Antimicrobial Resistance Pattern and Empirical Antibiotic Treatments in Neonatal Sepsis: A Retrospective, Single-Center, 12-Year Study
Abstract
:1. Introduction
2. Results
2.1. Bacterial Sepsis Episodes
2.1.1. Period 1 (from 2011 to 2016)
EOS and LOS
2.1.2. Period 2 (from 2017 to 2022)
EOS and LOS
2.2. Fungal Sepsis Episodes
2.3. Pathogen Susceptibility Patterns and Outcome Comparison between Study Periods 1 and 2
3. Discussion
Limitations
4. Materials and Methods
4.1. Study Design, Population and Setting
- Ampicillin + gentamicin for EOS;
- Oxacillin + aminoglycoside (usually gentamicin or amikacin, for LOS);
- LOS in infants colonized by MRSA: vancomycin + aminoglycoside;
- LOS in infants colonized by an ESBL: oxacillin + meropenem;
4.2. Inclusion and Exclusion Criteria
4.3. Definitions
- MRSA: Methicillin-resistant S aureus;
- VRSA: Vancomycin-resistant S. aureus;
- VRE: Vancomycin-resistant Enterococci;
- ESBL-producing Enterobacterales: extended-spectrum beta-lactamases producers;
- CRE: Carbapenem-resistant Enterobacterales; Enterobacterales that test resistant to imipenem and/or meropenem or produce a carbapenemase;
- CRPA: Carbapenem-resistant Pseudomonas aeruginosa;
- CRAB: Carbapenem-resistant Acinetobacter baumannii [38].
4.4. Outcomes
- Differences in bacterial sepsis-associated mortality between the two study periods.
- Changes in pathogens susceptibility patterns to the most used antibiotics after the implementation of AMS. Thus, we described the rate of isolation of MRSA, VRSA, VRE, ESBL, CRE, CRPA and CRAB across the two study periods, respectively.
- Differences between the two study periods in the number of infection episodes in patients under 34 weeks gestation;
- Differences between the two study periods in the number of infection episodes in VLBW infants.
4.5. Antimicrobial Susceptibility Testing
4.6. Statistical Analyses
4.7. Ethical Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vergnano, S.; Menson, E.; Kennea, N.; Embleton, N.; Russell, A.B.; Watts, T.; Robinson, M.J.; Collinson, A.; Heath, P.T. Neonatal infections in England: The NeonIN surveillance network. Arch. Dis. Child. Fetal Neonatal Ed. 2011, 96, F9–F14. [Google Scholar] [CrossRef]
- Mariani, M.; Parodi, A.; Minghetti, D.; Ramenghi, L.A.; Palmero, C.; Ugolotti, E.; Medici, C.; Saffioti, C.; Castagnola, E. Early and Late Onset Neonatal Sepsis: Epidemiology and Effectiveness of Empirical Antibacterial Therapy in a III Level Neonatal Intensive Care Unit. Antibiotics 2022, 11, 284. [Google Scholar] [CrossRef]
- Ramirez, C.B.; Cantey, J.B. Antibiotic Resistance in the Neonatal Intensive Care Unit. NeoReviews 2019, 20, e135–e144. [Google Scholar] [CrossRef]
