The Association of Procalcitonin and C-Reactive Protein with Bacterial Infections Acquired during Intensive Care Unit Stay in COVID-19 Critically Ill Patients
Abstract
:1. Introduction
2. Results
3. Materials and Methods
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef] [PubMed]
- Grasselli, G.; Greco, M.; Zanella, A.; Albano, G.; Antonelli, M.; Bellani, G.; Bonanomi, E.; Cabrini, L.; Carlesso, E.; Castelli, G.; et al. Risk Factors Associated with Mortality Among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Intern. Med. 2020, 180, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Malik, P.; Patel, U.; Mehta, D.; Patel, N.; Kelkar, R.; Akrmah, M.; Gabrilove, J.L.; Sacks, H. Biomarkers and Outcomes of COVID-19 Hospitalisations: Systematic Review and Meta-Analysis. BMJ Evid. Based Med. 2021, 26, 107–108. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, P.; Wirz, Y.; Sager, R.; Christ-Crain, M.; Stolz, D.; Tamm, M.; Bouadma, L.; Luyt, C.E.; Wolff, M.; Chastre, J.; et al. Procalcitonin to Initiate or Discontinue Antibiotics in Acute Respiratory Tract Infections. Cochrane Database Syst. Rev. 2017, 10, CD007498. [Google Scholar] [CrossRef] [PubMed]
- Commissioner, O. FDA Clears Test to Help Manage Antibiotic Treatment for Lower Respiratory Tract Infections and Sepsis. Available online: https://www.fda.gov/news-events/press-announcements/fda-clears-test-help-manage-antibiotic-treatment-lower-respiratory-tract-infections-and-sepsis (accessed on 29 August 2023).
- World Health Organization. Second WHO Model List of Essential In Vitro Diagnostics; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Carbonell, R.; Moreno, G.; Martín-Loeches, I.; Bodí, M.; Rodríguez, A. The Role of Biomarkers in Influenza and COVID-19 Community-Acquired Pneumonia in Adults. Antibiotics 2023, 12, 161. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Li Bassi, G.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT Guidelines for the Management of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia: Guidelines for the Management of Hospital-Acquired Pneumonia (HAP)/Ventilator-Associated Pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana Del Tórax (ALAT). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, R.; Urgelés, S.; Salgado, M.; Rodríguez, A.; Reyes, L.F.; Fuentes, Y.V.; Serrano, C.C.; Caceres, E.L.; Bodí, M.; Martín-Loeches, I.; et al. Negative Predictive Value of Procalcitonin to Rule out Bacterial Respiratory Co-Infection in Critical COVID-19 Patients. J. Infect. 2022, 85, 374–381. [Google Scholar] [CrossRef]
- Galli, F.; Bindo, F.; Motos, A.; Fernández-Barat, L.; Barbeta, E.; Gabarrús, A.; Ceccato, A.; Bermejo-Martin, J.F.; Ferrer, R.; Riera, J.; et al. Procalcitonin and C-Reactive Protein to Rule out Early Bacterial Coinfection in COVID-19 Critically Ill Patients. Intensive Care Med. 2023, 49, 934–945. [Google Scholar] [CrossRef]
- STROBE. Available online: https://www.strobe-statement.org/ (accessed on 30 August 2023).
- Therapeutics and COVID-19: Living Guideline. Available online: https://www.who.int/publications-detail-redirect/WHO-2019-nCoV-therapeutics-2021.3 (accessed on 23 November 2021).
- Mussini, C.; Falcone, M.; Nozza, S.; Sagnelli, C.; Parrella, R.; Meschiari, M.; Petrosillo, N.; Mastroianni, C.; Cascio, A.; Iaria, C.; et al. Therapeutic Strategies for Severe COVID-19: A Position Paper from the Italian Society of Infectious and Tropical Diseases (SIMIT). Clin. Microbiol. Infect. 2021, 27, 389–395. [Google Scholar] [CrossRef]
- Flipsnack Siaarti_-_Raccomandazioni_per_la_Gestione_del_Paziente_Criti. Available online: https://www.flipsnack.com/siaarti/siaarti_-_raccomandazioni_per_la_gestione_del_paziente_criti/full-view.html (accessed on 23 November 2021).
