Role of Extracellular DNA in Bacterial Response to SOS-Inducing Drugs
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Growth
4.2. Reagents Used
4.3. Miller Assay for RecA Expression
4.4. Hypermutation Assay
4.5. Electrophoresis of DNA
4.6. Measurement of DNA NanoDrop UV Spectrophotometer
4.7. Staining of Bacteria for Fluorescence Microscopy
4.8. Visualization of Bacterial Clumps with Low-Power Microscopy Using Phase Contrast
4.9. Quantitation of Clumping Using the TC20 Cell Counter
4.10. Data Analysis
4.11. Ethical Approvals
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, L.Y.; Goff, M.; Davidian, C.; Mao, Z.; London, M.; Lam, K.; Yung, M.; Miller, J.H. Mutational Consequences of Ciprofloxacin in Escherichia coli. Antimicrob. Agents Chemother. 2016, 60, 6165–6172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, T.M.; Sharma, B.; Valjavec-Gratian, M.; Smith, J. sfi-independent filamentation in Escherichia coli Is lexA dependent and requires DNA damage for induction. J. Bacteriol. 1977, 179, 1931–1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trusca, D.; Scott, S.; Thompson, C.; Bramhill, D. Bacterial SOS checkpoint protein SulA inhibits polymerization of purified FtsZ cell division protein. J. Bacteriol. 1998, 180, 3946–3953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamber, S.W.; Brookshire, K.W.; Forenza, S. Induction of the SOS response in Escherichia coli by azidothymidine and dideoxynucleosides. Antimicrob. Agents Chemother. 1990, 34, 1237–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crane, J.K.; Salehi, M.; Alvarado, C.L. Psychoactive Drugs Induce the SOS Response and Shiga Toxin Production in Escherichia coli. Toxins 2021, 13, 437. [Google Scholar] [CrossRef]
- Memar, M.Y.; Yekani, M.; Celenza, G.; Poortahmasebi, V.; Naghili, B.; Bellio, P.; Baghi, H.B. The central role of the SOS DNA repair system in antibiotics resistance: A new target for a new infectious treatment strategy. Life Sci. 2020, 262, 118562. [Google Scholar] [CrossRef]
- Händel, N.; Hoeksema, M.; Mata, M.F.; Brul, S.; Ter Kuile, B.H. Effects of stress, ROS and the SOS response on de novo acquisition of antibiotic resistance in Escherichia coli. Antimicrob. Agents Chemother. 2015, 60, 1319–1327. [Google Scholar] [CrossRef] [Green Version]
- Mersch-Sundermann, V.; Schneider, U.; Klopman, G.; Rosenkranz, H.S. SOS induction in Escherichia coli and Salmonella mutagenicity: A comparison using 330 compounds. Mutagenesis 1994, 9, 205–224. [Google Scholar] [CrossRef]
- Miller, C.; Thomsen, L.E.; Gaggero, C.; Mosseri, R.; Ingmer, H.; Cohen, S.N. SOS response induction by ß-lactams and bacterial defense against antibiotic lethality. Science 2004, 305, 1629–1631. [Google Scholar] [CrossRef]
- Maiques, E.; Úbeda, C.; Campoy, S.; Salvador, N.; Lasa, Í.; Novick, R.P.; Barbé, J.; Penadés, J.R. β-Lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus. J. Bacteriol. 2006, 188, 2726–2729. [Google Scholar] [CrossRef] [Green Version]
- Bunnell, B.E.; Escobar, J.F.; Bair, K.L.; Sutton, M.; Crane, J. Zinc Blocks SOS-Induced Hypermutation via Inhibition of RecA in Escherichia coli. PLoS ONE 2017, 12, 410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Pan, C.; Ye, L.; Si, Y.; Bi, C.; Hua, X.; Yu, Y.; Zhu, L.; Wang, H. Nonclassical Biofilms Induced by DNA Breaks in Klebsiella pneumoniae. Msphere 2020, 5, e00336-20. [Google Scholar] [CrossRef]