- Tiseo, G.; Brigante, G.; Giacobbe, D.R.; Maraolo, A.E.; Gona, F.; Falcone, M.; Giannella, M.; Grossi, P.; Pea, F.; Rossolini, G.M.; et al. Diagnosis and management of infections caused by multidrug-resistant bacteria: Guideline endorsed by the Italian Society of Infection and Tropical Diseases (SIMIT), the Italian Society of Anti-Infective Therapy (SITA), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Association of Clinical Microbiologists (AMCLI) and the Italian Society of Microbiology (SIM). Int. J. Antimicrob. Agents 2022, 60, 106611. [Google Scholar] [CrossRef]
- Berger, A.; Salzer, H.R.; Weninger, M.; Sageder, B.; Aspöck, C. Septicaemia in an Austrian neonatal intensive care unit: A 7-year analysis. Acta Paediatr. 2007, 87, 1066–1069. [Google Scholar] [CrossRef]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Burden of AMR Collaborative Group. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Puopolo, K.M. Risk assessment in neonatal early onset sepsis. Semin. Perinatol. 2012, 36, 408–415. [Google Scholar] [CrossRef]
- Fleiss, N.; Schwabenbauer, K.; Randis, T.M.; Polin, R.A. What’s new in the management of neonatal early-onset sepsis? Arch. Dis. Child. Fetal Neonatal Ed. 2023, 108, 10–14. [Google Scholar] [CrossRef]
- Puopolo, K.M.; Benitz, W.E.; Zaoutis, T.E. Committee on Fetus and Newborn; Committee on Infectious Diseases. Management of Neonates Born at ≤34 6/7 Weeks’ Gestation with Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics 2018, 142, e20182896. [Google Scholar] [CrossRef]
- Zeissig, S.; Blumberg, R.S. Life at the beginning: Perturbation of the microbiota by antibiotics in early life and its role in health and disease. Nat. Immunol. 2014, 15, 307–310. [Google Scholar] [CrossRef]
- Stocker, M.; Klingenberg, C.; Navér, L.; Nordberg, V.; Berardi, A.; el Helou, S.; Fusch, G.; Bliss, J.M.; Lehnick, D.; Dimopoulou, V.; et al. Less is more: Antibiotics at the beginning of life. Nat. Commun. 2023, 14, 2423. [Google Scholar] [CrossRef]
- Cantey, J.B.; Patel, S.J. Antimicrobial stewardship in the NICU. Infect. Dis. Clin. N. Am. 2014, 28, 247–261. [Google Scholar] [CrossRef]
- Mintz, A.; Mor, M.; Klinger, G.; Scheuerman, O.; Pirogovsky, A.; Sokolover, N.; Bromiker, R. Changing epidemiology and resistance patterns of pathogens causing neonatal bacteremia. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1879–1884. [Google Scholar] [CrossRef]
- Folgori, L.; Ellis, S.J.; Bielicki, J.A.; Heath, P.T.; Sharland, M.; Balasegaram, M. Tackling antimicrobial resistance in neonatal sepsis. Lancet Glob. Health 2017, 5, e1066–e1068. [Google Scholar] [CrossRef]
- Størdal, E.H.; Solevåg, A.L.; Bjørnholt, J.V.; Rønnestad, A.; Stensvold, H.J. Sepsis treatment options identified by 10-year study of microbial isolates and antibiotic susceptibility in a level-four neonatal intensive care unit. Acta Paediatr. 2022, 111, 519–526. [Google Scholar] [CrossRef]