- Manian, F.A. IDSA Guidelines for the Diagnosis and Management of Intravascular Catheter-Related Bloodstream Infection. Clin. Infect. Dis. 2009, 49, 1770–1771, author reply 1771–1772. [Google Scholar] [CrossRef] [PubMed]
- Mandrekar, J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [PubMed]
- Póvoa, P.; Martin-Loeches, I.; Ramirez, P.; Bos, L.D.; Esperatti, M.; Silvestre, J.; Gili, G.; Goma, G.; Berlanga, E.; Espasa, M.; et al. Biomarkers Kinetics in the Assessment of Ventilator-Associated Pneumonia Response to Antibiotics—Results from the BioVAP Study. J. Crit. Care 2017, 41, 91–97. [Google Scholar] [CrossRef]
- Borges, I.; Carneiro, R.; Bergo, R.; Martins, L.; Colosimo, E.; Oliveira, C.; Saturnino, S.; Andrade, M.V.; Ravetti, C.; Nobre, V.; et al. Duration of Antibiotic Therapy in Critically Ill Patients: A Randomized Controlled Trial of a Clinical and C-Reactive Protein-Based Protocol versus an Evidence-Based Best Practice Strategy without Biomarkers. Crit. Care 2020, 24, 281. [Google Scholar] [CrossRef] [PubMed]
- Matthaiou, D.K.; Ntani, G.; Kontogiorgi, M.; Poulakou, G.; Armaganidis, A.; Dimopoulos, G. An ESICM Systematic Review and Meta-Analysis of Procalcitonin-Guided Antibiotic Therapy Algorithms in Adult Critically Ill Patients. Intensive Care Med. 2012, 38, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Adams, C.; Brunetti, L.; Bargoud, C.; Teichman, A.L.; Choron, R.L. Evaluation of Procalcitonin’s Utility to Predict Concomitant Bacterial Pneumonia in Critically Ill COVID-19 Patients. J. Intensive Care Med. 2022, 37, 1486–1492. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Wang, L.; Lin, L.; Liu, X. Predictive Values of Procalcitonin for Coinfections in Patients with COVID-19: A Systematic Review and Meta-Analysis. Virol. J. 2023, 20, 92. [Google Scholar] [CrossRef] [PubMed]
- Pink, I.; Raupach, D.; Fuge, J.; Vonberg, R.-P.; Hoeper, M.M.; Welte, T.; Rademacher, J. C-Reactive Protein and Procalcitonin for Antimicrobial Stewardship in COVID-19. Infection 2021, 49, 935–943. [Google Scholar] [CrossRef]
- Confalonieri, M.; Urbino, R.; Potena, A.; Piattella, M.; Parigi, P.; Puccio, G.; Della Porta, R.; Giorgio, C.; Blasi, F.; Umberger, R.; et al. Hydrocortisone Infusion for Severe Community-Acquired Pneumonia: A Preliminary Randomized Study. Am. J. Respir. Crit. Care Med. 2005, 171, 242–248. [Google Scholar] [CrossRef]
- Berman, M.; Ben-Ami, R.; Berliner, S.; Anouk, M.; Kaufman, I.; Broyde, A.; Borok, S.; Elkayam, O. The Effect of Tocilizumab on Inflammatory Markers in Patients Hospitalized with Serious Infections. Case Series and Review of Literature. Life 2021, 11, 258. [Google Scholar] [CrossRef]