- Seeberg, A.H.; Tolxdorff-Neutzling, R.; Wiedemann, B. Chromosomal beta-lactamases of Enterobacter cloacae are responsible for resistance to third-generation cephalosporins. Antimicrob. Agents Chemother. 1983, 23, 918–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livermore, D.M.; Brown, D.F. Detection of β-lactamase-mediated resistance. J. Antimicrob. Chemother. 2001, 48, 59–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adelman, M.W.; Bower, C.W.; Grass, J.E.; Ansari, U.A.; Soda, E.A.; See, I.; Lutgring, J.D.; Jacob, J.T. Distinctive Features of Ertapenem-Mono-Resistant Carbapenem-Resistant Enterobacterales in the United States: A Cohort Study. In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2022; p. ofab643. [Google Scholar]
- Klein, S.; Boutin, S.; Kocer, K.; Fiedler, M.O.; Störzinger, D.; Weigand, M.A.; Tan, B.; Richter, D.; Rupp, C.; Mieth, M. Rapid development of cefiderocol resistance in carbapenem-resistant Enterobacter cloacae during therapy is associated with heterogeneous mutations in the catecholate siderophore receptor cira. Clin. Infect. Dis. 2022, 74, 905–908. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Iovleva, A.; Kline, E.G.; Kawai, A.; McElheny, C.L.; Doi, Y. Clinical evolution of AmpC-mediated ceftazidime-avibactam and cefiderocol resistance in Enterobacter cloacae complex following exposure to cefepime. Clin. Infect. Dis. 2020, 71, 2713–2716. [Google Scholar] [CrossRef]
- Mellies, J.L.; Haack, K.R.; Galligan, D.C. SOS regulation of the type III secretion system of enteropathogenic Escherichia coli. J. Bacteriol. 2007, 189, 2863. [Google Scholar] [CrossRef] [Green Version]
- Kohanski, M.A.; DePristo, M.A.; Collins, J.J. Sublethal Antibiotic Treatment Leads to Multidrug Resistance via Radical-Induced Mutagenesis. Mol. Cell 2010, 37, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Oh, T.J.; Kim, I.G. The expression of Escherichia coli SOS genes recA and uvrA is inducible by polyamines. Biochem. Biophys. Res. Commun. 1999, 264, 584–589. [Google Scholar] [CrossRef]
- Devaraj, A.; Buzzo, J.R.; Mashburn-Warren, L.; Gloag, E.S.; Novotny, L.A.; Stoodley, P.; Bakaletz, L.O.; Goodman, S.D. The extracellular DNA lattice of bacterial biofilms is structurally related to Holliday junction recombination intermediates. Proc. Natl. Acad. Sci. USA 2019, 116, 25068–25077. [Google Scholar] [CrossRef] [Green Version]
- Crane, J.K.; Alvarado, C.L.; Sutton, M.D. Role of the SOS Response in the Generation of Antibiotic Resistance In Vivo. Antimicrob. Agents Chemother. 2021, 65, e00013-21. [Google Scholar] [CrossRef]
- Beaber, J.W.; Hochhut, B.; Waldor, M.K. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 2003, 427, 72–74. [Google Scholar] [CrossRef]
- Kittredge, H.A.; Dougherty, K.M.; Evans, S.E. Dead but Not Forgotten: How Extracellular DNA, Moisture, and Space Modulate the Horizontal Transfer of Extracellular Antibiotic Resistance Genes in Soil. Appl. Environ. Microbiol. 2022, 88, e02280-21. [Google Scholar] [CrossRef]
- Christie, P.J. Classic spotlight: The awesome power of conjugation. J. Bacteriol. 2016, 198, 372. [Google Scholar] [CrossRef] [Green Version]