- Fjalstad, J.W.; Stensvold, H.J.; Bergseng, H.; Simonsen, G.S.; Salvesen, B.; Rønnestad, A.E.; Klingenberg, C. Early-onset Sepsis and Antibiotic Exposure in Term Infants: A Nationwide Population-based Study in Norway. Pediatr. Infect. Dis. J. 2016, 35, 1–6. [Google Scholar] [CrossRef]
- van den Hoogen, A.; Gerards, L.J.; Verboon-Maciolek, M.A.; Fleer, A.; Krediet, T.G. Long-term trends in the epidemiology of neonatal sepsis and antibiotic susceptibility of causative agents. Neonatology 2010, 97, 22–28. [Google Scholar] [CrossRef]
- Rønnestad, A.; Abrahamsen, T.G.; Medbø, S.; Reigstad, H.; Lossius, K.; Kaaresen, P.I.; Egeland, T.; Engelund, I.E.; Irgens, L.M.; Markestad, T. Late-onset septicemia in a Norwegian national cohort of extremely premature infants receiving very early full human milk feeding. Pediatrics 2005, 115, e269–e276. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.; Fanaroff, A.A.; Wright, L.L.; Carlo, W.A.; Ehrenkranz, R.A.; Lemons, J.A.; Donovan, E.F.; Stark, A.R.; Tyson, J.E.; et al. Late-onset sepsis in very low birth weight neonates: The experience of the NICHD Neonatal Research Network. Pediatrics 2002, 110, 285–291. [Google Scholar] [CrossRef]
- Tröger, B.; Göpel, W.; Faust, K.; Müller, T.; Jorch, G.; Felderhoff-Müser, U.; Gortner, L.; Heitmann, F.; Hoehn, T.; Kribs, A.; et al. Risk for late-onset blood-culture proven sepsis in very-low-birth weight infants born small for gestational age: A large multicenter study from the German Neonatal Network. Pediatr. Infect. Dis. J. 2014, 33, 238–243. [Google Scholar] [CrossRef]
- Tacconelli, E.; Pezzani, M.D. Public health burden of antimicrobial resistance in Europe. Lancet Infect. Dis. 2019, 19, 4–6. [Google Scholar] [CrossRef]
- Assessing the Health Burden of Infections with Antibiotic-Resistant Bacteria in the EU/EEA, 2016–2020. Available online: https://www.ecdc.europa.eu/en/publications-data/health-burden-infections-antibiotic-resistant-bacteria-2016-2020 (accessed on 5 September 2023).
- Decembrino, L.; Maini, A.; Decembrino, N.; Maggi, I.; Lacerenza, S. Management of outbreaks in neonatal intensive care units. Early Hum. Dev. 2014, 90 (Suppl. S1), S54–S56. [Google Scholar] [CrossRef] [PubMed]
- Fang, P.; Gao, K.; Yang, J.; Li, T.; Gong, W.; Sun, Q.; Wang, Y. Prevalence of Multidrug-Resistant Pathogens Causing Neonatal Early and Late Onset Sepsis, a Retrospective Study from the Tertiary Referral Children’s Hospital. Infect. Drug Resist. 2023, 16, 4213–4225. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, L.; Zhuge, Z.; Li, W.; Zheng, Y.; Mai, J.; Lin, Z.; Lin, J. Risk Factors Associated with Multi-Drug Resistance in Neonatal Sepsis Caused by Escherichia coli. Infect. Drug Resist. 2023, 16, 2097–2106. [Google Scholar] [CrossRef] [PubMed]
