High Fecal Prevalence of mcr-Positive Escherichia coli in Veal Calves at Slaughter in France
Abstract
:1. Introduction
2. Results
2.1. Detection of mcr-Positive E. coli Isolates
2.2. Characterization of mcr-Positive E. coli Isolates
2.3. Prevalence of mcr-Positive E. coli Calf Ahedders at Alaughter
3. Discussion
4. Materials and Methods
4.1. Study Population and Sampling
4.2. Collections of Presumptive Colistin- and CIA-Resistant E. coli
4.3. Screening for Plasmid-Mediated Resistance Genes
4.4. Screening for Plasmid-Mediated Resistance Genes
4.5. PFGE Typing
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nation, R.L.; Li, J.; Cars, O.; Couet, W.; Dudley, M.N.; Kaye, K.S.; Mouton, J.W.; Paterson, D.L.; Tam, V.H.; Theuretzbacher, U.; et al. Framework for optimisation of the clinical use of colistin and polymyxin B: The Prato polymyxin consensus. Lancet Infect. Dis. 2015, 15, 225–234. [Google Scholar] [CrossRef]
- Catry, B.; Cavaleri, M.; Baptiste, K.; Grave, K.; Grein, K.; Holm, A.; Jukes, H.; Liebana, E.; Navas, A.L.; Mackay, D.; et al. Use of colistin-containing products within the European Union and European Economic Area (EU/EEA): Development of resistance in animals and possible impact on human and animal health. Int. J. Antimicrob. Agents 2015, 46, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Xavier, B.B.; Lammens, C.; Ruhal, R.; Kumar-Singh, S.; Butaye, P.; Goossens, H.; Malhotra-Kumar, S. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Eurosurveillance 2016, 21, 30280. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Li, H.; Shen, Y.; Liu, Z.; Wang, S.; Shen, Z.; Zhang, R.; Walsh, T.R.; Shen, J.; Wang, Y. Novel Plasmid-Mediated Colistin Resistance Gene mcr-3 in Escherichia coli. mBio 2017, 8, e00543-17. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Abbas, M.; Rehman, M.U.; Wang, M.; Jia, R.; Chen, S.; Liu, M.; Zhu, D.; Zhao, X.; Gao, Q.; et al. Updates on the global dissemination of colistin-resistant Escherichia coli: An emerging threat to public health. Sci. Total Environ. 2021, 799, 149280. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, H.; Liu, Y.-H.; Feng, Y. Towards Understanding MCR-like Colistin Resistance. Trends Microbiol. 2018, 26, 794–808. [Google Scholar] [CrossRef]
- Matamoros, S.; van Hattem, J.M.; Arcilla, M.S.; Willemse, N.; Melles, D.C.; Penders, J.; Vinh, T.N.; Hoa, N.T.; Bootsma, M.C.J.; van Genderen, P.J.; et al. Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction. Sci. Rep. 2017, 7, 15364. [Google Scholar] [CrossRef] [Green Version]
- Migura-Garcia, L.; González-López, J.J.; Martinez-Urtaza, J.; Sánchez, J.R.A.; Moreno-Mingorance, A.; De Rozas, A.P.; Höfle, U.; Ramiro, Y.; Gonzalez-Escalona, N. mcr-Colistin Resistance Genes Mobilized by IncX4, IncHI2, and IncI2 Plasmids in Escherichia coli of Pigs and White Stork in Spain. Front. Microbiol. 2020, 10, 3072. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, T.; Wang, C.; Liang, G.; Lu, Q.; Wen, G.; Guo, Y.; Cheng, Y.; Wang, Z.; Shao, H.; et al. Prevalence of colistin resistance gene mcr-1 in Escherichia coli isolated from chickens in central China, 2014 to 2019. J. Glob. Antimicrob. Resist. 