- Kooistra, E.J.; van Berkel, M.; van Kempen, N.F.; van Latum, C.R.M.; Bruse, N.; Frenzel, T.; van den Berg, M.J.W.; Schouten, J.A.; Kox, M.; Pickkers, P. Dexamethasone and Tocilizumab Treatment Considerably Reduces the Value of C-Reactive Protein and Procalcitonin to Detect Secondary Bacterial Infections in COVID-19 Patients. Crit. Care 2021, 25, 281. [Google Scholar] [CrossRef]
- Ivan Hariyanto, T.; Kurniawan, A. Tocilizumab Administration Is Associated with the Reduction in Biomarkers of Coronavirus Disease 2019 Infection. J. Med. Virol. 2021, 93, 1832–1836. [Google Scholar] [CrossRef]
- Nadeem, R.; Aljaghber, H.M.; Elgohary, D.; Rafeeq, A.; Aijazi, I.; Khan, H.A.; Khan, M.R.; Velappan, B.; Aljanahi, M.H.; Mohamed Ali Elzeiny, M.G. Procalcitonin Testing with Secondary Coinfection in Patients With COVID-19. Cureus 2022, 14, e28898. [Google Scholar] [CrossRef]
- Harte, E.; Kumarasamysarma, S.; Phillips, B.; Mackay, O.; Rashid, Z.; Malikova, N.; Mukit, A.; Ramachandran, S.; Biju, A.; Brown, K.; et al. Procalcitonin Values Fail to Track the Presence of Secondary Bacterial Infections in COVID-19 ICU Patients. Antibiotics 2023, 12, 709. [Google Scholar] [CrossRef]
- Richards, O.; Pallmann, P.; King, C.; Cheema, Y.; Killick, C.; Thomas-Jones, E.; Harris, J.; Bailey, C.; Szakmany, T. Procalcitonin Increase Is Associated with the Development of Critical Care-Acquired Infections in COVID-19 ARDS. Antibiotics 2021, 10, 1425. [Google Scholar] [CrossRef]
All Patients (n = 279) | NO Infection (n = 110) | YES Infection (n = 169) | p Value | |
---|---|---|---|---|
Age (years; median, IQR) | 67 (60–73) | 67 (58–73) | 67 (61–72) | 0.946 |
Sex, male (n, %) | 211 (76) | 93 (79) | 118 (74.7) | 0.576 |
BMI (median, IQR) | 29 (26–33) | 29 (26–32) | 29 (26–33) | 0.710 |
SAPSII (median, IQR) | 35 (30–41) | 35 (29–42) | 35 (32–40) | 0.349 |
CRP admission (mg/dL; median-IQR) | 6.5 (2.4–17.0) | 7.2 (2.7–15.5) | 6.3 (2.1–17.7) | 0.356 |
PCT baseline (ng/mL; median, IQR) | 0.2 (0.1–0.6) | 0.2 (0.1–0.6) | 0.2 (0.12–0.6) | 0.545 |
Steroids administration (n, %) | 270 (97) | 115 (95) | 155 (98) | 0.068 |
Tocilizumab (n, %) | 219 (78) | 86 (71) | 133 (84) | 0.029 |
Invasive mechanical ventilation (n, %) | 249 (89) | 97 (80) | 152 (96) | <0.001 |
Site of secondary infection (n, %) | ||||
Lung | - | 143 (90.1) | - | |
Blood Stream | - | 75 (47.3) | - | |
Other sites | - | 44 (26.2) | - | |
ICU LOS (days; median, IQR) | 18 (11–35) | 13 (10–19) | 28 (15–45) | <0.001 |
Hospital LOS (days; median, IQR) | 33 (21–49) | 27 (20–37) | 38 (24–59) | <0.001 |
ICU mortality (n, %) | 119 (43) | 29 (26.2) | 90 (54.1) | <0.001 |
Hospital mortality (n, %) | 130 (47) | 34 (31) | 96 (57) | <0.001 |
