Meropenem/Vaborbactam: β-Lactam/β-Lactamase Inhibitor Combination, the Future in Eradicating Multidrug Resistance
Abstract
:1. Introduction
2. Characteristics
2.1. Chemical Structure of Vaborbactam
2.2. Chemical Structure of Meropenem
2.3. Combination of Meropenem with Vaborbactam
2.4. Pharmacokinetic Properties
2.5. Spectrum of Action
2.6. MER-VAB against Bacterial Resistance
3. Clinical Application
3.1. Dosage
3.2. Indications
3.3. Interactions
4. Antimicrobial Activity of Meropenem–Vaborbactam
5. Adverse Events
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zanichelli, V.; Sharland, M.; Cappello, B.; Moja, L.; Getahun, H.; Pessoa-Silva, C.; Sati, H.; van Weezenbeek, C.; Balkhy, H.; Simão, M.; et al. The WHO AWaRe (Access, Watch, Reserve) Antibiotic Book and Prevention of Antimicrobial Resistance. Bull. World Health Organ. 2023, 101, 290–296. [Google Scholar] [CrossRef]
- WHO Report on Surveillance of Antibiotic Consumption: 2016–2018 Early Implementation; World Health Organization: Geneva, Switzerland, 2018.
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global Increase and Geographic Convergence in Antibiotic Consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [PubMed]
- Browne, A.J.; Chipeta, M.G.; Haines-Woodhouse, G.; Kumaran, E.P.A.; Hamadani, B.H.K.; Zaraa, S.; Henry, N.J.; Deshpande, A.; Reiner, R.C.; Day, N.P.J.; et al. Global Antibiotic Consumption and Usage in Humans, 2000–18: A Spatial Modelling Study. Lancet Planet. Health 2021, 5, e893–e904. [Google Scholar] [CrossRef] [PubMed]
- Al Sulayyim, H.J.; Ismail, R.; Al Hamid, A.; Ghafar, N.A. Antibiotic Resistance during COVID-19: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 11931. [Google Scholar] [CrossRef] [PubMed]
- Khoshbakht, R.; Kabiri, M.; Neshani, A.; Khaksari, M.N.; Sadrzadeh, S.M.; Mousavi, S.M.; Ghazvini, K.; Ghavidel, M. Assessment of Antibiotic Resistance Changes during the COVID-19 Pandemic in Northeast of Iran during 2020–2022: An Epidemiological Study. Antimicrob. Resist. Infect. Control 2022, 11, 121. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, K.K.; Baker, D.; Thakkar-Samtani, M.; Glick, M.; Restrepo, M.I.; Scannapieco, F.A.; Heaton, L.J.; Frantsve-Hawley, J. Incidence, Mortality, and Cost Trends in Nonventilator Hospital-Acquired Pneumonia in Medicaid Beneficiaries, 2015–2019. Am. J. Infect. Control 2023, 51, 227–230. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Kollef, M.H. Prevention of Hospital-Associated Pneumonia and Ventilator-Associated Pneumonia. Crit. Care Med. 2004, 32, 1396–1405. [Google Scholar] [CrossRef]
- Poovieng, J.; Sakboonyarat, B.; Nasomsong, W. Bacterial Etiology and Mortality Rate in Community-Acquired Pneumonia, Healthcare-Associated Pneumonia and Hospital-Acquired Pneumonia in Thai University Hospital. Sci. Rep. 2022, 12, 9004. [Google Scholar] [CrossRef]
- WHO. Media Centre. News Release. WHO Published List of Bacteria for Which New an-Tibiotics Are Urgently Needed. 2017. Available online: http://www.who.int/Mediacentre/News/Releases/2017/Bacteria-Antibiotics-Needed/En/ (accessed on 27 February 2017).