- Korang, S.K.; Safi, S.; Nava, C.; Greisen, G.; Gupta, M.; Lausten-Thomsen, U.; Jakobsen, J.C. Antibiotic regimens for late-onset neonatal sepsis. Cochrane Database Syst. Rev. 2021, 5, CD013836. [Google Scholar] [CrossRef]
- Akselsen, A.B.; Sheth, C.C.; Veses, V. Efficacy of empiric antibiotic treatment of late-onset neonatal sepsis caused by Enterobacteriaceae: A systematic review. Lett. Appl. Microbiol. 2022, 75, 500–510. [Google Scholar] [CrossRef]
- Bennett, J.E. Invasive Candidiasis in Very Premature Neonates: Tiny Tots with Big Problems. Clin. Infect. Dis. 2017, 64, 928–929. [Google Scholar] [CrossRef]
- Clancy, C.J.; Nguyen, M.H. Non-Culture Diagnostics for Invasive Candidiasis: Promise and Unintended Consequences. J. Fungi 2018, 4, 27. [Google Scholar] [CrossRef]
- Juyal, D.; Sharma, M.; Pal, S.; Rathaur, V.K.; Sharma, N. Emergence of non-albicans Candida species in neonatal candidemia. N. Am. J. Med. Sci. 2013, 5, 541–545. [Google Scholar] [CrossRef]
- Auguet, O.T.; Niehus, R.; Gweon, H.S.; Berkley, J.A.; Waichungo, J.; Njim, T.; Edgeworth, J.D.; Batra, R.; Chau, K.; Swann, J.; et al. Population-level faecal metagenomic profiling as a tool to predict antimicrobial resistance in Enterobacterales isolates causing invasive infections: An exploratory study across Cambodia, Kenya, and the UK. EClinicalMedicine 2021, 36, 100910. [Google Scholar] [CrossRef]
- Berardi, A.; Bedetti, L.; Spada, C.; Lucaccioni, L.; Frymoyer, A. Serial clinical observation for management of newborns at risk of early-onset sepsis. Curr. Opin. Pediatr. 2020, 32, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Berardi, A.; Baroni, L.; Reggiani, M.L.B.; Ambretti, S.; Biasucci, G.; Bolognesi, S.; Capretti, M.G.; Carretto, E.; Ciccia, M.; Fiorini, V.; et al. The burden of early-onset sepsis in Emilia-Romagna (Italy): A 4-year, population-based study. J. Matern. Neonatal Med. 2016, 29, 3126–3131. [Google Scholar] [CrossRef] [PubMed]
- Berardi, A.; Sforza, F.; Baroni, L.; Spada, C.; Ambretti, S.; Biasucci, G.; Bolognesi, S.; Capretti, M.; Carretto, E.; Ciccia, M.; et al. Epidemiology and complications of late-onset sepsis: An Italian area-based study. PLoS ONE 2019, 14, e0225407. [Google Scholar] [CrossRef] [PubMed]
- Berardi, A.; Zinani, I.; Rossi, C.; Spaggiari, E.; D’Amico, V.; Toni, G.; Bedetti, L.; Lucaccioni, L.; Iughetti, L.; Lugli, L. Antibiotic Use in Very Low Birth Weight Neonates After an Antimicrobial Stewardship Program. Antibiotics 2021, 10, 411. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, A.L. Management of term infants at increased risk for early-onset bacterial sepsis. Paediatr. Child. Health 2017, 22, 223–228. [Google Scholar] [CrossRef]
