Antibiogram Profile and Detection of Resistance Genes in Pseudomonas aeruginosa Recovered from Hospital Wastewater Effluent
Abstract
:1. Introduction
2. Results
2.1. Colony Enumeration and Prevalence of P. aeruginosa
2.2. Antibiotic Susceptibility Patterns of Confirmed P. aeruginosa Isolates
2.3. MDR and MARI Analysis
2.4. Distribution of Resistance Genes among P. aeruginosa Isolates
3. Discussion
4. Materials and Methods
4.1. Research Area
4.2. Sample Collection
4.3. Isolation of Presumptive P. aeruginosa
4.4. DNA Extraction
4.5. Confirmation of P. aeruginosa
4.6. Antibiotics Susceptibility Testing (AST)
4.7. Multiple Antibiotics Resistance Phenotype (MARP) and Multiple Antibiotics Resistance Index (MARI) Analysis
4.8. Detection of Antimicrobial Resistance Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Santajit, S.; Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Res. Int. 2016, 2016, 2475067. [Google Scholar] [CrossRef]
- Murugan, N.; Malathi, J.; Therese, K.L.; Madhavan, H.N.R. Application of six multiplex PCR’s among 200 clinical isolates of Pseudomonas aeruginosa for the detection of 20 drug resistance encoding genes. Kaohsiung J. Med. Sci. 2018, 34, 79–88. [Google Scholar] [CrossRef]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef]
- Patel, S.J.; Oliveira, A.P.; Zhou, J.J.; Alba, L.; Furuya, E.Y.; Weisenberg, S.A.; Jia, H.; Clock, S.; Kubin, C.J.; Jenkins, S.G.; et al. Risk factors and outcomes of infections caused by extremely drug-resistant gram-negative bacilli in patients hospitalized in intensive care units. Am. J. Infect. Control. 2014, 42, 626–631. [Google Scholar] [CrossRef]
- Fatih, M. Antibiotic multi-resistance by Pseudomonas aeruginosa. Conf. Int. J. Arts Sci. 2017, 10, 115–120. [Google Scholar]
- Imanah, E.O.; Beshiru, A.; Igbinosa, E.O. Antibiogram profile of Pseudomonas aeruginosa isolated from some selected hospital environmental drains. Asian Pacific J. Trop. Dis. 2017, 7, 604–609. [Google Scholar] [CrossRef]
- Kittinger, C.; Lipp, M.; Baumert, R.; Folli, B.; Koraimann, G.; Toplitsch, D.; Liebmann, A.; Grisold, A.J.; Farnleitner, A.H.; Kirschner, A.; et al. Antibiotic resistance patterns of Pseudomonas spp. isolated from the river Danube. Front. Microbiol. 2016, 7, 586. [Google Scholar] [CrossRef]
- Igbinosa, E.O.; Obuekwe, I.S. Evaluation of Antibiotic Resistant Gene in Abattoir Environment. J. Appl. Sci. Environ. Manag. 2014, 18, 165–170. [Google Scholar] [CrossRef]
- Pachori, P.; Gothalwal, R.; Gandhi, P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis. 2019, 6, 109–119. [Google Scholar] [CrossRef]
- Manchanda, V.; Singh, N.P. Occurrence and detection of AmpC β-lactamases among Gram-negative clinical isolates using a modified tree-dimensional test at Guru Tegh Bahadur hospital, Delhi, India. J. Antimicrob. Chemother. 2003, 51, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sen, M.R.; Nigam, C.; Gahlot, R.; Kumari, S. Burden of different beta-lactamase classes among clinical isolates of AmpC-producing Pseudomonas aeruginosa in burn patients: A prospective study. Indian J. Crit. Care Med. 2012, 16, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, Y.; Loke, M.F.; Chua, E.G.; Tay, S.T.; Vadivelu, J. Phenotypic detection of metallo-β-lactamase in imipenem-resistant Pseudomonas aeruginosa. Sci. J. 2012, 2012, 654939. [Google Scholar] [CrossRef]
- Picão, R.C.; Carrara-Marroni, F.E.; Gales, A.C.; Venâncio, E.J.; Xavier, D.E.; Tognim, M.C.B.; Pelayo, J.S. Metallo-β-lactamase-production in meropenem-susceptible Pseudomonas aeruginosa isolates: Risk for silent spread. Mem. Inst. Oswaldo Cruz. 2012, 107, 747–751. [Google Scholar] [CrossRef] [PubMed]
