S.; Mir, M.R. Bovine mastitis as an evolving disease and its impact on the dairy industry. Int. J. Curr. Res. Rev. 2015, 7, 48. [Google Scholar]
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [Green Version]
- Dinsmore, R.P. Biosecurity for mammary diseases in dairy cattle. Vet. Clin. Food Anim. Pract. 2002, 18, 115–131. [Google Scholar] [CrossRef]
- Laanen, M.; Maes, D.; Hendriksen, C.; Gelaude, P.; De Vliegher, S.; Rosseel, Y.; Dewulf, J. Pig, cattle and poultry farmers with a known interest in research have comparable perspectives on disease prevention and on-farm biosecurity. Prev. Vet. Med. 2014, 115, 1–9. [Google Scholar] [CrossRef]
- Damiaans, B.; Renault, V.; Sarrazin, S.; Berge, A.C.; Pardon, B.; Saegerman, C.; Dewulf, J. A risk-based scoring system to quantify biosecurity in cattle production. Prev. Vet. Med. 2020, 179, 104992. [Google Scholar] [CrossRef]
- Rissala, A. Quantitative Assessment of Biosecurity on Finnish Dairy Cattle Farms by Using Biocheck. UGent™ Tool; Eesti Maaülikool: Tartu, Estonia, 2022. [Google Scholar]
- Kjosevski, M.; Kondratenko, V.; Angjelovski, B.; Janevski, A.; Simovikj, M.; Djadjovski, I.; Dodovski, A.; Krstevski, K. Biosecurity Assessment and Critical Improvement Points of Dairy Cattle Farms; University of Cyril and Methodius: Skopje, Macedonia, 2022. [Google Scholar]
- Oliveira, V.H.; Anneberg, I.; Voss, H.; Sørensen, J.T.; Thomsen, P.T. Attitudes of Danish dairy farmers towards biosecurity. Livest. Sci. 2018, 214, 153–160. [Google Scholar] [CrossRef]
- Sarrazin, S.; Cay, A.B.; Laureyns, J.; Dewulf, J. A survey on biosecurity and management practices in selected Belgian cattle farms. Prev. Vet. Med. 2014, 117, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Brennan, M.L.; Wright, N.; Wapenaar, W.; Jarratt, S.; Hobson-West, P.; Richens, I.F.; Kaler, J.; Buchanan, H.; Huxley, J.N.; O’Connor, H.M. Exploring attitudes and beliefs towards implementing cattle disease prevention and control measures: A qualitative study with dairy farmers in Great Britain. Animals 2016, 6, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayers, R.; Sayers, G.; Mee, J.F.; Good, M.; Bermingham, M.L.; Grant, J.; Dillon, P. Implementing biosecurity measures on dairy farms in Ireland. Vet. J. 2013, 197, 259–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talbot, B.G.; Lacasse, P. Progress in the development of mastitis vaccines. Livest. Prod. Sci. 2005, 98, 101–113. [Google Scholar] [CrossRef]
- Stanković, B.; Hristov, S.; Zlatanović, Z.; Bojkovski, J.; Maksimović, N. Sustainibility ahd Efficiency of Dairy Farms Biosecurity Plans. Agro-Knowl. J. 2016, 16, 437–453. [Google Scholar] [CrossRef] [Green Version]
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anđelković, J.; Radonjić, V. Usage of intramammary antimicrobial veterinary medicinal products in the republic of Serbia from 2011 to 2014. Serb. J. Exp. Clin. Res. 2017, 18, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 2020, 9, 918. [Google Scholar] [CrossRef]
- Ruegg, P. Management of mastitis on organic and conventional dairy farms. J. Anim. Sci. 2009, 87, 43–55. [Google Scholar] [CrossRef]
- Pyörälä, S. Treatment of mastitis during lactation. Ir. Vet. J. 2009, 62, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidović, J.; Stojanović, D.; Cagnardi, P.; Kladar, N.; Horvat, O.; Ćirković, I.; Bijelić, K.; Stojanac, N.; Kovačević, Z. Farm Animal Veterinarians’ Knowledge and Attitudes toward Antimicrobial Resistance and Antimicrobial Use in the Republic of Serbia. Antibiotics 2022, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- Vakanjac, S.; Pavlović, V.; Magaš, V.; Pavlović, M.; Đurić, M.; Maletić, M.; Nedić, S.; Sočo, I. Investigations of efficacy of intramammary applied antimicrobials and glucocorticosteroides in the treatment of subclinical and clinical mastitis in cows. Vet. Glas. 2013, 67, 15–27. [Google Scholar] [CrossRef]
- Radinović, M.; Davidov, I.; Kovačević, Z.; Stojanović, D.; Galfi, A.; Erdeljan, M. Osnovni principi terapije mastitisa krava. Ветеринарски Журнал Републике Српске 2019, 19, 105–109. [Google Scholar] [CrossRef]
- Abdi, R.D.; Gillespie, B.E.; Ivey, S.; Pighetti, G.M.; Almeida, R.A.; Kerro Dego, O. Antimicrobial resistance of major bacterial pathogens from dairy cows with high somatic cell count and clinical mastitis. Animals 2021, 11, 131. [Google Scholar] [CrossRef]
- Kabelitz, T.; Aubry, E.; van Vorst, K.; Amon, T.; Fulde, M. The role of Streptococcus spp. in bovine mastitis. Microorganisms 2021, 9, 1497. [Google Scholar] [CrossRef]
- Cagnardi, P.; Grilli, G.; Villa, R.; Di Cesare, F.; Piccirillo, A. Antimicrobials in farm animals: Impact on the environment and consequent antimicrobial resistance dissemination. Int. J. Health Anim. Sci. Food Saf. 2018, 5, 22. [Google Scholar]
- Virto, M.; Santamarina-García, G.; Amores, G.; Hernández, I. Antibiotics in dairy production: Where is the Problem? Dairy 2022, 3, 541–564. [Google Scholar] [CrossRef]