2022, 29, 241–246. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, R.; Schwarz, S.; Wu, C.; Shen, J.; Walsh, T.R.; Wang, Y. Farm animals and aquaculture: Significant reservoirs of mobile colistin resistance genes. Environ. Microbiol. 2020, 22, 2469–2484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhouma, M.; Letellier, A. Extended-spectrum β-lactamases, carbapenemases and the mcr-1 gene: Is there a historical link? Int. J. Antimicrob. Agents 2017, 49, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Jarrige, N.; Cazeau, G.; Morignat, E.; Chanteperdrix, M.; Gay, E. Quantitative and qualitative analysis of antimicrobial usage in white veal calves in France. Prev. Vet. Med. 2017, 144, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Wang, X.; Shi, D.; Ge, Q.; Song, X.; Hu, W.; Wei, D.; Ge, C.; Li, X.; Hu, C. Extensive antimicrobial resistance and plasmid-carrying resistance genes in mcr-1-positive E. coli sampled in swine, in Guangxi, South China. BMC Vet. Res. 2021, 17, 86. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, M.; Huang, J.; Shah, J.M.; Ali, I.; Rahman, S.U.; Wang, L. Characterization and resistant determinants linked to mobile elements of ESBL-producing and mcr-1-positive Escherichia coli recovered from the chicken origin. Microb. Pathog. 2021, 150, 104722. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Dong, N.; Shu, L.; Lu, J.; Sun, Q.; Chan, E.W.-C.; Chen, S.; Zhang, R. Colistin-resistance gene mcr in clinical carbapenem-resistant Enterobacteriaceae strains in China, 2014–2019. Emerg. Microbes Infect. 2020, 9, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, L.; Wang, J.; Yassin, A.K.; Butaye, P.; Kelly, P.; Gong, J.; Guo, W.; Li, J.; Li, M.; et al. Molecular detection of colistin resistance genes (mcr-1, mcr-2 and mcr-3) in nasal/oropharyngeal and anal/cloacal swabs from pigs and poultry. Sci. Rep. 2018, 8, 3705. [Google Scholar] [CrossRef] [Green Version]
- Meinersmann, R.J.; Ladely, S.R.; Plumblee, J.R.; Cook, K.L.; Thacker, E. Prevalence of mcr-1 in the Cecal Contents of Food Animals in the United States. Antimicrob. Agents Chemother. 2017, 61, e02244-16. [Google Scholar] [CrossRef] [Green Version]
- El Garch, F.; de Jong, A.; Bertrand, X.; Hocquet, D.; Sauget, M. mcr-1-like detection in commensal Escherichia coli and Salmonella spp. from food-producing animals at slaughter in Europe. Vet. Microbiol. 2018, 213, 42–46. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Li, J.; Wu, Z.; Yin, W.; Schwarz, S.; Tyrrell, J.M.; Zheng, Y.; Wang, S.; Shen, Z.; et al. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat. Microbiol. 2017, 2, 16260. [Google Scholar] [CrossRef]