- Chen, C.Y.; Yang, K.Y.; Peng, C.K.; Sheu, C.C.; Chan, M.C.; Feng, J.Y.; Wang, S.H.; Chen, C.M.; Zheng, Z.R.; Liang, S.J.; et al. Clinical Outcome of Nosocomial Pneumonia Caused by Carbapenem-Resistant Gram-Negative Bacteria in Critically Ill Patients: A Multicenter Retrospective Observational Study. Sci. Rep. 2022, 12, 7501. [Google Scholar] [CrossRef]
- Peleg, A.Y.; Hooper, D.C. Hospital-Acquired Infections Due to Gram-Negative Bacteria. N. Engl. J. Med. 2010, 362, 1804–1813. [Google Scholar] [CrossRef]
- Santoro, A.; Franceschini, E.; Meschiari, M.; Menozzi, M.; Zona, S.; Venturelli, C.; Digaetano, M.; Rogati, C.; Guaraldi, G.; Paul, M.; et al. Epidemiology and Risk Factors Associated with Mortality in Consecutive Patients with Bacterial Bloodstream Infection: Impact of MDR and XDR Bacteria. Open Forum Infect. Dis. 2020, 7, ofaa461. [Google Scholar] [CrossRef] [PubMed]
- Lakbar, I.; Medam, S.; Ronflé, R.; Cassir, N.; Delamarre, L.; Hammad, E.; Lopez, A.; Lepape, A.; Machut, A.; Boucekine, M.; et al. Association between Mortality and Highly Antimicrobial-Resistant Bacteria in Intensive Care Unit-Acquired Pneumonia. Sci. Rep. 2021, 11, 16497. [Google Scholar] [CrossRef] [PubMed]
- Calo, F.; Retamar, P.; Perez-Crespo, P.M.M.; Lanz-Garcia, J.; Sousa, A.; Goikoetxea, J.; Reguera-Iglesias, J.M.; Leon, E.; Arminanzas, C.; Mantecon, M.A.; et al. Catheter-Related Bloodstream Infections: Predictive Factors for Gram-Negative Bacteria Aetiology and 30 Day Mortality in a Multicentre Prospective Cohort. J. Antimicrob. Chemother. 2020, 75, 3056–3061. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.; Harant, A.; Fernandes, G.; Mwamelo, A.J.; Hein, W.; Dekker, D.; Sridhar, D. Measuring the Global Response to Antimicrobial Resistance, 2020–21: A Systematic Governance Analysis of 114 Countries. Lancet Infect. Dis. 2023, 23, 706–718. [Google Scholar] [CrossRef]
- Nordmann, P. Carbapenemase-producing Enterobacteriaceae: Overview of a major public health challenge. Med. Mal. Infect. 2014, 44, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef] [PubMed]
- Theuretzbacher, U. Global Antimicrobial Resistance in Gram-Negative Pathogens and Clinical Need. Curr. Opin. Microbiol. 2017, 39, 106–112. [Google Scholar] [CrossRef]
- Freire-Moran, L.; Aronsson, B.; Manz, C.; Gyssens, I.C.; So, A.D.; Monnet, D.L.; Cars, O. Critical Shortage of New Antibiotics in Development against Multidrug-Resistant Bacteria—Time to React Is Now. Drug Resist. Updat. 2011, 14, 118–124. [Google Scholar] [CrossRef]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef]
- Hecker, S.J.; Reddy, K.R.; Totrov, M.; Hirst, G.C.; Lomovskaya, O.; Griffith, D.C.; King, P.; Tsivkovski, R.; Sun, D.; Sabet, M.; et al. Discovery of a Cyclic Boronic Acid β-Lactamase Inhibitor (RPX7009) with Utility vs Class A Serine Carbapenemases. J. Med. Chem. 2015, 58, 3682–3692. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Rubio-Aparicio, D.; Nelson, K.; Dudley, M.N.; Lomovskaya, O. Meropenem-Vaborbactam Resistance Selection, Resistance Prevention, and Molecular Mechanisms in Mutants of KPC-Producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2017, 61, e01694-17. [Google Scholar] [CrossRef] [PubMed]