- Kovačević, Z.; Tomanić, D.; Čabarkapa, I.; Šarić, L.; Stanojević, J.; Bijelić, K.; Galić, I.; Ružić, Z.; Erdeljan, M.; Kladar, N. Chemical Composition, Antimicrobial Activity, and Withdrawal Period of Essential Oil-Based Pharmaceutical Formulation in Bovine Mastitis Treatment. Int. J. Environ. Res. Public Health 2022, 19, 16643. [Google Scholar] [CrossRef]
- Liang, S.; Qi, Y.; Yu, H.; Sun, W.; Raza, S.H.A.; Alkhorayef, N.; Alkhalil, S.S.; Salama, E.E.A.; Zhang, L. Bacteriophage Therapy as an Application for Bacterial Infection in China. Antibiotics 2023, 12, 417. [Google Scholar] [CrossRef]
- Svircev, A.; Roach, D.; Castle, A. Framing the future with bacteriophages in agriculture. Viruses 2018, 10, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanelli, A.; Mantegazza, L.; Hendrickx, S.; Capua, I. Thermostable Vaccines in Veterinary Medicine: State of the Art and Opportunities to Be Seized. Vaccines 2022, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Forner, M.; Cañas-Arranz, R.; Defaus, S.; De León, P.; Rodríguez-Pulido, M.; Ganges, L.; Blanco, E.; Sobrino, F.; Andreu, D. Peptide-based vaccines: Foot-and-mouth disease virus, a paradigm in animal health. Vaccines 2021, 9, 477. [Google Scholar] [CrossRef]
- Zhylkaidar, A.; Oryntaev, K.; Altenov, A.; Kylpybai, E.; Chayxmet, E. Prevention of Bovine Mastitis through Vaccination. Arch. Razi Inst. 2021, 76, 1381. [Google Scholar] [PubMed]
- Milićević, V.; Veljović, L.; Maksimović-Zorić, J.; Žutić, J.; Kureljušić, B.; Radosavljević, V.; Jezdimirović, N.; Radojičić, S. Some adverse events following immunization in veterinary medicine. Arh. Vet. Med. 2018, 11, 67–77. [Google Scholar] [CrossRef]
- Vakanjac, S.; Maletić, M.; Pavlović, M.; Obrenović, S.; Bojkovski, J.; Magaš, V. Značaj vakcinacije u prevenciji stafilokoknih mastitisa krava. Vet. Žurnal Repub. Srp. 2017, 17, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Giraudo, J.A.; Calzolari, A.; Rampone, H.; Rampone, A.; Giraudo, A.T.; Bogni, C.; Larriestra, A.; Nagel, R. Field trials of a vaccine against bovine mastitis. 1. Evaluation in heifers. J. Dairy Sci. 1997, 80, 845–853. [Google Scholar] [CrossRef]
- Pereira, U.; Oliveira, D.; Mesquita, L.; Costa, G.; Pereira, L. Efficacy of Staphylococcus aureus vaccines for bovine mastitis: A systematic review. Vet. Microbiol. 2011, 148, 117–124. [Google Scholar] [CrossRef]
- Collado, R.; Montbrau, C.; Sitjà, M.; Prenafeta, A. Study of the efficacy of a Streptococcus uberis mastitis vaccine against an experimental intramammary infection with a heterologous strain in dairy cows. J. Dairy Sci. 2018, 101, 10290–10302. [Google Scholar] [CrossRef] [Green Version]
- Piepers, S.; Prenafeta, A.; Verbeke, J.; De Visscher, A.; March, R.; De Vliegher, S. Immune response after an experimental intramammary challenge with killed Staphylococcus aureus in cows and heifers vaccinated and not vaccinated with Startvac, a polyvalent mastitis vaccine. J. Dairy Sci. 2017, 100, 769–782. [Google Scholar] [CrossRef] [Green Version]
- Landin, H.; Mörk, M.J.; Larsson, M.; Waller, K.P. Vaccination against Staphylococcus aureus mastitis in two Swedish dairy herds. Acta Vet. Scand. 2015, 57, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tashakkori, N.; Khoramian, B.; Farhoodi Moghadam, M.; Heidarpour, M.; Mashayekhi, K.; Farzaneh, N. Evaluating the effectiveness of two bovine mastitis vaccines and their influences on oxidant and antioxidant capacities of milk. Trop. Anim. Health Prod. 2020, 52, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Sharun, K.; Dhama, K.; Tiwari, R.; Gugjoo, M.B.; Iqbal Yatoo, M.; Patel, S.K.; Pathak, M.; Karthik, K.; Khurana, S.K.; Singh, R. Advances in therapeutic and managemental approaches of bovine mastitis: A comprehensive review. Vet. Q. 2021, 41, 107–136. [Google Scholar] [CrossRef] [PubMed]
- Weiermayer, P.; Frass, M.; Peinbauer, T.; Ellinger, L.; De Beukelaer, E. Evidence-Based Human Homeopathy and Veterinary Homeopathy. Comment on Bergh et al. A Systematic Review of Complementary and Alternative Veterinary Medicine:“Miscellaneous Therapies”. Animals 2022, 12, 2097. [Google Scholar] [CrossRef] [PubMed]
- Jafary, F.; Motamedi, S.; Karimi, I. Veterinary nanomedicine: Pros and cons. Vet. Med. Sci. 2023, 9, 494–506. [Google Scholar] [CrossRef]
- Sapino, S.; Chindamo, G.; Chirio, D.; Morel, S.; Peira, E.; Vercelli, C.; Gallarate, M. Nanocarriers in Veterinary Medicine: A Challenge for Improving Osteosarcoma Conventional Treatments. Nanomaterials 2022, 12, 4501. [Google Scholar] [CrossRef]
- El-Sayed, A.; Kamel, M. Advanced applications of nanotechnology in veterinary medicine. Environ. Sci. Pollut. Res. 2020, 27, 19073–19086. [Google Scholar] [CrossRef]
- Osama, E.; El-Sheikh, S.M.; Khairy, M.H.; Galal, A.A. Nanoparticles and their potential applications in veterinary medicine. J. Adv. Vet. Res. 2020, 10, 268–273. [Google Scholar]
