Streptococcus pyogenes Lineage ST62/emm87: The International Spread of This Potentially Invasive Lineage
Abstract
:1. Introduction
1.1. Streptococcus pyogenes Infections
1.2. The Increased Emergence of ST62/emm87 Lineage
1.3. Therapeutic Failures and the ST62/emm87 Lineage of S. pyogenes
1.4. Study Aims
2. Results and Discussion
3. Materials and Methods
3.1. Comparative Genomics
3.2. Phylogenetic Tree
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castro, S.A.; Dorfmueller, H.C. A brief review on Group A Streptococcus pathogenesis and vaccine development. R. Soc. Open Sci. 2021, 8, 201991. [Google Scholar] [CrossRef]
- Steer, A.C.; Lamagni, T.; Curtis, N.; Carapetis, J.R. Invasive group a streptococcal disease: Epidemiology, pathogenesis and management. Drugs 2012, 72, 1213–1227. [Google Scholar] [CrossRef]
- Birrell, J.M.; Wilson, B.; Taylor, S.; Bennett, J. Invasive group A streptococcal disease in Hawke’s Bay, New Zealand: Epidemiology, manifestations and impact. N. Z. Med. J. 2023, 136, 33–41. [Google Scholar] [PubMed]
- Dunne, E.M.; Hutton, S.; Peterson, E.; Blackstock, A.J.; Hahn, C.G.; Turner, K.; Carter, K.K. Increasing incidence of invasive Group A Streptococcus disease, Idaho, USA, 2008–2019. Emerg. Infect. Dis. 2022, 28, 1785–1795. [Google Scholar] [CrossRef]
- Frost, H.R.; Guglielmini, J.; Duchêne, S.; Lacey, J.A.; Sanderson-Smith, M.; Steer, A.C.; Walker, M.J.; Botteaux, A.; Davies, M.R.; Smeesters, P.R. Promiscuous evolution of group A streptococcal M and M-like proteins. Microbiology 2023, 169, 1280. [Google Scholar] [CrossRef] [PubMed]
- Boukthir, S.; Moullec, S.; Cariou, M.E.; Meygret, A.; Morcet, J.; Faili, A.; Kayal, S. A prospective survey of Streptococcus pyogenes infections in French Brittany from 2009 to 2017: Comprehensive dynamic of new emergent emm genotypes. PLoS ONE 2020, 17, e0244063. [Google Scholar] [CrossRef] [PubMed]
- Gherardi, G.; Vitali, L.A.; Creti, R. Prevalent emm types among invasive GAS in Europe and North America since year 2000. Front. Public Health 2018, 6, 59. [Google Scholar] [CrossRef]
- Flores, A.R.; Luna, R.A.; Runge, J.K.; Shelburne, S.A.; Baker, C.J. Cluster of fatal group A streptococcal emm87 infections in a single family: Molecular basis for invasion and transmission. J. Infect. Dis. 2017, 215, 1648–1652. [Google Scholar] [CrossRef]
- Montes, M.; Tamayo, E.; Onate, E.; Perez-Yarza, E.G.; Perez-Trallero, E. Outbreak of Streptococcus pyogenes infection in healthcare workers in a paediatric intensive care unit: Transmission from a single patient. Epidemiol. Infect. 2013, 141, 341–343. [Google Scholar] [CrossRef]
- Friaes, A.; Melo-Cristino, J.; Ramirez, M.; Portuguese Group for the Study of Streptococcal Infections. Changes in emm types and superantigen gene content of Streptococcus pyogenes causing invasive infections in Portugal. Sci. Rep. 2019, 9, 18051. [Google Scholar] [CrossRef]
- Villalon, P.; Saez-Nieto, J.A.; Rubio-Lopez, V.; Medina-Pascual, M.J.; Garrido, N.; Carrasco, G.; Pino-Rosa, S.; Valdezate, S. Invasive Streptococcus pyogenes disease in Spain: A microbiological and epidemiological study covering the period 2007–2019. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2295–2303. [Google Scholar] [CrossRef] [PubMed]
- Hirose, Y.; Kolesinski, P.; Hiraoka, M.; Uchiyama, S.; Zurich, R.H.; Kumaraswamy, M.; Bjanes, E.; Ghosh, P.; Kawabata, S.; Nizet, V. Contribution of Streptococcus pyogenes M87 protein to innate immune resistance and virulence. Microb. Pathog. 2022, 169, 105636. [Google Scholar] [CrossRef] [PubMed]
- Carapetis, J.R.; Steer, A.C.; Mulholland, E.K.; Weber, M. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 2005, 5, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.F.; LaRock, C.N. Antibiotic treatment, mechanisms for failure, and adjunctive therapies for infections by Group A Streptococcus. Front. Microbiol. 2021, 12, 760255. [Google Scholar] [CrossRef]
- Martini, C.L.; Coronado, A.Z.; Melo, M.C.N.; Gobbi, C.N.; Lopez, U.S.; Mattos, M.C.; Amorim, T.T.; Botelho, A.M.N.; Vasconcelos, A.T.R.; Almeida, L.G.P.; et al. Cellular growth arrest and efflux pumps are associated with antibiotic persisters in Streptococcus pyogenes induced in biofilm-like environments. Front. Microbiol. 2021, 12, 716628. [Google Scholar] [CrossRef]
- Jespersen, M.G.; Lacey, J.A.; Tong, S.Y.C.; Davies, M.R. Global genomic epidemiology of Streptococcus pyogenes. Infect. Genet. Evol. 2020, 86, 104609. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/sra/?term=Streptococcus+pyogenes (accessed on 1 June 2023).