- Lomovskaya, O.; Sun, D.; Rubio-Aparicio, D.; Nelson, K.; Tsivkovski, R.; Griffith, D.C.; Dudley, M.N. Vaborbactam: Spectrum of Beta-Lactamase Inhibition and Impact of Resistance Mechanisms on Activity in Enterobacteriaceae. Antimicrob. Agents Chemother. 2017, 61, e01443-17. [Google Scholar] [CrossRef] [PubMed]
- Mendez, A.; Chagastelles, P.; Palma, E.; Nardi, N.; Schapoval, E. Thermal and Alkaline Stability of Meropenem: Degradation Products and Cytotoxicity. Int. J. Pharm. 2008, 350, 95–102. [Google Scholar] [CrossRef]
- Morrill, H.J.; Pogue, J.M.; Kaye, K.S.; LaPlante, K.L. Treatment Options for Carbapenem-Resistant Enterobacteriaceae Infections. Open Forum Infect. Dis. 2015, 2, OFV050. [Google Scholar] [CrossRef]
- Nicolau, D.P. Pharmacokinetic and Pharmacodynamic Properties of Meropenem. Clin. Infect. Dis. 2008, 47, S32–S40. [Google Scholar] [CrossRef]
- Herald, F.; Burgos, R.M. Clinical Evaluation of Meropenem-Vaborbactam Combination for the Treatment of Urinary Tract Infection: Evidence to Date. Infect. Drug Resist. 2023, 16, 555–568. [Google Scholar] [CrossRef]
- Franceschini, N. Meropenem Stability to Beta-Lactamase Hydrolysis and Comparative In Vitro Activity against Several Beta-Lactamase-Producing Gram-Negative Strains. J. Antimicrob. Chemother. 2002, 49, 395–398. [Google Scholar] [CrossRef]
- Vabomere (Meropenem and Vaborbactam) for Iniection; Approval by FDA’s Center for Drug Evaluation and Research. Available online: https://www.accessdata.fda.gov/Drugsatfda_docs/Label/2017/209776lbl.pdf (accessed on 6 October 2023).
- Sabet, M.; Tarazi, Z.; Rubio-Aparicio, D.; Nolan, T.; Parkinson, J.; Lomovskaya, O.; Dudley, M.; Griffith, D. Activity of simulated human dosage regimens of meropenem and vaborbactam against carbapenem-resistant enterobacteriaceae in an in vitro hollow-fiber model. Antimicrob. Agents Chemother. 2018, 62, e01969-17. [Google Scholar] [CrossRef]
- Rubino, C.M.; Bhavnani, S.M.; Loutit, J.S.; Morgan, E.E.; White, D.; Dudley, M.N.; Griffith, D.C. Phase 1 Study of the Safety, Tolerability, and Pharmacokinetics of Vaborbactam and Meropenem Alone and in Combination Following Single and Multiple Doses in Healthy Adult Subjects. Antimicrob. Agents Chemother. 2018, 62, e02228-17. [Google Scholar] [CrossRef]
- Griffith, D.C.; Loutit, J.S.; Morgan, E.E.; Durso, S.; Dudley, M.N. Phase 1 Study of the Safety, Tolerability, and Pharmacokinetics of the β-Lactamase Inhibitor Vaborbactam (RPX7009) in Healthy Adult Subjects. Antimicrob. Agents Chemother. 2016, 60, 6326–6332. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, J.; Trinh, S. Meropenem–Vaborbactam (Vabomere™): Another Option for Carbapenem-Resistant Enterobacteriaceae. Pharm. Ther. 2019, 44, 110–113. [Google Scholar]