- Rawat, D.; Nair, D. Extended-spectrum ß-lactamases in gram negative bacteria. J. Glob. Infect. Dis. 2010, 2, 263. [Google Scholar] [CrossRef]
- Mesaros, N.; Nordmann, P.; Plésiat, P.; Roussel-Delvallez, M.; Van Eldere, J.; Glupczynski, Y.; Van Laethem, Y.; Jacobs, F.; Lebecque, P.; Malfroot, A.; et al. Pseudomonas aeruginosa: Resistance and therapeutic options at the turn of the new millennium. Clin. Microbiol. Infect. 2007, 13, 560–578. [Google Scholar] [CrossRef]
- Hendriksen, R.S.; Munk, P.; Njage, P.; Van Bunnik, B.; McNally, L.; Lukjancenko, O.; Röder, T.; Nieuwenhuijse, D.; Pedersen, S.K.; Kjeldgaard, J.; et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 2019, 10, 1124. [Google Scholar]
- Munk, P.; Brinch, C.; Møller, F.D.; Petersen, T.N.; Hendriksen, R.S.; Seyfarth, A.M.; Kjeldgaard, J.S.; Svendsen, C.A.; Van Bunnik, B.; Berglund, F. Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance. Nat. Commun. 2022, 13, 7251. [Google Scholar] [CrossRef] [PubMed]
- Laffite, A.; Laffite, A.; Kilunga, P.I.; Kayembe, J.M.; Devarajan, N.; Mulaji, C.K.; Giuliani, G.; Slaveykova, V.I.; Poté, J. Hospital effluents are one of several sources of metal, antibiotic resistance genes, and bacterial markers disseminated in sub-saharan urban rivers. Front. Microbiol. 2016, 7, 1128. [Google Scholar] [CrossRef]
- Sakkas, H.; Bozidis, P.; Ilia, A.; Mpekoulis, G. Antimicrobial Resistance in Bacterial Pathogens and Detection of Carbapenemases in Klebsiella pneumoniae Isolates from Hospital Wastewater. Antibiotics 2019, 8, 85. [Google Scholar] [CrossRef]
- Liliana, S. Antimicrobials and Antibiotic-Resistant Bacteria. Water 2020, 12, 3313–3330. [Google Scholar]
- Chang, Q.; Wang, W.; Regev-Yochay, G.; Lipsitch, M.; Hanage, W.P. Antibiotics in agriculture and the risk to human health: How worried should we be? Evol. Appl. 2015, 8, 240–247. [Google Scholar] [CrossRef]
- Aslani, M.M.; Nikbin, V.S.; Sharafi, Z.; Hashemipour, M.; Shahcheraghi, F.; Ebrahimipour, G.H. Molecular identification and detection of virulence genes among Pseudomonas aeruginosa isolated from different infectious origins. Iran. J. Microbiol. 2012, 4, 118–123. [Google Scholar]
- Mohammed, R.A.G.; Mohammed, A.E. In vitro sen-sitivity of Pseudomonas aeruginosa to piperacillin, azlocillin, imipenem and meropenem. Am. J. Res. Commun. 2016, 4, 107–117. [Google Scholar]
- Mapipa, Q.; Digban, T.O.; Nnolim, N.E.; Nwodo, U.U. Antibiogram profile and virulence signatures of Pseudomonas aeruginosa isolates recovered from selected agrestic hospital effluents. Sci. Rep. 2021, 11, 11800. [Google Scholar] [CrossRef]
- Yetkin, G.; Otlu, B.; Cicek, A.; Kuzucu, C.; Durmaz, R. Clinical, microbiologic, and epidemiologic characteristics of Pseudomonas aeruginosa infections in a University Hospital, Malatya, Turkey. Am. J. Infect. Control. 2006, 34, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Larsson, D.G.J.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Miranda, C.C. Genotypic characteristics of multidrug-resistant Pseudomonas aeruginosa from hospital wastewater treatment plant in Rio de Janeiro, Brazil. J. Appl. Microbiol. 2015, 118, 1276–1286. [Google Scholar] [CrossRef] [PubMed]
- McKibbin, J.; Binns, T.; Nel, E. Uplifting small towns in post-apartheid South Africa: The experience of the Amathole Regional Economic Development Agency (Aspire). Local Econ. 2012, 27, 388–402. [Google Scholar] [CrossRef]
- Okafor, J.U.; Nwodo, U.U. Molecular Characterization of Antibiotic Resistance Determinants in Klebsiella pneumoniae Isolates Recovered from Hospital Effluents in the Eastern Cape Province, South Africa. Antibiotics 2023, 12, 1139. Available online: https://www.mdpi.com/2079-6382/12/7/1139/htm%0Ahttps://www.mdpi.com/2079-6382/12/7/1139 (accessed on 17 July 2023).