- National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/175/ (accessed on 1 June 2023).
- Debruycker, V.; Hutchin, A.; Masureel, M.; Ficici, E.; Martens, C.; Legrand, P.; Stein, R.A.; Mchaourab, H.S.; Faraldo-Gómez, J.D.; Remaut, H.; et al. An embedded lipid in the multidrug transporter LmrP suggests a mechanism for polyspecificity. Nat. Struct. Mol. Biol. 2020, 27, 829–835. [Google Scholar] [CrossRef]
- Tatsuno, I.; Isaka, M.; Masuno, K.; Hata, N.; Matsumoto, M.; Hasegawa, T. Functional predominance of msr(D), which is more effective as mef(A)-associated than mef(E)-associated, over mef(A)/mef(E) in macrolide resistance in Streptococcus pyogenes. Microb. Drug Resist. 2018, 24, 1089–1097. [Google Scholar] [CrossRef]
- Cattoir, V. Mechanisms of Streptococcus pyogenes antibiotic resistance. In Streptococcus pyogenes: Basic Biology to Clinical Manifestations, 2nd ed.; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2022. [Google Scholar]
- Hamzah, S.N.A.; Mohd Desa, M.N.; Jasni, A.S.; Mohd Taib, N.; Masri, S.N.; Hamat, R.A. Distribution of virulence genes and the molecular epidemiology of Streptococcus pyogenes clinical isolates by emm and multilocus sequence typing methods. Med. J. Malays. 2021, 76, 164–170. [Google Scholar] [CrossRef]
- Brouwer, S.; Rivera-Hernandez, T.; Curren, B.F.; Harbison-Price, N.; De Oliveira, D.M.P.; Jespersen, M.G.; Davies, M.R.; Walker, M.J. Pathogenesis, epidemiology and control of group A Streptococcus infection. Nat. Rev. Microbiol. 2023, 9, 431–447. [Google Scholar] [CrossRef]
- Tatara, K.; Gotoh, K.; Okumiya, K.; Teramachi, M.; Ishimoto, K.; Tanaka, Y.; Iwahashi, J.; Shindou, S.; Yamashita, Y.; Watanabe, H. Molecular epidemiology, antimicrobial susceptibility, and characterization of fluoroquinolone non-susceptible Streptococcus pyogenes in Japan. J. Infect. Chemother. 2020, 26, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Collin, M.; Olsén, A. Extracellular enzymes with immunomodulating activities: Variations on a theme in Streptococcus pyogenes. Infect. Immun. 2003, 71, 2983–2992. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, Y.; Wang, G.; Feng, S.; Guo, Z.; Gu, G. Group A Streptococcus cell wall oligosaccharide-streptococcal C5a peptidase conjugates as effective antibacterial vaccines. ACS Infect. Dis. 2020, 6, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, S.; Steiger, A.K.; Nelson, W.C.; Egbert, R.G.; Wright, A.T. An activity-based probe targeting the streptococcal virulence factor C5a peptidase. Chem. Commun. 2022, 58, 8113–8116. [Google Scholar] [CrossRef]
- Bohnsack, J.F.; Takahashi, S.; Hammitt, L.; Miller, D.V.; Aly, A.A.; Adderson, E.E. Genetic polymorphisms of group B Streptococcus scpB alter functional activity of a cell-associated peptidase that inactivates C5a. Infect. Immun. 2000, 68, 5018–5025. [Google Scholar] [CrossRef]
- Brouwer, S.; Lacey, J.A.; You, Y.; Davies, M.R.; Walker, M.J. Scarlet fever changes its spots. Lancet Infect. Dis. 2019, 19, 1154–1155. [Google Scholar] [CrossRef]
- Lei, B.; Flores, A.R.; Yeoman, C.; Liu, M. Complete genome sequence of hypervirulent Streptococcus pyogenes emm3 strain 1838. Microbiol. Resour. Announc. 2019, 8, e01494-18. [Google Scholar] [CrossRef] [PubMed]
- Fittipaldi, N.; Beres, S.B.; Olsen, R.J.; Kapur, V.; Shea, P.R.; Watkins, M.E.; Cantu, C.C.; Laucirica, D.R.; Jenkins, L.; Flores, A.R.; et al. Full-genome dissection of an epidemic of severe invasive disease caused by a hypervirulent, recently emerged clone of group A Streptococcus. Am. J. Pathol. 2012, 180, 1522–1534. [Google Scholar] [CrossRef] [PubMed]