- Kalińska, A.; Jaworski, S.; Wierzbicki, M.; Gołębiewski, M. Silver and copper nanoparticles—An alternative in future mastitis treatment and prevention? Int. J. Mol. Sci. 2019, 20, 1672. [Google Scholar] [CrossRef] [Green Version]
- Algharib, S.A.; Dawood, A.; Xie, S. Nanoparticles for treatment of bovine Staphylococcus aureus mastitis. Drug Deliv. 2020, 27, 292–308. [Google Scholar] [CrossRef] [Green Version]
- Cardozo, V.F.; Lancheros, C.A.; Narciso, A.M.; Valereto, E.C.; Kobayashi, R.K.; Seabra, A.B.; Nakazato, G. Evaluation of antibacterial activity of nitric oxide-releasing polymeric particles against Staphylococcus aureus and Escherichia coli from bovine mastitis. Int. J. Pharm. 2014, 473, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Lange, A.; Grzenia, A.; Wierzbicki, M.; Strojny-Cieslak, B.; Kalińska, A.; Gołębiewski, M.; Radzikowski, D.; Sawosz, E.; Jaworski, S. Silver and copper nanoparticles inhibit biofilm formation by mastitis pathogens. Animals 2021, 11, 1884. [Google Scholar] [CrossRef] [PubMed]
- Hozyen, H.; Ibrahim, E.; Khairy, E.; El-Dek, S. Enhanced antibacterial activity of capped zinc oxide nanoparticles: A step towards the control of clinical bovine mastitis. Vet. World 2019, 12, 1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera Aguayo, P.; Bruna Larenas, T.; Alarcón Godoy, C.; Cayupe Rivas, B.; González-Casanova, J.; Rojas-Gómez, D.; Caro Fuentes, N. Antimicrobial and antibiofilm capacity of chitosan nanoparticles against wild type strain of Pseudomonas sp. isolated from milk of cows diagnosed with bovine mastitis. Antibiotics 2020, 9, 551. [Google Scholar] [CrossRef] [PubMed]
- Orellano, M.S.; Bohl, L.P.; Breser, M.L.; Isaac, P.; Falcone, R.D.; Porporatto, C. A comparative study of antimicrobial activity of differently-synthesized chitosan nanoparticles against bovine mastitis pathogens. Soft Matter 2021, 17, 694–703. [Google Scholar] [CrossRef]
- Alghuthaymi, M.A.; Hassan, A.A.; Kalia, A.; Sayed El Ahl, R.M.; El Hamaky, A.A.; Oleksak, P.; Kuca, K.; Abd-Elsalam, K.A. Antifungal nano-therapy in veterinary medicine: Current status and future prospects. J. Fungi 2021, 7, 494. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.; Anderson, J.; Carter, L.; Donjacour, E.; Paros, M. In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis. J. Dairy Sci. 2016, 99, 2053–2062. [Google Scholar] [CrossRef]
- Titze, I.; Lehnherr, T.; Lehnherr, H.; Krömker, V. Efficacy of bacteriophages against Staphylococcus aureus isolates from bovine mastitis. Pharmaceuticals 2020, 13, 35. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, A.S. Phage therapy—Constraints and possibilities. Upsala J. Med. Sci. 2014, 119, 192–198. [Google Scholar] [CrossRef]
- Basdew, I.; Laing, M. Mini-Review: Biological control of bovine mastitis using bacteriophage therapy. Sci. Against Microb. Pathog. Commun. Curr. Res. Technol. Adv. 2011, 1, 386–393. [Google Scholar]
- Baker, S.J.; Payne, D.J.; Rappuoli, R.; De Gregorio, E. Technologies to address antimicrobial resistance. Proc. Natl. Acad. Sci. USA 2018, 115, 12887–12895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makumi, A.; Mhone, A.L.; Odaba, J.; Guantai, L.; Svitek, N. Phages for Africa: The potential benefit and challenges of phage therapy for the livestock sector in sub-Saharan Africa. Antibiotics 2021, 10, 1085. [Google Scholar] [CrossRef] [PubMed]
- Ferriol-González, C.; Domingo-Calap, P. Phage therapy in livestock and companion animals. Antibiotics 2021, 10, 559. [Google Scholar] [CrossRef] [PubMed]
- Amiri Fahliyani, S.; Beheshti-Maal, K.; Ghandehari, F. Novel lytic bacteriophages of Klebsiella oxytoca ABG-IAUF-1 as the potential agents for mastitis phage therapy. FEMS Microbiol. Lett. 2018, 365, fny223. [Google Scholar] [CrossRef] [PubMed]
- Iwano, H.; Inoue, Y.; Takasago, T.; Kobayashi, H.; Furusawa, T.; Taniguchi, K.; Fujiki, J.; Yokota, H.; Usui, M.; Tanji, Y. Bacteriophage ΦSA012 has a broad host range against Staphylococcus aureus and effective lytic capacity in a mouse mastitis model. Biology 2018, 7, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breyne, K.; Honaker, R.W.; Hobbs, Z.; Richter, M.; Żaczek, M.; Spangler, T.; Steenbrugge, J.; Lu, R.; Kinkhabwala, A.; Marchon, B. Efficacy and safety of a bovine-associated Staphylococcus aureus phage cocktail in a murine model of mastitis. Front. Microbiol. 2017, 8, 2348. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, Z. Isolation and characterization of a virulent bacteriophage SPW specific for Staphylococcus aureus isolated from bovine mastitis of lactating dairy cattle. Mol. Biol. Rep. 2014, 41, 5829–5838. [Google Scholar] [CrossRef]
- Shan, Y.; Yang, N.; Teng, D.; Wang, X.; Mao, R.; Hao, Y.; Ma, X.; Fan, H.; Wang, J. Recombinant of the staphylococcal bacteriophage lysin CHAPk and its elimination against Streptococcus agalactiae biofilms. Microorganisms 2020, 8, 216. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Gao, Y.; Xue, Y.; Liu, Y.; Zeng, X.; Cheng, Y.; Ma, J.; Wang, H.; Sun, J.; Wang, Z. Bacteriophage cocktails protect dairy cows against mastitis caused by drug resistant Escherichia coli infection. Front. Cell. Infect. Microbiol. 2021, 11, 690377. [Google Scholar] [CrossRef]