- Zhu, F.; Baczynski, M.; Kharrat, A.; Ye, X.Y.; Weisz, D.; Jain, A. Blood pressure, organ dysfunction, and mortality in preterm neonates with late-onset sepsis. Pediatr. Res. 2022, 92, 498–504. [Google Scholar] [CrossRef]
- Center of Disease Control and Prevention. Available online: https://www.cdc.gov/infectioncontrol/guidelines/mdro/background.html (accessed on 16 August 2023).
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | Total Period 1 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Total Period 2 | Total Period 1–2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall episodes | 10 | 14 | 13 | 16 | 23 | 15 | 91 | 22 | 17 | 19 | 14 | 21 | 31 | 124 | 215 |
Episodes in infants <34 weeks, n (%) | 3 (30%) | 9 (64.3%) | 5 (38.5%) | 9 (56.2%) | 17 (73.9%) | 12 (80%) | 55 (60.4%) | 14 (63.6%) | 14 (23.5%) | 12 (63.2%) | 9 (64.3%) | 8 (38.1%) | 18 (58%) | 75 (60.5%) | 130 (60.4%) |
Episodes in VLBW infants, n (%) | 3 (30%) | 8 (57.1%) | 4 (30.7%) | 10 (62.5%) | 17 (73.9%) | 11 (73.3%) | 53 (58.2%) | 14 (63.6%) | 14 (23.5%) | 8 (42.1%) | 8 (57.1%) | 8 (38.1%) | 16 (51.6%) | 68 (54.8%) | 121 (56.2%) |
EOS, n (%) | 3 (30%) | 4 (28.6%) | 5 (38.5%) | 4 (25%) | 2 (8.7%) | 4 (26.7%) | 22 (24.2%) | 4 (18.2%) | 2 (11.8%) | 2 (10.5%) | 0 (0%) | 4 (19%) | 5 (16.1%) | 17 (13.7%) | 79 (36.7%) |
LOS, n (%) | 7 (70%) | 10 (71.4%) | 8 (61.5%) | 12 (75%) | 21 (91.3%) | 11 (73.3%) | 69 (75.8%) | 18 (81.8%) | 15 (88.2%) | 17 (89.5%) | 14 (100%) | 17 (80.1%) | 26 (83,9%) | 107 (86.3%) | 136 (63.3%) |
GRAM+, n (%) | 9 (90%) | 5 (35.7%) | 6 (46.1%) | 8 (50%) | 13 (56.5%) | 7 (46.7%) | 48 (52.7%) | 13 (59%) | 10 (58.8%) | 5 (26.3%) | 5 (35.7%) | 14 (66.7%) | 10 (32,3%) | 57 (46%) | 105 (48.8%) |
GRAM−, n (%) | 1 (10%) | 9 (64.3%) | 7 (53.8%) | 8 (50%) | 10 (43.5%) | 8 (53.3%) | 43 (47.3%) | 9 (40.1%) | 7 (41.2%) | 14 (73.7%) | 9 (64.3%) | 7 (33.3%) | 21 (67.7%) | 67 (54%) | 110 (51.2%) |
Overall patients | 10 | 14 | 12 | 16 | 15 | 11 | 78 | 19 | 14 | 15 | 8 | 14 | 21 | 91 | 169 |
Mortality, n (%) | 2 (20%) | 2 (14.3%) | 2 (16.7%) | 2 (12.5%) | 2 (13.3%) | 3 (27.3%) | 13 (16.7%) | 2 (10.5%) | 3 (21.4%) | 1 (6.7%) | 0 (0%) | 0 (0%) | 3 (14.4%) | 9 (9.9%) | 22 (13%) |
Period 1 | Period 2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GRAM+ Isolates (n = 14) | OXA-R | AMP-R | CTX-R | GEN-R | VAN-R | TEC-R | GRAM+ Isolates (n = 11) | OXA-R | AMP-R | CTX-R | GEN-R | VAN-R | TEC-R |
S. agalactiae, n = 9 | - | 0/9 (0%) | 0/9 (0%) | - | 0/9 (0%) | 0/9 (0%) | S. agalactiae, n = 8 | - | 0/8 (0%) | 0/8 (0%) | - | 0/8 (0%) | 0/8 (0%) |
E. faecalis, n = 2 | - | 0/2 (0%) | - | - | 0/2 (0%) | 0/2 (0%) | E. faecalis, n = 1 | - | 0/1 (0%) | - | - | 0/1 (0%) | 0/1 (0%) |