- Perrin-Guyomard, A.; Granier, S.A.; Slettemeås, J.S.; Anjum, M.; Randall, L.; AbuOun, M.; Pauly, N.; Irrgang, A.; Hammerl, J.A.; Kjeldgaard, J.S.; et al. Multicentre evaluation of a selective isolation protocol for detection of mcr-positive E. coli and Salmonella spp. in food-producing animals and meat. Lett. Appl. Microbiol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhou, H.; Xu, J.; Wang, Y.; Zhang, Q.; Walsh, T.; Shao, B.; Wu, C.; Hu, Y.; Yang, L.; et al. Anthropogenic and environmental factors associated with high incidence of mcr-1 carriage in humans across China. Nat. Microbiol. 2018, 3, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Haenni, M.; Beyrouthy, R.; Lupo, A.; Châtre, P.; Madec, J.-Y.; Bonnet, R. Epidemic spread of Escherichia coli ST744 isolates carrying mcr-3 and blaCTX-M-55 in cattle in France. J. Antimicrob. Chemother. 2018, 73, 533–536. [Google Scholar] [CrossRef]
- Haenni, M.; Métayer, V.; Gay, E.; Madec, J.-Y. Increasing Trends in mcr-1 Prevalence among Extended-Spectrum-β-Lactamase-Producing Escherichia coli Isolates from French Calves despite Decreasing Exposure to Colistin. Antimicrob. Agents Chemother. 2016, 60, 6433–6434. [Google Scholar] [CrossRef] [Green Version]
- Khine, N.O.; Lugsomya, K.; Niyomtham, W.; Pongpan, T.; Hampson, D.J.; Prapasarakul, N. Longitudinal Monitoring Reveals Persistence of Colistin-Resistant Escherichia coli on a Pig Farm Following Cessation of Colistin Use. Front. Vet. Sci. 2022, 9, 845746. [Google Scholar] [CrossRef] [PubMed]
- Mead, A.; Billon-Lotz, C.; Olsen, R.; Swift, B.; Richez, P.; Stabler, R.; Pelligand, L. Epidemiological Prevalence of Phenotypical Resistances and Mobilised Colistin Resistance in Avian Commensal and Pathogenic E. coli from Denmark, France, The Netherlands, and the UK. Antibiotics 2022, 11, 631. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, B.; Zhao, L.; Wei, Z.; Ji, J.; Li, L.; Xiao, Y. Nationwide high prevalence of CTX-M and an increase of CTX-M-55 in Escherichia coli isolated from patients with community-onset infections in Chinese county hospitals. BMC Infect. Dis. 2014, 14, 659. [Google Scholar] [CrossRef]
- Birgy, A.; Madhi, F.; Hogan, J.; Doit, C.; Gaschignard, J.; Caseris, M.; Bidet, P.; Cohen, R.; Bonacorsi, S. CTX-M-55-, MCR-1-, and FosA-Producing Multidrug-Resistant Escherichia coli Infection in a Child in France. Antimicrob. Agents Chemother. 2018, 62, e00127-18. [Google Scholar] [CrossRef] [Green Version]
- Gay, E.; Bour, M.; Cazeau, G.; Jarrige, N.; Martineau, C.; Madec, J.-Y.; Haenni, M. Antimicrobial Usages and Antimicrobial Resistance in Commensal Escherichia coli From Veal Calves in France: Evolution During the Fattening Process. Front. Microbiol. 2019, 10, 792. [Google Scholar] [CrossRef] [Green Version]
- Walsh, T.R.; Wu, Y. China bans colistin as a feed additive for animals. Lancet Infect. Dis. 2016, 16, 1102–1103. [Google Scholar] [CrossRef]
- Lay, K.; Jeamsripong, S.; Sunn, K.; Angkititrakul, S.; Prathan, R.; Srisanga, S.; Chuanchuen, R. Colistin Resistance and ESBL Production in Salmonella and Escherichia coli from Pigs and Pork in the Thailand, Cambodia, Lao PDR, and Myanmar Border Area. Antibiotics 2021, 10, 657. [Google Scholar] [CrossRef]