- Le Breton, Y.; Belew, A.T.; Freiberg, J.A.; Sundar, G.S.; Islam, E.; Lieberman, J.; Shirtliff, M.E.; Tettelin, H.; El-Sayed, N.M.; McIver, K.S. Genome-wide discovery of novel M1T1 group A streptococcal determinants important for fitness and virulence during soft-tissue infection. PLoS Pathog. 2017, 13, e1006584. [Google Scholar] [CrossRef]
- Wong, S.S.; Yuen, K.Y. Streptococcus pyogenes and re-emergence of scarlet fever as a public health problem. Emerg. Microbes Infect. 2012, 1, e2. [Google Scholar] [CrossRef]
- Pancholi, V. Group A Streptococcus-mediated host cell signaling. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Alamiri, F.; Chao, Y.; Baumgarten, M.; Riesbeck, K.; Hakansson, A.P. A role of epithelial cells and virulence factors in biofilm formation by Streptococcus pyogenes in vitro. Infect. Immun. 2020, 88, e00133-20. [Google Scholar] [CrossRef] [PubMed]
- Masuno, K.; Okada, R.; Zhang, Y.; Isaka, M.; Tatsuno, I.; Shibata, S.; Hasegawa, T. Simultaneous isolation of emm89-type Streptococcus pyogenes strains with a wild-type or mutated covS gene from a single streptococcal toxic shock syndrome patient. J. Med. Microbiol. 2014, 63, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Sumby, P.; Whitney, A.R.; Graviss, E.A.; DeLeo, F.R.; Musser, J.M. Genome-wide analysis of group a streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog. 2006, 2, e5. [Google Scholar] [CrossRef]
- Galloway-Peña, J.; DebRoy, S.; Brumlow, C.; Li, X.; Tran, T.T.; Horstmann, N.; Yao, H.; Chen, K.; Wang, F.; Pan, B.F.; et al. Hypervirulent group A Streptococcus emergence in an acaspular background is associated with marked remodeling of the bacterial cell surface. PLoS ONE 2018, 13, e0207897. [Google Scholar] [CrossRef]
- Deniskin, R.; Shah, B.; Muñoz, F.M.; Flores, A.R. Clinical manifestations and bacterial genomic analysis of group A Streptococcus strains that cause pediatric toxic shock syndrome. J. Pediatric Infect. Dis. Soc. 2019, 8, 265–268. [Google Scholar] [CrossRef]
- Beerens, D.; Franch-Arroyo, S.; Sullivan, T.J.; Goosmann, C.; Brinkmann, V.; Charpentier, E. Survival strategies of Streptococcus pyogenes in response to phage infection. Viruses 2021, 13, 612. [Google Scholar] [CrossRef]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef]
- Margulies, M.; Egholm, M.; Altman, W.E.; Attiya, S.; Bader, J.S.; Bemben, L.A.; Berka, J.; Braverman, M.S.; Chen, Y.J.; Chen, Z.; et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Edler, D.; Klein, J.; Antonelli, A.; Silvestro, D. raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol. Evol. 2020, 12, 373–377. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martini, C.L.; Silva, D.N.S.; Viana, A.S.; Planet, P.J.; Figueiredo, A.M.S.; Ferreira-Carvalho, B.T. Streptococcus pyogenes Lineage ST62/emm87: The International Spread of This Potentially Invasive Lineage. Antibiotics 2023, 12, 1530. https://doi.org/10.3390/antibiotics12101530
Martini CL, Silva DNS, Viana AS, Planet PJ, Figueiredo AMS, Ferreira-Carvalho BT. Streptococcus pyogenes Lineage ST62/emm87: The International Spread of This Potentially Invasive Lineage. Antibiotics. 2023; 12(10):1530. https://doi.org/10.3390/antibiotics12101530
Chicago/Turabian StyleMartini, Caroline Lopes, Deborah Nascimento Santos Silva, Alice Slotfeldt Viana, Paul Joseph Planet, Agnes Marie Sá Figueiredo, and Bernadete Teixeira Ferreira-Carvalho. 2023. "Streptococcus pyogenes Lineage ST62/emm87: The International Spread of This Potentially Invasive Lineage" Antibiotics 12, no. 10: 1530. https://doi.org/10.3390/antibiotics12101530
APA StyleMartini, C. L., Silva, D. N. S., Viana, A. S., Planet, P. J., Figueiredo, A. M. S., & Ferreira-Carvalho, B. T. (2023). Streptococcus pyogenes Lineage ST62/emm87: The International Spread of This Potentially Invasive Lineage. Antibiotics, 12(10), 1530. https://doi.org/10.3390/antibiotics12101530