- Crane, J.; Cheema, M.; Olyer, M.; Sutton, M. Zinc Blockade of SOS Response Inhibits Horizontal Transfer of Antibiotic Resistance Genes in Enteric Bacteria. Front. Cell. Infect. Microbiol. 2018, 8, 410. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, M.J.; Radic, M. Neutrophil extracellular traps: Double-edged swords of innate immunity. J. Immunol. 2012, 189, 2689–2695. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, A.S.; Bardoel, B.W.; Harbort, C.J.; Zychlinsky, A. Induction and quantification of neutrophil extracellular traps. Methods Mol. Biol. 2014, 1124, 307–318. [Google Scholar] [PubMed]
- Chen, F.; Liu, Y.; Shi, Y.; Zhang, J.; Liu, X.; Liu, Z.; Lv, J.; Leng, Y. The emerging role of neutrophilic extracellular traps in intestinal disease. Gut Pathog. 2022, 14, 27. [Google Scholar] [CrossRef] [PubMed]
- Alhede, M.; Alhede, M.; Qvortrup, K.; Kragh, K.N.; Jensen, P.Ø.; Stewart, P.S.; Bjarnsholt, T. The origin of extracellular DNA in bacterial biofilm infections in vivo. Pathog. Dis. 2020, 78, ftaa018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imlay, J.A.; Linn, S. Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J. Bacteriol. 1987, 169, 2967–2976. [Google Scholar] [CrossRef] [Green Version]
- Łoś, J.M.; Łoś, M.; Węgrzyn, A.; Węgrzyn, G. Hydrogen peroxide-mediated induction of the Shiga toxin-converting lambdoid prophage ST2-8624 in Escherichia coli O157:H7. FEMS Immunol. Med. Microbiol. 2010, 58, 322–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, P.L.; Acheson, D.W.; Waldor, M.K. Human neutrophils and their products induce Shiga toxin production by enterohemorrhagic Escherichia coli. Infect. Immun. 2001, 69, 1934–1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crane, J.; Naeher, T.M.; Broome, J.; Boedeker, E. Role of xanthine oxidase in infection due to enteropathogenic and Shiga-toxigenic Escherichia coli. Infect. Immun. 2013, 81, 1129–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.-H.; Yang, Y.-R.; Shen, X.-C.; Zhang, Z.-L.; Shen, P.; Xie, Z.-X. Role of DNA in bacterial aggregation. Curr. Microbiol. 2008, 57, 139–144. [Google Scholar] [CrossRef]
- Schenk, E.R.; Nau, F.; Thompson, C.J.; Tse-Dinh, Y.C.; Fernandez-Lima, F. Changes in lipid distribution in E. coli strains in response to norfloxacin. J. Mass Spectrom. 2015, 50, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Ponmalar, I.I.; Swain, J.; Basu, J.K. Modification of bacterial cell membrane dynamics and morphology upon exposure to sub inhibitory concentrations of ciprofloxacin. Biochim. Biophys. Acta Biomembr. 2022, 1864, 183935. [Google Scholar] [CrossRef]
- Smirnova, G.V.; Tyulenev, A.V.; Muzyka, N.G.; Peters, M.A.; Oktyabrsky, O.N. Ciprofloxacin provokes SOS-dependent changes in respiration and membrane potential and causes alterations in the redox status of Escherichia coli. Res. Microbiol. 2017, 168, 64–73. [Google Scholar] [CrossRef]
- Bass, J.I.F.; Russo, D.M.; Gabelloni, M.L.; Geffner, J.R.; Giordano, M.; Catalano, M.; Zorreguieta, Á.; Trevani, A.S. Extracellular DNA: A major proinflammatory component of Pseudomonas aeruginosa biofilms. J. Immunol. 2010, 184, 6386–6395. [Google Scholar] [CrossRef] [Green Version]
- Okshevsky, M.; Meyer, R.L. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit. Rev. Microbiol. 2015, 41, 341–352. [Google Scholar] [CrossRef]
- Tetz, G.V.; Artemenko, N.K.; Tetz, V.V. Effect of DNase and antibiotics on biofilm characteristics. Antimicrob. Agents Chemother. 2009, 53, 1204–1209. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, V.; Tiwari, M.; Tiwari, V. Interaction of RecA mediated SOS response with bacterial persistence, biofilm formation, and host response. Int. J. Biol. Macromol. 2022, 217, 931–943. [Google Scholar] [CrossRef] [PubMed]