- Randall, L.; Horton, R.; Lemma, F.; Martelli, F.; Duggett, N.A.; Smith, R.; Kirchner, M.; Ellis, R.; Rogers, J.P.; Williamson, S.; et al. Longitudinal study on the occurrence in pigs of colistin-resistant Escherichia coli carrying mcr-1 following the cessation of use of colistin. J. Appl. Microbiol. 2018, 125, 596–608. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, C.; Zhang, R.; Chen, Y.; Shen, Y.; Hu, F.; Liu, D.; Lu, J.; Guo, Y.; Xia, X.; et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: An epidemiological comparative study. Lancet Infect. Dis. 2020, 20, 1161–1171. [Google Scholar] [CrossRef]
- Versalovic, J.; Koeuth, T.; Lupski, J.R. Distribution of Repetitive DNA Sequences in Eubacteria and Application to Fingerprinting of Bacterial Genomes. Nucleic Acids Res. 1991, 19, 6823–6831. [Google Scholar] [CrossRef] [PubMed]
- EURL-AL European Union Reference Laboratory Antimicrobial Resistance. PCR for Plasmid-Mediated Colistin Ressistance Genes Mcr-1 and Mcr-2 (Multiplex). October 2016, Version 2; European Union: Maastricht, The Netherlands, 2016. [Google Scholar]
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Cattoir, V.; Poirel, L.; Nordmann, P. Plasmid-Mediated Quinolone Resistance Pump QepA2 in an Escherichia coli Isolate from France. Antimicrob. Agents Chemother. 2008, 52, 3801–3804. [Google Scholar] [CrossRef] [Green Version]
- Cattoir, V.; Poirel, L.; Rotimi, V.; Soussy, C.-J.; Nordmann, P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J. Antimicrob. Chemother. 2007, 60, 394–397. [Google Scholar] [CrossRef] [Green Version]
- Cavaco, L.M.; Hasman, H.; Xia, S.; Aarestrup, F.M. qnrD, a Novel Gene Conferring Transferable Quinolone Resistance in Salmonella enterica Serovar Kentucky and Bovismorbificans Strains of Human Origin. Antimicrob. Agents Chemother. 2009, 53, 603–608. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, W.; Pan, W.; Yin, J.; Pan, Z.; Gao, S.; Jiao, X. Prevalence of qnr, aac(6′)-Ib-cr, qepA, and oqxAB in Escherichia coli Isolates from Humans, Animals, and the Environment. Antimicrob. Agents Chemother. 2012, 56, 3423–3427. [Google Scholar] [CrossRef] [Green Version]
- Park, C.H.; Robicsek, A.; Jacoby, G.A.; Sahm, D.; Hooper, D.C. Prevalence in the United States of aac(6′)-Ib-cr Encoding a Ciprofloxacin-Modifying Enzyme. Antimicrob. Agents Chemother. 2006, 50, 3953–3955. [Google Scholar] [CrossRef] [Green Version]
- Robicsek, A.; Strahilevitz, J.; Sahm, D.F.; Jacoby, G.A.; Hooper, D.C. qnr Prevalence in Ceftazidime-Resistant Enterobacteriaceae Isolates from the United States. Antimicrob. Agents Chemother. 2006, 50, 2872–2874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Guo, Q.; Xu, X.; Wang, X.; Ye, X.; Wu, S.; Hooper, D.C.; Wang, M. New Plasmid-Mediated Quinolone Resistance Gene, qnrC, Found in a Clinical Isolate of Proteus mirabilis. Antimicrob. Agents Chemother. 2009, 53, 1892–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CA-SFM Comité de l’antibiogramme de La Société Française de Microbiologie. Recommandations 2016. V.1.0; CA-SFM Comité de l’antibiogramme de La Société Française de Microbiologie: Paris, France, 2016. [Google Scholar]