- Vander Elst, N.; Linden, S.B.; Lavigne, R.; Meyer, E.; Briers, Y.; Nelson, D.C. Characterization of the bacteriophage-derived endolysins PlySs2 and PlySs9 with in vitro lytic activity against bovine mastitis Streptococcus uberis. Antibiotics 2020, 9, 621. [Google Scholar] [CrossRef]
- Zhao, W.; Shi, Y.; Liu, G.; Yang, J.; Yi, B.; Liu, Y.; Kastelic, J.P.; Han, B.; Gao, J. Bacteriophage has beneficial effects in a murine model of Klebsiella pneumoniae mastitis. J. Dairy Sci. 2021, 104, 3474–3484. [Google Scholar] [CrossRef] [PubMed]
- Oechslin, F. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses 2018, 10, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nehme, R.; Andrés, S.; Pereira, R.B.; Ben Jemaa, M.; Bouhallab, S.; Ceciliani, F.; López, S.; Rahali, F.Z.; Ksouri, R.; Pereira, D.M. Essential oils in livestock: From health to food quality. Antioxidants 2021, 10, 330. [Google Scholar] [CrossRef] [PubMed]
- Groot, M.J.; Berendsen, B.J.; Cleton, N.B. The Next Step to Further Decrease Veterinary Antibiotic Applications: Phytogenic Alternatives and Effective Monitoring; the Dutch Approach. Front. Vet. Sci. 2021, 8, 709750. [Google Scholar] [CrossRef]
- Guo, W.; Qiu, M.; Pu, Z.; Long, N.; Yang, M.; Ren, K.; Ning, R.; Zhang, S.; Peng, F.; Sun, F. Geraniol-a potential alternative to antibiotics for bovine mastitis treatment without disturbing the host microbial community or causing drug residues and resistance. Front. Cell. Infect. Microbiol. 2023, 13, 131. [Google Scholar] [CrossRef]
- Pașca, C.; Mărghitaș, L.A.; Dezmirean, D.S.; Matei, I.A.; Bonta, V.; Pașca, I.; Chirilă, F.; Cîmpean, A.; Fiț, N.I. Efficacy of natural formulations in bovine mastitis pathology: Alternative solution to antibiotic treatment. J. Vet. Res. 2020, 64, 523–529. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Lim, S.H.E.; Hu, C.P.; Yiap, B.C. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria. Phytomedicine 2013, 20, 710–713. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef]
- Amber, R.; Adnan, M.; Tariq, A.; Khan, S.N.; Mussarat, S.; Hashem, A.; Al-Huqail, A.A.; Al-Arjani, A.-B.F.; Abd_Allah, E.F. Antibacterial activity of selected medicinal plants of northwest Pakistan traditionally used against mastitis in livestock. Saudi J. Biol. Sci. 2018, 25, 154–161. [Google Scholar] [CrossRef]
- Pașca, C.; Mărghitaș, L.; Dezmirean, D.; Bobiș, O.; Bonta, V.; Chirilă, F.; Matei, I.; Fiț, N. Medicinal plants based products tested on pathogens isolated from mastitis milk. Molecules 2017, 22, 1473. [Google Scholar] [CrossRef] [Green Version]
- Vitale, S.; Colanero, S.; Placidi, M.; Di Emidio, G.; Tatone, C.; Amicarelli, F.; D’Alessandro, A.M. Phytochemistry and Biological Activity of Medicinal Plants in Wound Healing: An Overview of Current Research. Molecules 2022, 27, 3566. [Google Scholar] [CrossRef] [PubMed]
- Kovačević, Z.; Radinović, M.; Čabarkapa, I.; Kladar, N.; Božin, B. Natural agents against bovine mastitis pathogens. Antibiotics 2021, 10, 205. [Google Scholar] [CrossRef] [PubMed]
- Cheesman, M.J.; Ilanko, A.; Blonk, B.; Cock, I.E. Developing new antimicrobial therapies: Are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn. Rev. 2017, 11, 57. [Google Scholar] [PubMed] [Green Version]
- Ebani, V.V.; Mancianti, F. Use of essential oils in veterinary medicine to combat bacterial and fungal infections. Vet. Sci. 2020, 7, 193. [Google Scholar] [CrossRef]
- Tomanić, D.Z.; Stanojević, J.B.; Galić, I.M.; Ružić, Z.N.; Kukurić, T.B.; Tešin, N.B.; Prpa, B.P.; Kovačević, Z.R. Review of trends in essential oils as alternatives to antibiotics in bovine mastitis treatment. Zb. Matice Srp. Za Prir. Nauk. 2022, 142, 47–60. [Google Scholar] [CrossRef]
- Rhimi, W.; Mohammed, M.A.; Zarea, A.A.K.; Greco, G.; Tempesta, M.; Otranto, D.; Cafarchia, C. Antifungal, antioxidant and antibiofilm activities of essential oils of Cymbopogon spp. Antibiotics 2022, 11, 829. [Google Scholar] [CrossRef]
- Tomanić, D.; Božin, B.; Čabarkapa, I.; Kladar, N.; Radinović, M.; Maletić, M.; Kovačević, Z. Chemical Composition, Antioxidant and Antibacterial Activity of Two Different Essential Oils Against Mastitis Associated Pathogens. Acta Vet. 2022, 72, 45–58. [Google Scholar] [CrossRef]
- Barreiros, Y.; de Meneses, A.C.; Alves, J.L.F.; Mumbach, G.D.; Ferreira, F.A.; Machado, R.A.F.; Bolzan, A.; de Araujo, P.H.H. Xanthan gum-based film-forming suspension containing essential oils: Production and in vitro antimicrobial activity evaluation against mastitis-causing microorganisms. LWT 2022, 153, 112470. [Google Scholar] [CrossRef]
- Kovačević, Z.; Kladar, N.; Čabarkapa, I.; Radinović, M.; Maletić, M.; Erdeljan, M.; Božin, B. New perspective of Origanum vulgare L. and Satureja montana L. essential oils as bovine mastitis treatment alternatives. Antibiotics 2021, 10, 1460. [Google Scholar] [CrossRef]