- Wunderink, R.G.; Giamarellos-Bourboulis, E.J.; Rahav, G.; Mathers, A.J.; Bassetti, M.; Vazquez, J.; Cornely, O.A.; Solomkin, J.; Bhowmick, T.; Bishara, J.; et al. Effect and Safety of Meropenem–Vaborbactam versus Best-Available Therapy in Patients with Carbapenem-Resistant Enterobacteriaceae Infections: The TANGO II Randomized Clinical Trial. Infect. Dis. Ther. 2018, 7, 439–455. [Google Scholar] [CrossRef]
- Novelli, A.; Del Giacomo, P.; Rossolini, G.M.; Tumbarello, M. Meropenem/Vaborbactam: A next Generation β-Lactam β-Lactamase Inhibitor Combination. Expert Rev. Anti-Infect. Ther. 2020, 18, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Wenzler, E.; Gotfried, M.H.; Loutit, J.S.; Durso, S.; Griffith, D.C.; Dudley, M.N.; Rodvold, K.A. Meropenem-RPX7009 Concentrations in Plasma, Epithelial Lining Fluid, and Alveolar Macrophages of Healthy Adult Subjects. Antimicrob. Agents Chemother. 2015, 59, 7232–7239. [Google Scholar] [CrossRef] [PubMed]
- Venuti, F.; Romani, L.; De Luca, M.; Tripiciano, C.; Palma, P.; Chiriaco, M.; Finocchi, A.; Lancella, L. Novel Beta Lactam Antibiotics for the Treatment of Multidrug-Resistant Gram-Negative Infections in Children: A Narrative Review. Microorganisms 2023, 11, 1798. [Google Scholar] [CrossRef] [PubMed]
- Lapuebla, A.; Abdallah, M.; Olafisoye, O.; Cortes, C.; Urban, C.; Quale, J.; Landman, D. Activity of Meropenem Combined with RPX7009, a Novel β-Lactamase Inhibitor, against Gram-Negative Clinical Isolates in New York City. Antimicrob. Agents Chemother. 2015, 59, 4856–4860. [Google Scholar] [CrossRef]
- Castanheira, M.; Huband, M.D.; Mendes, R.E.; Flamm, R.K. Meropenem-Vaborbactam Tested against Contemporary Gram-Negative Isolates Collected Worldwide during 2014, Including Carbapenem-Resistant, KPC-Producing, Multidrug-Resistant, and Extensively Drug-Resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2017, 61, e00567-17. [Google Scholar] [CrossRef]
- Gaibani, P.; Giani, T.; Bovo, F.; Lombardo, D.; Amadesi, S.; Lazzarotto, T.; Coppi, M.; Rossolini, G.M.; Ambretti, S. Resistance to Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam in Gram-Negative MDR Bacilli: Molecular Mechanisms and Susceptibility Testing. Antibiotics 2022, 11, 628. [Google Scholar] [CrossRef]
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef]
- Biagi, M.; Wu, T.; Lee, M.; Patel, S.; Butler, D.; Wenzler, E. Exploring Aztreonam in Combination with Ceftazidime-Avibactam or Meropenem-Vaborbactam as Potential Treatments for Metallo- and Serine-β-Lactamase-Producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2019, 63, AAC.01426-19. [Google Scholar] [CrossRef] [PubMed]
- Langley, G.W.; Cain, R.; Tyrrell, J.M.; Hinchliffe, P.; Calvopiña, K.; Tooke, C.L.; Widlake, E.; Dowson, C.G.; Spencer, J.; Walsh, T.R.; et al. Profiling Interactions of Vaborbactam with Metallo-β-Lactamases. Bioorg. Med. Chem. Lett. 2019, 29, 1981–1984. [Google Scholar] [CrossRef] [PubMed]