Sensitivity | Specificity | Positive Predictive Value | Negative Predictive Value | |
---|---|---|---|---|
PCT (ng/mL) | ||||
≥0.1 | 100.0 (97.8–100.0) | 0.0% (0.0–3.3) | 61.5% (61.5–61.5) | - |
≥0.16 | 71.0 (63.5–77.7) | 76.4% (67.3–83.9) | 82.2% (75.0–88.0) | 63.1% (54.3–71.3) |
≥0.25. | 60.9 (53.2–68.3) | 83.6% (75.4–90.0) | 85.2% (77.5–91.0) | 58.2% (50.1–66.0) |
≥0.5 | 43.2 (35.6–51.0) | 86.4% (78.5–92.2) | 83.0% (73.5–90.2) | 49.7% (42.4–57.1) |
≥1 | 26.0 (19.6–33.3) | 93.6% (87.3–97.4) | 86.3% (73.8–94.3) | 45.2% (38.6–51.9) |
CRP (mg/dL) | ||||
≥1 | 77.5% (70.5–83.6) | 63.6% (53.9–72.6) | 76.6% (69.6–82.8) | 64.8% (55.0–73.7) |
≥1.35 | 72.2% (64.8–78.8) | 68.2% (58.6–76.7) | 78.4% (73.1–82.9) | 60.1% (53.8–66.9) |
≥2 | 62.1% (54.4–69.5) | 73.6% (64.4–81.6) | 79.0% (73.0–84.0) | 54.9% (49.3–60.3) |
≥5 | 38.5% (31.1–46.2) | 87.3% (79.6–92.9) | 82.8% (74.1–89.1) | 47.0% (43.6–50.5) |
≥10 | 26.6% (20.1–34.0) | 95.5% (89.7–98.5) | 90.0% (78.2–96.7) | 45.8% (38.2–52.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campani, S.; Talamonti, M.; Dall’Ara, L.; Coloretti, I.; Gatto, I.; Biagioni, E.; Tosi, M.; Meschiari, M.; Tonelli, R.; Clini, E.; et al. The Association of Procalcitonin and C-Reactive Protein with Bacterial Infections Acquired during Intensive Care Unit Stay in COVID-19 Critically Ill Patients. Antibiotics 2023, 12, 1536. https://doi.org/10.3390/antibiotics12101536
Campani S, Talamonti M, Dall’Ara L, Coloretti I, Gatto I, Biagioni E, Tosi M, Meschiari M, Tonelli R, Clini E, et al. The Association of Procalcitonin and C-Reactive Protein with Bacterial Infections Acquired during Intensive Care Unit Stay in COVID-19 Critically Ill Patients. Antibiotics. 2023; 12(10):1536. https://doi.org/10.3390/antibiotics12101536
Chicago/Turabian StyleCampani, Simone, Marta Talamonti, Lorenzo Dall’Ara, Irene Coloretti, Ilenia Gatto, Emanuela Biagioni, Martina Tosi, Marianna Meschiari, Roberto Tonelli, Enrico Clini, and et al. 2023. "The Association of Procalcitonin and C-Reactive Protein with Bacterial Infections Acquired during Intensive Care Unit Stay in COVID-19 Critically Ill Patients" Antibiotics 12, no. 10: 1536. https://doi.org/10.3390/antibiotics12101536
APA StyleCampani, S., Talamonti, M., Dall’Ara, L., Coloretti, I., Gatto, I., Biagioni, E., Tosi, M., Meschiari, M., Tonelli, R., Clini, E., Cossarizza, A., Guaraldi, G., Mussini, C., Sarti, M., Trenti, T., & Girardis, M., on behalf of The MO-COVID-19 Working Group. (2023). The Association of Procalcitonin and C-Reactive Protein with Bacterial Infections Acquired during Intensive Care Unit Stay in COVID-19 Critically Ill Patients. Antibiotics, 12(10), 1536. https://doi.org/10.3390/antibiotics12101536