- Tomanić, D.; Božin, B.; Kladar, N.; Stanojević, J.; Čabarkapa, I.; Stilinović, N.; Apić, J.; Božić, D.D.; Kovačević, Z. Environmental Bovine Mastitis Pathogens: Prevalence, Antimicrobial Susceptibility, and Sensitivity to Thymus vulgaris L., Thymus serpyllum L., and Origanum vulgare L. Essential Oils. Antibiotics 2022, 11, 1077. [Google Scholar] [CrossRef]
- Abboud, M.; El Rammouz, R.; Jammal, B.; Sleiman, M. In vitro and in vivo antimicrobial activity of two essential oils Thymus vulgaris and Lavandula angustifolia against bovine Staphylococcus and Streptococcus mastitis pathogen. Middle East J. Agric. Res. 2015, 4, 975–983. [Google Scholar]
- Corona-Gómez, L.; Hernández-Andrade, L.; Mendoza-Elvira, S.; Suazo, F.M.; Ricardo-González, D.I.; Quintanar-Guerrero, D. In vitro antimicrobial effect of essential tea tree oil (Melaleuca alternifolia), thymol, and carvacrol on microorganisms isolated from cases of bovine clinical mastitis. Int. J. Vet. Sci. Med. 2022, 10, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Fratini, F.; Casella, S.; Leonardi, M.; Pisseri, F.; Ebani, V.V.; Pistelli, L.; Pistelli, L. Antibacterial activity of essential oils, their blends and mixtures of their main constituents against some strains supporting livestock mastitis. Fitoterapia 2014, 96, 1–7. [Google Scholar] [CrossRef]
- Zhu, H.; Du, M.; Fox, L.; Zhu, M.-J. Bactericidal effects of Cinnamon cassia oil against bovine mastitis bacterial pathogens. Food Control 2016, 66, 291–299. [Google Scholar] [CrossRef]
- Abd El-Aziz, N.K.; Ammar, A.M.; El-Naenaeey, E.-s.Y.; El Damaty, H.M.; Elazazy, A.A.; Hefny, A.A.; Shaker, A.; Eldesoukey, I.E. Antimicrobial and antibiofilm potentials of cinnamon oil and silver nanoparticles against Streptococcus agalactiae isolated from bovine mastitis: New avenues for countering resistance. BMC Vet. Res. 2021, 17, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Cerioli, M.F.; Moliva, M.V.; Cariddi, L.N.; Reinoso, E.B. Effect of the essential oil of Minthostachys verticillata (Griseb.) epling and limonene on biofilm production in pathogens causing bovine mastitis. Front. Vet. Sci. 2018, 5, 146. [Google Scholar] [CrossRef] [Green Version]
- Budri, P.E.; Silva, N.C.; Bonsaglia, E.C.; Júnior, A.F.; Júnior, J.A.; Doyama, J.T.; Gonçalves, J.L.; Santos, M.V.d.; Fitzgerald-Hughes, D.; Rall, V.L. Effect of essential oils of Syzygium aromaticum and Cinnamomum zeylanicum and their major components on biofilm production in Staphylococcus aureus strains isolated from milk of cows with mastitis. J. Dairy Sci. 2015, 98, 5899–5904. [Google Scholar] [CrossRef]
- Pinedo, P.; Karreman, H.; Bothe, H.; Velez, J.; Risco, C. Efficacy of a botanical preparation for the intramammary treatment of clinical mastitis on an organic dairy farm. Can. Vet. J. 2013, 54, 479. [Google Scholar] [CrossRef]
- Mullen, K.; Anderson, K.; Washburn, S. Effect of 2 herbal intramammary products on milk quantity and quality compared with conventional and no dry cow therapy. J. Dairy Sci. 2014, 97, 3509–3522. [Google Scholar] [CrossRef] [Green Version]
- Hase, P.; Digraskar, S.; Ravikanth, K.; Dandale, M.; Maini, S. Management of subclinical mastitis with mastilep gel and herbal spray (AV/AMS/15). Int. J. Pharm. Pharm. 2013, 4, 64–67. [Google Scholar]
- Yang, W.-T.; Ke, C.-Y.; Wu, W.-T.; Lee, R.-P.; Tseng, Y.-H. Effective treatment of bovine mastitis with intramammary infusion of Angelica dahurica and Rheum officinale extracts. Evid.-Based Complement. Altern. Med. 2019, 2019, 7242705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, B.-W.; Cha, C.-N.; Lee, S.-M.; Kim, M.-J.; Park, J.-Y.; Yoo, C.-Y.; Son, S.-E.; Kim, S.; Lee, H.-J. Therapeutic effect of oregano essential oil on subclinical bovine mastitis caused by Staphylococcus aureus and Escherichia coli. Korean J. Vet. Res. 2015, 55, 253–257. [Google Scholar] [CrossRef] [Green Version]
- Tomanić, D.; Kladar, N.; Radinović, M.; Stančić, I.; Erdeljan, M.; Stanojević, J.; Galić, I.; Bijelić, K.; Kovačević, Z. Intramammary Ethno-Veterinary Formulation in Bovine Mastitis Treatment for Optimization of Antibiotic Use. Pathogens 2023, 12, 259. [Google Scholar] [CrossRef] [PubMed]
- Nisha, A. Antibiotic residues-a global health hazard. Vet. World 2008, 1, 375. [Google Scholar] [CrossRef]
- McPhee, C.; Anderson, K.; Yeatts, J.; Mason, S.; Barlow, B.; Baynes, R. Hot topic: Milk and plasma disposition of thymol following intramammary administration of a phytoceutical mastitis treatment. J. Dairy Sci. 2011, 94, 1738–1743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovačević, Z.; Mihajlović, J.; Mugoša, S.; Horvat, O.; Tomanić, D.; Kladar, N.; Samardžija, M. Pharmacoeconomic Analysis of the Different Therapeutic Approaches in Control of Bovine Mastitis: Phytotherapy and Antimicrobial Treatment. Antibiotics 2023, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Doehring, C.; Sundrum, A. Efficacy of homeopathy in livestock according to peer-reviewed publications from 1981 to 2014. Vet. Rec. 2016, 179, 628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, D.; Sundrum, A. Comparative effectiveness of individualised homeopathy and antibiotics in the treatment of bovine clinical mastitis: Randomised controlled trial. Vet. Rec. 2018, 182, 407. [Google Scholar] [CrossRef] [Green Version]