- Hackel, M.A.; Lomovskaya, O.; Dudley, M.N.; Karlowsky, J.A.; Sahm, D.F. In Vitro Activity of Meropenem-Vaborbactam against Clinical Isolates of KPC-Positive Enterobacteriaceae. Antimicrob. Agents Chemother. 2018, 62, e01904-17. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; McCreary, E.K.; Marini, R.V.; Kline, E.G.; Jones, C.E.; Hao, B.; Chen, L.; Kreiswirth, B.N.; Doi, Y.; Clancy, C.J.; et al. Early Experience With Meropenem-Vaborbactam for Treatment of Carbapenem-Resistant Enterobacteriaceae Infections. Clin. Infect. Dis. 2020, 71, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Findlay, J.; Poirel, L.; Nordmann, P. In Vitro-Obtained Meropenem-Vaborbactam Resistance Mechanisms among Clinical Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae Isolates. J. Glob. Antimicrob. Resist. 2023, 32, 66–71. [Google Scholar] [CrossRef]
- Yahav, D.; Giske, C.G.; Gramatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-Lactam–β-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2020, 34, e00115-20. [Google Scholar] [CrossRef]
- Jorgensen, S.C.J.; Rybak, M.J. Meropenem and Vaborbactam: Stepping up the Battle against Carbapenem-Resistant Enterobacteriaceae. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2018, 38, 444–461. [Google Scholar] [CrossRef]
- Chiotos, K.; Hayes, M.; Gerber, J.S.; Tamma, P.D. Treatment of Carbapenem-Resistant Enterobacteriaceae Infections in Children. J. Pediatr. Infect. Dis. Soc. 2020, 9, 56–66. [Google Scholar] [CrossRef]
- Hanretty, A.M.; Kaur, I.; Evangelista, A.T.; Moore, W.S.; Enache, A.; Chopra, A.; Cies, J.J. Pharmacokinetics of the Meropenem Component of Meropenem-Vaborbactam in the Treatment of KPC-Producing Klebsiella pneumoniae Bloodstream Infection in a Pediatric Patient. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2018, 38, e87–e91. [Google Scholar] [CrossRef]
- Shoulders, B.R.; Casapao, A.M.; Venugopalan, V. An Update on Existing and Emerging Data for Meropenem-Vaborbactam. Clin. Ther. 2020, 42, 692–702. [Google Scholar] [CrossRef]
- Andrei, S.; Valeanu, L.; Chirvasuta, R.; Stefan, M.-G. New FDA Approved Antibacterial Drugs: 2015–2017. Discoveries 2018, 6, e81. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Bhowmick, T.; Metallidis, S.; Bleasdale, S.C.; Sagan, O.S.; Stus, V.; Vazquez, J.; Zaitsev, V.; Bidair, M.; Chorvat, E.; et al. Effect of Meropenem-Vaborbactam vs Piperacillin-Tazobactam on Clinical Cure or Improvement and Microbial Eradication in Complicated Urinary Tract Infection: The TANGO I Randomized Clinical Trial. JAMA 2018, 319, 788–799. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Potoski, B.A.; Haidar, G.; Hao, B.; Doi, Y.; Chen, L.; Press, E.G.; Kreiswirth, B.N.; Clancy, C.J.; Nguyen, M.H. Clinical Outcomes, Drug Toxicity, and Emergence of Ceftazidime-Avibactam Resistance among Patients Treated for Carbapenem-Resistant Enterobacteriaceae Infections. Clin. Infect. Dis. 2016, 63, ciw636. [Google Scholar] [CrossRef]
- Tumbarello, M.; Raffaelli, F.; Cascio, A.; Falcone, M.; Signorini, L.; Mussini, C.; De Rosa, F.G.; Losito, A.R.; De Pascale, G.; Pascale, R.; et al. Compassionate Use of Meropenem/Vaborbactam for Infections Caused by KPC-Producing Klebsiella pneumoniae: A Multicentre Study. JAC-Antimicrob. Resist. 2022, 4, dlac022. [Google Scholar] [CrossRef]