- Gotoh, H.; Kasaraneni, N.; Devineni, N.; Dallo, S.F.; Weitao, T. SOS involvement in stress-inducible biofilm formation. Biofouling 2010, 26, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Crane, J.K.; Broome, J.E.; Reddinger, R.M.; Werth, B.B. Zinc protects against shiga-toxigenic Escherichia coli by acting on host tissues as well as on bacteria. BMC Microbiol. 2014, 14, 145. [Google Scholar] [CrossRef] [Green Version]
- Crane, J.K.; Burke, S.R.; Alvarado, C.L. Inhibition of SOS Response by Nitric Oxide Donors in Escherichia coli Blocks Toxin Production and Hypermutation. Front. Cell. Infect. Microbiol. 2021, 11, 1289. [Google Scholar] [CrossRef]
- Griffith, K.L.; Wolf, R.E., Jr. Measuring Beta-Galactosidase Activity in Bacteria: Cell Growth, Permeabilization, and Enzyme Assays in 96-Well Arrays. Biochem. Biophys. Res. Commun. 2002, 290, 397–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Back, J.P.; Kroll, R.G. The differential fluorescence of bacteria stained with acridine orange and the effects of heat. J. Appl. Bacteriol. 1991, 71, 51–58. [Google Scholar] [CrossRef]
- Comings, D. Biochemical mechanisms of chromosome banding and color banding with acridine orange. In Proceedings of the Nobel Symposium, Lerum, Sweden, 20–25 August 1973; pp. 293–299. [Google Scholar]
SOS Inducer | RecA Activation | Hypermutation | Extracellular DNA Release | Elongation | Comments |
---|---|---|---|---|---|
zidovudine | +++ | +++ | ++ | +++ | See Figure 4 |
bleomycin | ++ | ++ | +++ | ++ * | See Supplemental Figures S1 and S2 and Videos |
ciprofloxacin | +++ | +++ | ++ | +++ | Supplemental Figure S1, and previous study [11] |
mitomycin C | +++ | Not tested | ++++ | ++ * | |
aztreonam | +/− | Not tested | +/− | +++++ | Supplemental Figure S1 |
Strains | Description | Comment | Reference(s) |
---|---|---|---|
E. coli Strains | |||
JLM281 | recA-lacZ reporter strain | Used to measure RecA expression using Miller assay; Aztreonam MIC is 0.047 µg/mL on LB. | [11,18] |
Popeye-1 | Shiga-toxigenic E. coli, O157:H7; 2006 spinach-associated outbreak | Stx2+, Stx2c+ TW14359 | [34,44] |
EC43 | Shiga-toxigenic E. coli, O157:H7; Fluorescent strain due to GFP | From Microbiologics; traceable to FDA strain ESC1177; used to assess leakage of cytoplasmic contents. | [26] |
Enterobacter Strain | |||
E_clo_Niagara | Wild-type clinical isolate, bloodstream | ESBL; Chloramphenicol MIC = 4 µg/mL, and Aztreonam MIC = 3 µg/mL, both on LB. | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crane, J.K.; Catanzaro, M.N. Role of Extracellular DNA in Bacterial Response to SOS-Inducing Drugs. Antibiotics 2023, 12, 649. https://doi.org/10.3390/antibiotics12040649
Crane JK, Catanzaro MN. Role of Extracellular DNA in Bacterial Response to SOS-Inducing Drugs. Antibiotics. 2023; 12(4):649. https://doi.org/10.3390/antibiotics12040649
Chicago/Turabian StyleCrane, John K., and Marissa N. Catanzaro. 2023. "Role of Extracellular DNA in Bacterial Response to SOS-Inducing Drugs" Antibiotics 12, no. 4: 649. https://doi.org/10.3390/antibiotics12040649
APA StyleCrane, J. K., & Catanzaro, M. N. (2023). Role of Extracellular DNA in Bacterial Response to SOS-Inducing Drugs. Antibiotics, 12(4), 649. https://doi.org/10.3390/antibiotics12040649