- De Vos, D.; Lim, A.; Pirnay, J.P.; Struelens, M.; Vandenvelde, C.; Duinslaeger, L.; Vanderkelen, A.; Cornelis, P. Direct detection and identification of Pseudomonas aeruginosa in clinical samples such as skin biopsy specimens and expectorations by multiplex PCR based on two outer membrane lipoprotein genes, oprI and oprL. J. Clin. Microbiol. 1997, 35, 1295–1299. [Google Scholar] [CrossRef] [PubMed]
- Mirzaie, A.; Ranjbar, R. Antibiotic resistance, virulence-associated genes analysis and molecular typing of Klebsiella pneumoniae strains recovered from clinical samples. AMB Express 2021, 11, 122. [Google Scholar] [CrossRef] [PubMed]
- Gufe, C.; Canaan, H.T.; Mbonjani, B.; Majonga, O.; Marumure, J.; Musari, S.; Jongi, G.; Makaya, P.V.; Machakwa, J. Antimicrobial Profiling of Bacteria Isolated from Fish Sold at Informal Market in Mufakose, Zimbabwe. Int. J. Microbiol. 2019, 2019, 8759636. [Google Scholar] [CrossRef]
No. of Antibiotics | MAR Phenotypes | No. of Phenotypes | MAR Index |
---|---|---|---|
3 | AK-CAZ-ATM | 1 | 0.3 |
AK-CAZ-MEM | 1 | 0.3 | |
AK-ATM-LEV | 1 | 0.3 | |
AK-CAZ-LEV | 1 | 0.3 | |
AK-CAZ-MEM | 1 | 0.3 | |
AK-MEM-GM | 1 | 0.3 | |
MEM-LEV-GM | 1 | 0.3 | |
AK-CAZ-CIP | 2 | 0.3 | |
CAZ-LEV-CIP | 1 | 0.3 | |
AK-CAZ-GM | 1 | 0.3 | |
MEM-GM-CIP | 1 | 0.3 | |
4 | GM-AK-CAZ-ATM | 1 | 0.4 |
AK-CAZ-IMI-LEV | 1 | 0.4 | |
AK-CAZ-LEV-CIP | 1 | 0.4 | |
GM-AK-LEV-MEM | 3 | 0.4 | |
GM-AK-MEM-ATM | 2 | 0.4 | |
GM-AK-CAZ-MEM | 1 | 0.4 | |
5 | GM-AK-LEV-CAZ-MEM | 5 | 0.5 |
GM-AK-LEV-MEM-CIP | 1 | 0.5 | |
GM-AK-CAZ-MEM-CIP | 2 | 0.5 | |
GM-AK-LEV-MEM-ATM | 1 | 0.5 | |
GM-AK-LEV-CIP-ATM | 1 | 0.5 | |
GM-LEV-CAZ-MEM-TOB | 1 | 0.5 | |
GM-AK-LEV-MEM-NOR | 1 | 0.5 | |
6 | CIP-IMI-LEV-CAZ-MEM-TOB | 1 | 0.6 |
CIP-LEV-CAZ-MEM-GM-AK | 3 | 0.6 | |
CIP-LEV-CAZ-GM-AK-NOR | 1 | 0.6 | |
CIP-LEV-CAZ-AK-NOR-ATM | 1 | 0.6 | |
CIP-LEV-CAZ-GM-AK-ATM | 2 | 0.6 | |
CIP-LEV-CAZ-GM-AK-IMI | 2 | 0.6 | |
CAZ-MEM-TOB-GM-AK-ATM | 1 | 0.6 | |
CIP-LEV-MEM-GM-AK-ATM | 1 | 0.6 | |
7 | GM-CIP-AK-CAZ-MEM-ATM-TOB | 1 | 0.7 |