- Carvalhaes, C.G.; Shortridge, D.; Sader, H.S.; Castanheira, M. Activity of Meropenem-Vaborbactam against Bacterial Isolates Causing Pneumonia in Patients in U.S. Hospitals during 2014 to 2018. Antimicrob. Agents Chemother. 2020, 64, e02177-19. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Doyle, T.B.; Kantro, V.; Mendes, R.E.; Shortridge, D. Meropenem-Vaborbactam Activity against Carbapenem-Resistant Enterobacterales Isolates Collected in U.S. Hospitals during 2016 to 2018. Antimicrob. Agents Chemother. 2020, 64, e01951-19. [Google Scholar] [CrossRef]
- Alosaimy, S.; Jorgensen, S.C.J.; Lagnf, A.M.; Melvin, S.; Mynatt, R.P.; Carlson, T.J.; Garey, K.W.; Allen, D.; Venugopalan, V.; Veve, M.; et al. Real-World Multicenter Analysis of Clinical Outcomes and Safety of Meropenem-Vaborbactam in Patients Treated for Serious Gram-Negative Bacterial Infections. Open Forum Infect. Dis. 2020, 7, ofaa051. [Google Scholar] [CrossRef]
- Alosaimy, S.; Lagnf, A.M.; Morrisette, T.; Scipione, M.R.; Zhao, J.J.; Jorgensen, S.C.J.; Mynatt, R.; Carlson, T.J.; Jo, J.; Garey, K.W.; et al. Real-World, Multicenter Experience with Meropenem-Vaborbactam for Gram-Negative Bacterial Infections Including Carbapenem-Resistant Enterobacterales and Pseudomonas aeruginosa. Open Forum Infect. Dis. 2021, 8, ofab371. [Google Scholar] [CrossRef]
- Ackley, R.; Roshdy, D.; Meredith, J.; Minor, S.; Anderson, W.E.; Capraro, G.A.; Polk, C. Meropenem-Vaborbactam versus Ceftazidime-Avibactam for Treatment of Carbapenem-Resistant Enterobacteriaceae Infections. Antimicrob. Agents Chemother. 2020, 64, e02313-19. [Google Scholar] [CrossRef]
- Kaushik, A.; Ammerman, N.C.; Lee, J.; Martins, O.; Kreiswirth, B.N.; Lamichhane, G.; Parrish, N.M.; Nuermberger, E.L. In Vitro Activity of the New β-Lactamase Inhibitors Relebactam and Vaborbactam in Combination with β-Lactams against Mycobacterium abscessus Complex Clinical Isolates. Antimicrob. Agents Chemother. 2019, 63, e02623-18. [Google Scholar] [CrossRef]
- Gainey, A.B.; Burch, A.K.; Brownstein, M.J.; Brown, D.E.; Fackler, J.; Horne, B.; Biswas, B.; Bivens, B.N.; Malagon, F.; Daniels, R. Combining Bacteriophages with Cefiderocol and Meropenem/Vaborbactam to Treat a Pan-Drug Resistant Achromobacter Species Infection in a Pediatric Cystic Fibrosis Patient. Pediatr. Pulmonol. 2020, 55, 2990–2994. [Google Scholar] [CrossRef] [PubMed]
- Caverly, L.J.; Spilker, T.; Kalikin, L.M.; Stillwell, T.; Young, C.; Huang, D.B.; LiPuma, J.J. In Vitro Activities of β-Lactam–β-Lactamase Inhibitor Antimicrobial Agents against Cystic Fibrosis Respiratory Pathogens. Antimicrob. Agents Chemother. 2020, 64, e01595-19. [Google Scholar] [CrossRef] [PubMed]
- Shortridge, D.; Carvalhaes, C.; Deshpande, L.; Castanheira, M. Activity of Meropenem/Vaborbactam and Comparators against Gram-Negative Isolates from Eastern and Western European Patients Hospitalized with Pneumonia Including Ventilator-Associated Pneumonia (2014-19). J. Antimicrob. Chemother. 2021, 76, 2600–2605. [Google Scholar] [CrossRef]