- Løken, T. Alternative therapy of animals–homeopathy and other alternative methods of therapy. Acta Vet. Scand. 2002, 43, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Ebert, F.; Staufenbiel, R.; Simons, J.; Pieper, L. Randomized, blinded, controlled clinical trial shows no benefit of homeopathic mastitis treatment in dairy cows. J. Dairy Sci. 2017, 100, 4857–4867. [Google Scholar] [CrossRef]
- Williamson, J.; Lacy-Hulbert, S. Lack of efficacy of homeopathic therapy against post-calving clinical mastitis in dairy herds in the Waikato region of New Zealand. New Zealand Vet. J. 2014, 62, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Mimoune, N.; Saidi, R.; Benadjel, O.; Khelef, D.; Kaidi, R. Alternative treatment of bovine mastitis. Vet. Stanica 2021, 52, 639–649. [Google Scholar] [CrossRef]
- Varshney, J.; Naresh, R. Comparative efficacy of homeopathic and allopathic systems of medicine in the management of clinical mastitis of Indian dairy cows. Homeopathy 2005, 94, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Zeise, J.; Fritz, J. Use and efficacy of homeopathy in prevention and treatment of bovine mastitis. Open Agric. 2019, 4, 203–212. [Google Scholar] [CrossRef]
- Vidal Amaral, J.R.; Jucá Ramos, R.T.; Almeida Araújo, F.; Bentes Kato, R.; Figueira Aburjaile, F.; de Castro Soares, S.; Góes-Neto, A.; Matiuzzi da Costa, M.; Azevedo, V.; Brenig, B. Bacteriocin Producing Streptococcus agalactiae Strains Isolated from Bovine Mastitis in Brazil. Microorganisms 2022, 10, 588. [Google Scholar] [CrossRef] [PubMed]
- Carson, D.A.; Barkema, H.W.; Naushad, S.; De Buck, J. Bacteriocins of non-aureus staphylococci isolated from bovine milk. Appl. Environ. Microbiol. 2017, 83, e01015–e01017. [Google Scholar] [CrossRef] [Green Version]
- Diez-Gonzalez, F. Applications of bacteriocins in livestock. Curr. Issues Intest. Microbiol. 2007, 8, 15. [Google Scholar] [PubMed]
- Bennett, S.; Ben Said, L.; Lacasse, P.; Malouin, F.; Fliss, I. Susceptibility to nisin, bactofencin, pediocin and reuterin of multidrug resistant Staphylococcus aureus, Streptococcus dysgalactiae and Streptococcus uberis causing bovine mastitis. Antibiotics 2021, 10, 1418. [Google Scholar] [CrossRef]
- Newstead, L.L.; Varjonen, K.; Nuttall, T.; Paterson, G.K. Staphylococcal-produced bacteriocins and antimicrobial peptides: Their potential as alternative treatments for Staphylococcus aureus infections. Antibiotics 2020, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Castelani, L.; Arcaro, J.; Braga, J.; Bosso, A.; Moura, Q.; Esposito, F.; Sauter, I.; Cortez, M.; Lincopan, N. Activity of nisin, lipid bilayer fragments and cationic nisin-lipid nanoparticles against multidrug-resistant Staphylococcus spp. isolated from bovine mastitis. J. Dairy Sci. 2019, 102, 678–683. [Google Scholar] [CrossRef] [Green Version]
- Hernández-González, J.C.; Martínez-Tapia, A.; Lazcano-Hernández, G.; García-Pérez, B.E.; Castrejón-Jiménez, N.S. Bacteriocins from lactic acid bacteria. A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals 2021, 11, 979. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.L.V.; dos Santos Nascimento, J.; Fagundes, P.C.; Madureira, D.J.; de Oliveira, S.S.; de Paiva Brito, M.A.V.; de Freire Bastos, M.d.C. Activity of staphylococcal bacteriocins against Staphylococcus aureus and Streptococcus agalactiae involved in bovine mastitis. Res. Microbiol. 2007, 158, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Bruni, N.; Capucchio, M.T.; Biasibetti, E.; Pessione, E.; Cirrincione, S.; Giraudo, L.; Corona, A.; Dosio, F. Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules 2016, 21, 752. [Google Scholar] [CrossRef]
- Lacasse, P.; Lauzon, K.; Diarra, M.; Petitclerc, D. Utilization of lactoferrin to fight antibiotic-resistant mammary gland pathogens. J. Anim. Sci. 2008, 86, 66–71. [Google Scholar] [CrossRef]
- Diarra, M.; Petitclerc, D.; Lacasse, P. Effect of lactoferrin in combination with penicillin on the morphology and the physiology of Staphylococcus aureus isolated from bovine mastitis. J. Dairy Sci. 2002, 85, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Diarra, M.S.; Petitclerc, D.; Deschênes, E.; Lessard, N.; Grondin, G.; Talbot, B.G.; Lacasse, P. Lactoferrin against Staphylococcus aureus Mastitis: Lactoferrin alone or in combination with penicillin G on bovine polymorphonuclear function and mammary epithelial cells colonisation by Staphylococcus aureus. Vet. Immunol. Immunopathol. 2003, 95, 33–42. [Google Scholar] [CrossRef]