GM-CIP-AK-CAZ-MEM-ATM-LEV | 1 | 0.7 | |
GM-CIP-AK-CAZ-MEM-LEV-NOR | 2 | 0.7 | |
GM-CIP-AK-CAZ-ATM-LEV-NOR | 1 | 0.7 | |
GM-CIP-AK-CAZ-TOB-LEV-NOR | 1 | 0.7 | |
GM-AK-CAZ-MEM-ATM-TOB-LEV | 1 | 0.7 | |
GM-CIP-AK-CAZ-MEM-ATM-TOB | 1 | 0.7 | |
CIP-AK-CAZ-MEM-ATM-LEV-NOR | 1 | 0.7 | |
GM-CIP-AK-CAZ-MEM-ATM-LEV | 1 | 0.7 | |
8 | GM-CIP-AK-LEV-CAZ-MEM-ATM-TOB | 2 | 0.8 |
GM-CIP-AK-LEV-CAZ-MEM-ATM-NOR | 1 | 0.8 | |
GM-CP-AK-LEV-CAZ-ATM-TOB-NOR | 1 | 0.8 | |
9 | GM-CIP-AK-IMI-LEV-NOR-CAZ-MEM-TOB | 1 | 0.9 |
GM-CIP-AK-LEV-NOR-CAZ-MEM-TOB-ATM | 1 | 0.9 |
Antibiotics Resistance Genes. | Total Positive (%) |
---|---|
β-Lactams (n = 81 isolates screened) | |
blaSHV | 2 (2.4) |
blaOXA-1 LIKE | 3 (3.7) |
Carbapenem (n = 45 tested) | |
blaIMP | 3 (6.6) |
blaVIM | 1 (2.2) |
blaKPC | 3 (6.6) |
blaNDM-1 | 1 (2.2) |
blaOXA-48 | 3 (6.6) |
blaGES | 1 (2.2) |
Aminoglycoside (n = 69 tested) | |
strA | 6 (8.6) |
aadA | 8 (11.5) |
aph(3)-Ia(aphA1)a | 1 (1.4) |
Quinolones (n = 81 tested) | |
qnrA | 4 (4.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okafor, J.U.; Nwodo, U.U. Antibiogram Profile and Detection of Resistance Genes in Pseudomonas aeruginosa Recovered from Hospital Wastewater Effluent. Antibiotics 2023, 12, 1517. https://doi.org/10.3390/antibiotics12101517
Okafor JU, Nwodo UU. Antibiogram Profile and Detection of Resistance Genes in Pseudomonas aeruginosa Recovered from Hospital Wastewater Effluent. Antibiotics. 2023; 12(10):1517. https://doi.org/10.3390/antibiotics12101517
Chicago/Turabian StyleOkafor, Joan U., and Uchechukwu U. Nwodo. 2023. "Antibiogram Profile and Detection of Resistance Genes in Pseudomonas aeruginosa Recovered from Hospital Wastewater Effluent" Antibiotics 12, no. 10: 1517. https://doi.org/10.3390/antibiotics12101517
APA StyleOkafor, J. U., & Nwodo, U. U. (2023). Antibiogram Profile and Detection of Resistance Genes in Pseudomonas aeruginosa Recovered from Hospital Wastewater Effluent. Antibiotics, 12(10), 1517. https://doi.org/10.3390/antibiotics12101517