- Sader, H.S.; Carvalhaes, C.G.; Shortridge, D.; Castanheira, M. Comparative Activity of Newer β-Lactam/β-Lactamase Inhibitor Combinations against Pseudomonas aeruginosa from Patients Hospitalized with Pneumonia in European Medical Centers in 2020. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Belati, A.; Bavaro, D.F.; Saracino, A.; Diella, L.; De Gennaro, N.; Di Gennaro, F. Meropenem/Vaborbactam Plus Aztreonam as a Possible Treatment Strategy for Bloodstream Infections Caused by Ceftazidime/Avibactam-Resistant Klebsiella pneumoniae: A Retrospective Case Series and Literature Review. Antibiotics 2022, 11, 373. [Google Scholar] [CrossRef]
- Tiseo, G.; Falcone, M.; Leonildi, A.; Giordano, C.; Barnini, S.; Arcari, G.; Carattoli, A.; Menichetti, F. Meropenem-Vaborbactam as Salvage Therapy for Ceftazidime-Avibactam-, Cefiderocol-Resistant ST-512 Klebsiella pneumoniae–producing KPC-31, a D179Y Variant of KPC-3. Open Forum Infect. Dis. 2021, 8, ofab141. [Google Scholar] [CrossRef]
- Sabet, M.; Tarazi, Z.; Griffith, D.C. Activity of Meropenem-Vaborbactam against Pseudomonas aeruginosa and Acinetobacter baumannii in a Neutropenic Mouse Thigh Infection Model. Antimicrob. Agents Chemother. 2019, 63, e01665-18. [Google Scholar] [CrossRef]
- Sabet, M.; Tarazi, Z.; Nolan, T.; Parkinson, J.; Rubio-Aparicio, D.; Lomovskaya, O.; Dudley, M.N.; Griffith, D.C. Activity of Meropenem-Vaborbactam in Mouse Models of Infection Due to KPC-Producing Carbapenem-Resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2018, 62, e01446-17. [Google Scholar] [CrossRef]
- Weiss, W.J.; Pulse, M.E.; Nguyen, P.; Peterson, K.; Silva, J.; Simecka, J.W.; Valtierra, D.; Sabet, M.; Griffith, D.C. Activity of Meropenem-Vaborbactam against Carbapenem-Resistant Enterobacteriaceae in a Murine Model of Pyelonephritis. Antimicrob. Agents Chemother. 2018, 62, e01439-17. [Google Scholar] [CrossRef]
- Bovo, F.; Lombardo, D.; Lazzarotto, T.; Ambretti, S.; Gaibani, P. Epidemiology and In Vitro Activity of Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam against KPC-Producing K. pneumoniae Collected from Bacteremic Patients, 2018 to 2020. Antibiotics 2022, 11, 1621. [Google Scholar] [CrossRef]
- Tan, X.; Pan, Q.; Mo, C.; Li, X.; Liang, X.; Li, Y.; Lan, Y.; Chen, L. Carbapenems vs Alternative Antibiotics for the Treatment of Complicated Urinary Tract Infection: A Systematic Review and Network Meta-Analysis. Medicine 2020, 99, e18769. [Google Scholar] [CrossRef] [PubMed]
Class According to Ambler | Effect of the Vaborbactam | β-Lactamases |
---|---|---|
Class A | Inhibition | Serine carbapenemases: KPC, NMC-A, SME-2 |
ESBL: SHV-2, PER-1 | ||
Narrow spectrum: TEM-1, TEM-2 | ||
Class B | Lack of inhibition | Metalo-β-lactamases: VIM, NDM-1 |
Class C | Inhibition | Cephalosporinases: AmpC, P99, ACT-1 |
Class D | Lack of inhibition | OXA-48 |
Primary End-Points | Meropenem/ Vaborbactam | Piperacilin/ Tazobactam |
---|---|---|
Overall success defined as clinical cure or improvement and microbial eradication composite * (p < 0.001) | 98.4% | 94.0% |
Microbiological eradication in mMITT (p < 0.001) | 66.7% | 57.7% |
Microbiological eradication in ME (p < 0.001) | 66.3% | 60.4% |