L. monocytogenes, n = 2 | - | 0/2 (0%) | - | - | - | - | L. monocytogenes, n = 1 | - | 0/1 (0%) | - | 0/1 (0%) | - | - |
S. aureus, n = 1 | 0/1 (0%) | - | - | 1/1 (100%) | 0/1 (0%) | 0/1 (0%) | S. aureus, n = 1 | 0/1 (0%) | - | - | 0/1 (0%) | 0/1 (0%) | 0/1 (0%) |
GRAM− isolates in EOS (n = 8) | - | GEN-R | AMK-R | CTX-R | TZP-R | MEM-R | GRAM− isolates in EOS (n = 6) | - | GEN-R | AMK-R | CTX-R | TZP-R | MEM-R |
E. coli, n = 6 (ESBL n = 1/6) | - | 2/6 (33.3%) | 0/6 (0%) | 1/6 (16.7%) | 1/6 (16.7%) | 0/6 (0%) | E. coli, n = 4 | - | 0/4 (0%) | 0/4 (0%) | 0/4 (0%) | 0/4 (0%) | 0/4 (0%) |
K. pneumoniae, n = 2 | - | 0/2 (0%) | 0/2 (0%) | 0/2 (0%) | 1/2 (50%) | 0/2 (0%) | / | / | / | / | / | / | / |
/ | / | / | / | / | / | / | P. aeruginosa, n = 2 | - | 0/2 (0%) | 0/2 (0%) | 1/2 (50%) | 1/2 (50%) | 0/2 (0%) |
Period 1 | Period 2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GRAM+ Isolates(n = 34) | OXA-R | AMP-R | CTX-R | GEN-R | VAN-R | TEC-R | GRAM+ Isolates (n = 46) | OXA-R | AMP-R | CTX-R | GEN-R | VAN-R | TEC-R |
E. faecalis, n = 12 | - | 0/12 (0%) | - | - | 0/12 (0%) | 0/12 (0%) | E. faecalis, n = 19 | - | 0/19 (0%) | - | - | 0/16 (0%) | 0/16 (0%) |
S. aureus, n = 13 (MRSA, n = 2/13) | 2/8 (25%) | - | - | 2/13 (15.3%) | 0/13 (0%) | 0/13 (0%) | S. aureus, n = 19 (MRSA, n = 4/19) | 4/19 (21%) | - | - | 4/19 (21%) | 0/19 (0%) | 0/19 (0%) |
S. agalactiae, n = 8 | - | - | - | - | 0/8 (0%) | 0/1 (0%) | S. agalactiae, n = 7 | - | - | - | - | 0/7 (0%) | 0/2 (0%) |
L. monocytogenes, n = 1 | - | - | - | - | - | 0/1 (0%) | L. monocytogenes, n = 0 | / | / | / | / | / | / |
S. pneumoniae, n = 0 | / | / | / | / | / | / | S. pneumoniae, n = 1 | - | - | 0/1 (0%) | - | 0/1 (0%) | - |
GRAM− Isolates (n = 35) | - | GEN-R | AMK-R | CTX-R | TZP-R | MEM-R | GRAM− Isolates (n = 61) | - | GEN-R | AMK-R | CTX-R | TZP-R | MEM-R |
K. pneumoniae, n = 12 (ESBL = 1/12) | - | 1/12 (8.3%) | 0/12 (0%) | 1/12 (8.3%) | 2/12 (16.7%) | 0/12 (0%) | K. pneumoniae, n = 21 (ESBL n = 2/21) | - | 0/21 (0%) | 0/20 (0%) | 2/21 (9.5%) | 5/20 (25%) | 0/20 (0%) |
E. coli, n = 11 (ESBL n = 2/11) | - | 1/11 (9%) | 0/11 (0%) | 2/11 (18.2%) | 0/11 (0%) | 0/11 (0%) | E. coli, n = 13 (ESBL n = 1/13) | - | 5/13 (38.5%) | 2/13 (15.4%) | 1/13 (7.8%) | 3/13 (23.1%) | 0/13 (0%) |
P. aeruginosa, n = 4 | - | 0/4 (0%) | 0/4 (0%) | - | 1/4 (25%) | 0/4 (0%) | P. aeruginosa, n = 8 | - | 0/8 (0%) | 0/8 (0%) | - | 1/8 (12.5%) | 0/8 (0%) |
K. oxytoca, n = 3 | - | 0/3 (0%) | 0/3 (0%) | 0/3 (0%) | 0/3 (0%) | 0/3 (0%) | K. oxytoca, n = 5 (ESBL n = 1/5) | - | 0/5 (0%) | 0/5 (0%) | 1/5 (20%) | 1/5 (20%) | 0/5 (0%) |
E. cloacae, n = 3 | - | 1/3 (33.3%) | 1/3 (33.3%) | 0/3 (0%) | 0/3 (0%) | 0/3 (0%) | E. cloacae, n = 10 | - | 0/10 (0%) | 0/10 (0%) | 0/10 (0%) | 1/10 (10%) | 0/10 (0%) |