- CDC PNL05. Standard Operating Procedure for PulseNet PFGE of Escherichia Coli O157:H7, Escherichia Coli Non-O157 (STEC), Salmonella Serotypes, Shigella Sonnei and Shigella Flexneri. 2017. Available online: https://www.cdc.gov/pulsenet/pdf/ecoli-shigella-salmonella-pfge-protocol-508c.pdf (accessed on 1 July 2018).
Campaign ID 1 | Farm ID | Calf ID | Strain ID 2 | Isolation Medium 3 | mcr Gene | Resistance Pattern 4 | blaCTX-M Gene | PFGE Type 5 |
---|---|---|---|---|---|---|---|---|
B2 | 13 | B2-4 | B2-4-COL-1 * | COL | mcr-1 | AMP-STR-TET-CHL-SUL-TMP-CIP-NAL | 7 | |
B2-4-CIP-1 * | CIP | mcr-1 | AMP-STR-TET-CHL-SUL-TMP-CIP-NAL | 7 | ||||
B2-5 | B2-5-COL-1 * | COL | mcr-1 | AMP-STR-TET-CHL-SUL-TMP-CIP-NAL | 7 | |||
B2-5-CTX-1 | CTX | mcr-1 | AMP-AMC-LEX-CXM-CTX-CAZ-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL | blaCTX-M-14 | 16 | |||
B2-5-CIP-1 * | CIP | mcr-1 | AMP-STR-TET-CHL-SUL-TMP-CIP-NAL | 7 | ||||
B2-6 | B2-6-COL-1 | COL | mcr-1 | AMP-STR-TET-CHL-SUL-TMP-CIP-NAL | 7 | |||
B2-7 | B2-7-COL-1 | COL | mcr-1 | AMP-STR-TET-CHL-SUL-TMP-CIP-NAL | 7 | |||
B2-8 | B2-8-COL-1 | COL | mcr-1 | TET | 2 | |||
B2-9 | B2-9-COL-1 | COL | mcr-1 | AMP-STR-TET-CHL-SUL-TMP-CIP-NAL | 7 | |||
B2-10 | B2-10-COL-1 | COL | mcr-1 | AMP-STR-TET-SUL-TMP | 7 | |||
B2-10-COL-2 | COL | mcr-1 | AMC-AMP-STR-TET-CHL-SUL-TMP-CIP-NAL | 1 | ||||
14 | B2-25 | B2-25-CTX-1 | CTX | mcr-1 | AMP-AMC-LEX-CXM-CTX-CAZ-STR-TET-SUL-TMP | blaCTX-M-1 | 4 | |
B2-26 | B2-26-CTX-1 | CTX | mcr-1 | AMP-AMC-LEX-CXM-CTX-CAZ-STR-TET-SUL-TMP | blaCTX-M-1 | 4 | ||
A | 32 | A12 | A12-CTX-1 | CTX | mcr-3 | AMP-AMC-LEX-CXM-CTX-CAZ-GEN-TET-CHL-SUL-TMP-CIP-NAL | blaCTX-M-55 | 9 |
A15 | A15-CTX-1 | CTX | mcr-3 | AMP-AMC-LEX-CXM-CTX-CAZ-GEN-TET-CHL-SUL-TMP-CIP-NAL | blaCTX-M-55 | 9 | ||
34 | A1 | A1-CTX-2 | CTX | mcr-1, -3 | AMP-AMC-LEX-CXM-CTX-CAZ-FEP-GEN-STR-CHL-TMP-CIP-NAL | blaCTX-M-55 | 11 | |
A1-CIP-1 | CIP | mcr-3 | AMP-AMC-LEX-CXM-CTX-CAZ-FEP-GEN-TET-CHL-SUL-TMP-CIP-NAL | blaCTX-M-55 | 15 | |||
A3 | A3-CTX-1 | CTX | mcr-3 | AMP-AMC-LEX-CXM-CTX-CAZ-STR-TET-SUL | blaCTX-M-14 | 3 | ||
A4 | A4-COL-1 | COL | mcr-1, -3 | AMP-AMC-LEX-CXM-CTX-CAZ-FEP-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL | blaCTX-M-55 | 15 | ||
A4-CTX-1 | CTX | mcr-3 | AMP-AMC-LEX-CXM-CTX-CAZ-FEP-GEN-TET-CHL-SUL-TMP-CIP-NAL | blaCTX-M-55 | 15 | |||
A4-CIP-1 | CIP | mcr-1, -3 | AMP-AMC-LEX-CXM-CTX-CAZ-FEP-GEN-STR-CHL-TMP-CIP-NAL | blaCTX-M-55 | 15 | |||
A5 | A5-COL-1 | COL | mcr-3 | AMP-AMC-LEX-CXM-CTX-CAZ-FEP-GEN-STR-TET-CHL | blaCTX-M-55 | 18 | ||
A5-CTX-1 | CTX | mcr-3 | AMP-AMC-LEX-CXM-CTX-CAZ-FEP-GEN-STR-TET-CHL | blaCTX-M-55 | 17 | |||
B1 | 37 | B1-29 | B1-29-COL-1 * | COL | mcr-1 | AMP-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL | 6 | |
B1-29-CIP-1 * | CIP | mcr-1 | AMP-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL | 6 | ||||
39 | B1-2 | B1-2-CIP-1 | CIP | mcr-1 | AMP-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL | 13 | ||
NP2 | B1-6 | B1-6-COL-1 | COL | mcr-1 | AMP-STR-TET-SUL-TMP | 8 | ||
B1-6-CIP-1 | CIP | mcr-1 | AMP-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL | 5 | ||||
B1-11 | B1-11-COL-1 | COL | mcr-1 | AMP-STR-TET-SUL-TMP | 10 | |||