Primary End-Points of TANGO II Trial | Meropenem/ Vaborbactam | BAT |
---|---|---|
Overall clinical success * in EOT (p = 0.03) | 65.6% | 33.3% |
Microbiologic cure in EOT | 65.6% | 40.0% |
Overall clinical success in TOC | 59.4% | 26.7% |
Microbiologic cure in TOC | 53.1% | 33.3% |
Day-28 mortality in mCRE-MITT population | 15.6% | 33.3% |
Microbiological Characteristics | No. of Patients | Infection Type | No. of CRE Pathogens | Median Duration of Treatment | Clinical Cure | Therapy Scheme | In-Hospital Mortality | Severe TEAE | References |
---|---|---|---|---|---|---|---|---|---|
K. pneumoniae (14/20), K. oxytoca (2/20), E. coli (2/20), E. cloacae (1/20), C. freundii (1/20) | n = 20 |
| 18/20 (90%) | 8 days | 65% (13/20) | MER-VAB MT in 80% (16/20); PT > 48 h (4/20) (GM inh. (n = 2), GM i.v. and inh. (n = 1), CIP i.v. (n = 1)) | 2/20 | 1/20 eosinophilia | [46] |
K. pneumoniae (100%) | n = 37 |
| 100% | 13.5 days | 75.6% (28/37) | MER-VAB MT (14/37); PT ((+1 drug), n = 17: FOS (6), COL (6), TGC (3), GM (1), AKN (1); (+ ≥2 drugs) n = 6) | 9/37 | 1/37 leukopenia, thrombocytopenia | [56] |
Enterobacterales (86.7%) 39/45: K. pneumoniae (46.7%) E. cloacae (20%) E. coli (13.3%) B. cepacia (6.6%) A. baumannii (2.2%) P. aeruginosa (4.4%) | n = 40 |
| 33/39 (84.6%) | 12 days | 70% (28/40) | MER-VAB MT; PT ((+ 1 drug): MNO/LEV/AKN 37.5% (12/40); 8/40 TOB/COL; 4/40 changed after 72 h MER-VAB for MNO/CAZ-AVI) | 3/40 | 1/40 SJS/TEN | [59] |
K. pneumoniae (42.1%) E. coli (19.8%) E. cloacae (16.7%) P. aeruginosa (8.7%) other (12.7%) | n = 129 |
| 78.6% | 11.7 days | ND | MER-VAB MT; PT (34.1% + ≥1 drug for ≥48 h) | 30/126 | 4/126 SJS/TEN; hepatotoxiticy, AKI | [60] |
K. pneumoniae, E. coli, Enterobacter spp., Citrobacter spp., Serratia spp. | n = 131 (incl. n = 105 CAZ-AVI n = 26 MER-VAB) |
| ND | MER-VAB cohort: 12.3 days CAZ-AVI cohort: 10.8 days | MER-VAB cohort: 69.2% CAZ-AVI cohort: 61.9% | MER-VAB cohort: MER-VAB MT; PT (4/26) (+ ≥1 drug) PXB/COL/TGC | MER-VAB cohort: 3/26 | 6/26 (3/6 AKI; 2/6 leukopenia;1/6 SJS) | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duda-Madej, A.; Viscardi, S.; Topola, E. Meropenem/Vaborbactam: β-Lactam/β-Lactamase Inhibitor Combination, the Future in Eradicating Multidrug Resistance. Antibiotics 2023, 12, 1612. https://doi.org/10.3390/antibiotics12111612
Duda-Madej A, Viscardi S, Topola E. Meropenem/Vaborbactam: β-Lactam/β-Lactamase Inhibitor Combination, the Future in Eradicating Multidrug Resistance. Antibiotics. 2023; 12(11):1612. https://doi.org/10.3390/antibiotics12111612
Chicago/Turabian StyleDuda-Madej, Anna, Szymon Viscardi, and Ewa Topola. 2023. "Meropenem/Vaborbactam: β-Lactam/β-Lactamase Inhibitor Combination, the Future in Eradicating Multidrug Resistance" Antibiotics 12, no. 11: 1612. https://doi.org/10.3390/antibiotics12111612
APA StyleDuda-Madej, A., Viscardi, S., & Topola, E. (2023). Meropenem/Vaborbactam: β-Lactam/β-Lactamase Inhibitor Combination, the Future in Eradicating Multidrug Resistance. Antibiotics, 12(11), 1612. https://doi.org/10.3390/antibiotics12111612