S. marcescens, n = 1 | - | 0/1 (0%) | 0/1 (0%) | 0/1 (0%) | 0/1 (0%) | 0/1 (0%) | S. marcescens, n = 2 | - | 1/2 (50%) | 0/2 (0%) | 0/2 (0%) | 0/2 (0%) | 0/2 (0%) |
A. baumannii, n = 1 | - | 0/1 (0%) | 0/1 (0%) | 0/1 (0%) | - | 0/1 (0%) | A. baumannii, n = 1 | - | 0/1 (0%) | 0/1 (0%) | 0/1 (0%) | 0/1 (0%) | 0/1 (0%) |
C. freundii, n = 0 | / | / | / | / | / | / | C. freundii, n = 1 | - | 0/1 (0%) | 0/1 (0%) | 0/1 (0%) | 0/1 (0%) | 0/1 (0%) |
Period 1 (2011–2016) | Period 2 (2017–2022) | p-Value | ||
---|---|---|---|---|
Primary outcomes | Sepsis-associated mortality, n (%) | 13/78 (16.7%) | 9/91 (9.9%) | 0.2 |
MRSA infection rate, n (%) | 2/91 (2.2%) | 4/124 (3.2%) | 0.6 | |
VRSA infection rate, n (%) | 0/91 (0%) | 0/124 (0%) | / | |
VRE infection rate, n (%) | 0/91 (0%) | 0/124 (0%) | / | |
ESBL infection rate, n (%) | 4/91 (4.3%) | 4/124 (3.2%) | 0.6 | |
CRE infection rate, n (%) | 0/91 (0%) | 0/124 (0%) | / | |
CRPA infection rate, n (%) | 0/91 (0%) | 0/124 (0%) | / | |
CRAB infection rate, n (%) | 0/91 (0%) | 0/124 (0%) | / | |
Secondary outcomes | Bacterial sepsis episodes in patients < 34 weeks, n (%) | 55/91 (60.4%) | 75/124 (60.5%) | 0.9 |
Bacterial sepsis episodes in patients < 1500 g, n (%) | 53/91 (58.2%) | 68/124 (54.8%) | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minotti, C.; Di Caprio, A.; Facchini, L.; Bedetti, L.; Miselli, F.; Rossi, C.; Della Casa Muttini, E.; Lugli, L.; Luppi, L.; Ferrari, F.; et al. Antimicrobial Resistance Pattern and Empirical Antibiotic Treatments in Neonatal Sepsis: A Retrospective, Single-Center, 12-Year Study. Antibiotics 2023, 12, 1488. https://doi.org/10.3390/antibiotics12101488
Minotti C, Di Caprio A, Facchini L, Bedetti L, Miselli F, Rossi C, Della Casa Muttini E, Lugli L, Luppi L, Ferrari F, et al. Antimicrobial Resistance Pattern and Empirical Antibiotic Treatments in Neonatal Sepsis: A Retrospective, Single-Center, 12-Year Study. Antibiotics. 2023; 12(10):1488. https://doi.org/10.3390/antibiotics12101488
Chicago/Turabian StyleMinotti, Chiara, Antonella Di Caprio, Laura Facchini, Luca Bedetti, Francesca Miselli, Cecilia Rossi, Elisa Della Casa Muttini, Licia Lugli, Laura Luppi, Filippo Ferrari, and et al. 2023. "Antimicrobial Resistance Pattern and Empirical Antibiotic Treatments in Neonatal Sepsis: A Retrospective, Single-Center, 12-Year Study" Antibiotics 12, no. 10: 1488. https://doi.org/10.3390/antibiotics12101488
APA StyleMinotti, C., Di Caprio, A., Facchini, L., Bedetti, L., Miselli, F., Rossi, C., Della Casa Muttini, E., Lugli, L., Luppi, L., Ferrari, F., & Berardi, A. (2023). Antimicrobial Resistance Pattern and Empirical Antibiotic Treatments in Neonatal Sepsis: A Retrospective, Single-Center, 12-Year Study. Antibiotics, 12(10), 1488. https://doi.org/10.3390/antibiotics12101488