- Kutila, T.; Pyörälä, S.; Saloniemi, H.; Kaartinen, L. Antibacterial effect of bovine lactoferrin against udder pathogens. Acta Vet. Scand. 2003, 44, 1–8. [Google Scholar] [CrossRef]
- Shimazaki, K.-I.; Kawai, K. Advances in lactoferrin research concerning bovine mastitis. Biochem. Cell Biol. 2017, 95, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, N.; Kumar, P.; Bhusan, B.; Bhattacharya, T.; Dayal, S.; Sahoo, M. Lysozyme in livestock: A guide to selection for disease resistance: A review. J. Anim. Sci. Adv 2012, 2, 347–360. [Google Scholar]
- Chaneton, L.; Sáez, J.P.; Bussmann, L.E. Antimicrobial activity of bovine β-lactoglobulin against mastitis-causing bacteria. J. Dairy Sci. 2011, 94, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Petitclerc, D.; Lauzon, K.; Cochu, A.; Ster, C.; Diarra, M.; Lacasse, P. Efficacy of a lactoferrin-penicillin combination to treat β-lactam-resistant Staphylococcus aureus mastitis. J. Dairy Sci. 2007, 90, 2778–2787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegazi, A.; Abdou, A.M.; Allah, F. Antimicrobial activity of propolis on the bacterial causes of mastitis. Life Sci. J. 2014, 11, 572–576. [Google Scholar]
- Tatli Seven, P.; Seven, I.; Gul Baykalir, B.; Iflazoglu Mutlu, S.; Salem, A.Z. Nanotechnology and nano-propolis in animal production and health: An overview. Ital. J. Anim. Sci. 2018, 17, 921–930. [Google Scholar] [CrossRef] [Green Version]
- Masek, T.; Perin, N.; Racané, L.; Cindric, M.; Paljetak, H.C.; Peric, M.; Matijasic, M.; Verbanac, D.; Radic, B.; Suran, J. Chemical Composition, antioxidant and antibacterial activity of different extracts of poplar type propolis. Croat. Chem. Acta 2018, 91, 81–89. [Google Scholar] [CrossRef]
- Santos, L.M.; Fonseca, M.S.; Sokolonski, A.R.; Deegan, K.R.; Araújo, R.P.; Umsza-Guez, M.A.; Barbosa, J.D.; Portela, R.D.; Machado, B.A. Propolis: Types, composition, biological activities, and veterinary product patent prospecting. J. Sci. Food Agric. 2020, 100, 1369–1382. [Google Scholar] [CrossRef]
- Fiordalisi, S.A.; Honorato, L.A.; Loiko, M.R.; Avancini, C.A.; Veleirinho, M.B.; Machado Filho, L.C.; Kuhnen, S. The effects of Brazilian propolis on etiological agents of mastitis and the viability of bovine mammary gland explants. J. Dairy Sci. 2016, 99, 2308–2318. [Google Scholar] [CrossRef] [Green Version]
- Bačić, C.; Macesic, N.; Radin, L.; Aladrovic, J.; Matanovic, K.; Masek, T.; Brozic, D.; Benic, M.; Radic, B.; Bacic, I. SuranJ: Intramammary propolis formulation for subclinical mastitis prevention and treatment in dairy cows. J. Dairy Vet. Anim. Res. 2016, 3, 159. [Google Scholar] [CrossRef] [Green Version]
- Bačić, G.; Mačešić, N.; Radin, L.; Aladrović, J.; Matanović, K.; Mašek, T.; Brozić, D.; Benić, M.; Radić, B.; Bačić, I. Intramammary Propolis Formulation for Prevention and Treatment of Mastitis in Dairy Ruminants (RC. 2.2. 08–0003). J. Anim. Res. 2016, 6, 227–229. [Google Scholar] [CrossRef]
- Suran, J.; Matanovic, K.; Bozic, F.; Martinec, B.S.; Aladrovic, J.; Bacic, G.; Macesic, N.; Masek, T.; Brozic, D.; Benic, M. Intramammary propolis formulation for prevention and treatment of mastitis in dairy ruminants. Proc. J. Vet. Pharmacol. Ther. 2015, 67. [Google Scholar]
- Kober, A.H.; Saha, S.; Islam, M.A.; Rajoka, M.S.R.; Fukuyama, K.; Aso, H.; Villena, J.; Kitazawa, H. Immunomodulatory Effects of Probiotics: A Novel Preventive Approach for the Control of Bovine Mastitis. Microorganisms 2022, 10, 2255. [Google Scholar] [CrossRef]
- Espeche, M.C.; Pellegrino, M.; Frola, I.; Larriestra, A.; Bogni, C.; Nader-Macías, M.F. Lactic acid bacteria from raw milk as potentially beneficial strains to prevent bovine mastitis. Anaerobe 2012, 18, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Đuričić, D.; Sukalić, T.; Marković, F.; Kočila, P.; Žura Žaja, I.; Menčik, S.; Dobranić, T.; Benić, M.; Samardžija, M. Effects of dietary vibroactivated clinoptilolite supplementation on the intramammary microbiological findings in dairy cows. Animals 2020, 10, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benić, M.; Maćešić, N.; Cvetnić, L.; Habrun, B.; Cvetnić, Ž.; Turk, R.; Đuričić, D.; Lojkić, M.; Dobranić, V.; Valpotić, H. Bovine mastitis: A persistent and evolving problem requiring novel approaches for its control-a review. Vet. Arh. 2018, 88, 535–557. [Google Scholar] [CrossRef]
- Gruet, P.; Maincent, P.; Berthelot, X.; Kaltsatos, V. Bovine mastitis and intramammary drug delivery: Review and perspectives. Adv. Drug Deliv. Rev. 2001, 50, 245–259. [Google Scholar] [CrossRef]
- Alluwaimi, A.M. The cytokines of bovine mammary gland: Prospects for diagnosis and therapy. Res. Vet. Sci. 2004, 77, 211–222. [Google Scholar] [CrossRef]
- Oviedo-Boyso, J.; Valdez-Alarcón, J.J.; Cajero-Juárez, M.; Ochoa-Zarzosa, A.; López-Meza, J.E.; Bravo-Patino, A.; Baizabal-Aguirre, V.M. Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. Infect. 2007, 54, 399–409. [Google Scholar] [CrossRef]