B1-11-CIP-1 | CIP | mcr-1 | AMP-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL | 5 | ||||
B1-12 | B1-12-COL-1 | COL | mcr-1 | AMP-STR-TET-SUL-TMP | 8 | |||
B1-12-CIP-1 | CIP | mcr-1 | AMP-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL | 5 | ||||
B1-13 | B1-13-COL-1 | COL | mcr-1 | AMP-STR-TET-SUL-TMP | NT | |||
B1-13-COL-6 | COL | mcr-1 | AMP-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL | NT | ||||
B1-13-CIP-2 | CIP | mcr-1 | AMP-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL | 5 | ||||
B1-14 | B1-14-COL-1 | COL | mcr-1 | AMP-STR-TET-SUL-TMP | 8 | |||
B1-14-CIP-1 | CIP | mcr-1 | AMP-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL | 5 | ||||
B1-15 | B1-15-COL-1 | COL | mcr-1 | AMP-STR-TET-SUL-TMP | 8 | |||
B1-15-CIP-1 | CIP | mcr-1 | AMP-GEN-CHL-CIP-NAL | 5 | ||||
A2 | 41 | A2-4 | A2-4-COL-1 | COL | mcr-1 | AMC-AMP-STR-TET-CHL-SUL-TMP-CIP-NAL | 1 | |
42 | A2-22 | A2-22-COL-1 | COL | mcr-1 | AMP-STR-TET-SUL | 14 | ||
A2-25 | A2-25-COL-1 | COL | mcr-1 | AMP-STR-TET-SUL | 14 | |||
B3-2 | 50 | B3-2-7 | B3-2-7-COL-1 | COL | mcr-1 | AMP-STR-TET-SUL-TMP | 12 | |
B3-2-11 | B3-2-11-COL-1 | COL | mcr-1 | AMP-STR-TET-SUL-TMP | 12 |
Campaign ID 1 | Farm ID | No. of Calves Carrying mcr-Positive E. coli/No. of Calves Tested | Use of Colistin 2 |
---|---|---|---|
B2 | 13 | 7/7 | Y |
14 | 2/3 | N | |
B3 | NP | 0/5 | NK |
29 | 0/5 | N | |
A | 31 | 0/5 | Y |
32 | 2/5 | N | |
33 | 0/5 | NK | |
34 | 4/5 | N | |
35 | 0/5 | N | |
36 | 0/5 | N | |
B1 | 37 | 1/6 | N |
38 | 0/4 | N | |
39 | 1/5 | Y | |
40 | 0/5 | N | |
NP1 | 0/4 | NK | |
NP2 | 6/6 | NK | |
A2 | 41 | 1/5 | N |
42 | 2/5 | N | |
43 | 0/5 | N | |
44 | 0/5 | N | |
NP3 | 0/5 | NK | |
B2-2 | 45 | 0/6 | N |
47 | 0/6 | N | |
48 | 0/3 | N | |
B3-2 | 50 | 2/6 | NK |
51 | 0/6 | N | |
53 | 0/3 | N | |
RA | 62 | 0/7 | N |
63 | 0/8 | N | |
64 | 0/8 | N | |
65 | 0/7 | N | |
NP4 | 0/5 | NK | |
Total | 32 | 28/170 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Um, M.M.; Dupouy, V.; Arpaillange, N.; Bièche-Terrier, C.; Auvray, F.; Oswald, E.; Brugère, H.; Bibbal, D. High Fecal Prevalence of mcr-Positive Escherichia coli in Veal Calves at Slaughter in France. Antibiotics 2022, 11, 1071. https://doi.org/10.3390/antibiotics11081071
Um MM, Dupouy V, Arpaillange N, Bièche-Terrier C, Auvray F, Oswald E, Brugère H, Bibbal D. High Fecal Prevalence of mcr-Positive Escherichia coli in Veal Calves at Slaughter in France. Antibiotics. 2022; 11(8):1071. https://doi.org/10.3390/antibiotics11081071
Chicago/Turabian StyleUm, Maryse Michèle, Véronique Dupouy, Nathalie Arpaillange, Clémence Bièche-Terrier, Frédéric Auvray, Eric Oswald, Hubert Brugère, and Delphine Bibbal. 2022. "High Fecal Prevalence of mcr-Positive Escherichia coli in Veal Calves at Slaughter in France" Antibiotics 11, no. 8: 1071. https://doi.org/10.3390/antibiotics11081071
APA StyleUm, M. M., Dupouy, V., Arpaillange, N., Bièche-Terrier, C., Auvray, F., Oswald, E., Brugère, H., & Bibbal, D. (2022). High Fecal Prevalence of mcr-Positive Escherichia coli in Veal Calves at Slaughter in France. Antibiotics, 11(8), 1071. https://doi.org/10.3390/antibiotics11081071