- Daley, M.; Williams, T.; Coyle, P.; Furda, G.; Dougherty, R.; Hayes, P. Prevention and treatment of Staphylococcus aureus infections with recombinant cytokines. Cytokine 1993, 5, 276–284. [Google Scholar] [CrossRef]
- Enginler, S.Ö.; Sabuncu, A.; Kahraman, B.B.; Koçak, Ö.; Yıldar, E.; Güzel, Ö. Comparison of intramammary ozone administration doses in dairy cows with clinical mastitis. Acta Sci. Vet. 2015, 43, 1–7. [Google Scholar]
- Ogata, A.; Nagahata, H. Intramammary application of ozone therapy to acute clinical mastitis in dairy cows. J. Vet. Med. Sci. 2000, 62, 681–686. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.-J.; Liu, J.; Jo, S.-N.; Song, K.-H.; Kim, D.-H.; Jun, M.-H.; Cho, S.-W.; Kim, M.-C.; Yoon, H.-I. Therapeutic effect of ozone gas on bovine mastitis. J. Vet. Clin. 2005, 22, 314–317. [Google Scholar]
- Chacón, O.; Forno, N.; Lapierre, L.; Muñoz, R.; Fresno, M.; San Martín, B. Effect of Aloe barbadensis Miller (Aloe vera) associated with beta-lactam antibiotics on the occurrence of resistance in strains of Staphylococcus aureus and Streptococcus uberis. Eur. J. Integr. Med. 2019, 32, 100996. [Google Scholar] [CrossRef]
- Forno-Bell, N.; Munoz, M.A.; Chacón, O.; Pachá, P.; Iragüen, D.; Cornejo, J.; San Martín, B. Efficacy Prediction of Four Pharmaceutical Formulations for Intramammary Administration Containing Aloe vera (L.) Burm. f. Combined With Ceftiofur or Cloxacillin in Lactating Cows as an Alternative Therapy to Treat Mastitis Caused by Staphylococcus aureus. Front. Vet. Sci. 2021, 8, 572568. [Google Scholar] [CrossRef]
- Šubová, E.; Sasáková, N.; Zigo, F.; Mindžáková, I.; Vargová, M.; Kachnič, J.; Laktičová, K.V. Amendment of livestock manure with natural zeolite-clinoptilolite and its effect on decomposition processes during composting. Agriculture 2021, 11, 980. [Google Scholar] [CrossRef]
- Jäger, T.; Mokos, A.; Prasianakis, N.I.; Leyer, S. first_page settings Order Article Reprints Open AccessArticle Pore-Level Multiphase Simulations of Realistic Distillation Membranes for Water Desalination. Membranes 2022, 12, 1112. [Google Scholar] [CrossRef]
- Đuričić, D.; Benić, M.; Maćešić, N.; Valpotić, H.; Turk, R.; Dobranić, V.; Cvetnić, L.; Gračner, D.; Vince, S.; Grizelj, J. Dietary zeolite clinoptilolite supplementation influences chemical composition of milk and udder health in dairy cows. Vet. Stanica 2017, 48, 257–265. [Google Scholar]
- Maity, S.; Rubić, I.; Kuleš, J.; Horvatić, A.; Đuričić, D.; Samardžija, M.; Ljubić, B.B.; Turk, R.; Gračner, D.; Maćešić, N. Integrated metabolomics and proteomics dynamics of serum samples reveals dietary zeolite clinoptilolite supplementation restores energy balance in high yielding dairy cows. Metabolites 2021, 11, 842. [Google Scholar] [CrossRef]
- Alic Ural, D. Efficacy of clinoptilolite supplementation on milk yield and somatic cell count. Rev. MVZ Córdoba 2014, 19, 4242–4248. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhu, Y.; Chu, B.; Liu, N.; Chen, S.; Wang, J. Lactobacillus rhamnosus GR-1 prevents Escherichia coli-induced apoptosis through PINK1/Parkin-mediated mitophagy in bovine mastitis. Front. Immunol. 2021, 12, 715098. [Google Scholar] [CrossRef] [PubMed]
- Nader-Macías, M.E.F.; Bogni, C.; Sesma, F.J.M.; Espeche, M.C.; Pellegrino, M.; Saavedra, L.; Frola, I. Alternative Approaches for the Prevention of Bovine Mastitis. Probiotics, Bioactive Compounds And vaccines. In Bioactives Compounds; Nova Science Publishing: New York, NY, USA, 2011; pp. 1–34. [Google Scholar]
- Pellegrino, M.S.; Frola, I.D.; Natanael, B.; Gobelli, D.; Nader-Macias, M.E.; Bogni, C.I. In vitro characterization of lactic acid bacteria isolated from bovine milk as potential probiotic strains to prevent bovine mastitis. Probiotics Antimicrob. Proteins 2019, 11, 74–84. [Google Scholar] [CrossRef]
- Klostermann, K.; Crispie, F.; Flynn, J.; Ross, R.P.; Hill, C.; Meaney, W. Intramammary infusion of a live culture of Lactococcus lactis for treatment of bovine mastitis: Comparison with antibiotic treatment in field trials. J. Dairy Res. 2008, 75, 365–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomanić, D.; Samardžija, M.; Kovačević, Z. Alternatives to Antimicrobial Treatment in Bovine Mastitis Therapy: A Review. Antibiotics 2023, 12, 683. https://doi.org/10.3390/antibiotics12040683
Tomanić D, Samardžija M, Kovačević Z. Alternatives to Antimicrobial Treatment in Bovine Mastitis Therapy: A Review. Antibiotics. 2023; 12(4):683. https://doi.org/10.3390/antibiotics12040683
Chicago/Turabian StyleTomanić, Dragana, Marko Samardžija, and Zorana Kovačević. 2023. "Alternatives to Antimicrobial Treatment in Bovine Mastitis Therapy: A Review" Antibiotics 12, no. 4: 683. https://doi.org/10.3390/antibiotics12040683
APA StyleTomanić, D., Samardžija, M., & Kovačević, Z. (2023). Alternatives to Antimicrobial Treatment in Bovine Mastitis Therapy: A Review. Antibiotics, 12(4), 683. https://doi.org/10.3390/antibiotics12040683