Awareness of Antimicrobial Resistance and Associated Factors among Layer Poultry Farmers in Zambia: Implications for Surveillance and Antimicrobial Stewardship Programs
Abstract
:1. Introduction
2. Results
2.1. Study Participant Characteristics
2.2. Factors Associated with Awareness of AMR in Layer Poultry Farms
3. Discussion
4. Materials and Methods
4.1. Study Design and Site
4.2. Study Population
4.3. Data Collection Tool
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Imam, T.; Gibson, J.S.; Foysal, M.; Das, S.B.; Gupta, S.D.; Fournié, G.; Hoque, M.A.; Henning, J. A Cross-Sectional Study of Antimicrobial Usage on Commercial Broiler and Layer Chicken Farms in Bangladesh. Front. Vet. Sci. 2020, 7, 576113. [Google Scholar] [CrossRef] [PubMed]
- Wall, S. Prevention of antibiotic resistance—An epidemiological scoping review to identify research categories and knowledge gaps. Glob. Health Action 2019, 12, 1756191. [Google Scholar] [CrossRef] [PubMed]
- Agyare, C.; Etsiapa Boamah, V.; Ngofi Zumbi, C.; Boateng Osei, F. Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance. In Antimicrobial Resistance—A Global Threat; IntechOpen: London, UK, 2018; ISBN 978-1-78985-784-9. [Google Scholar]
- Carrique-Mas, J.; Van, N.T.B.; Van Cuong, N.; Truong, B.D.; Kiet, B.T.; Thanh, P.T.H.; Lon, N.N.; Giao, V.T.Q.; Hien, V.B.; Padungtod, P.; et al. Mortality, disease and associated antimicrobial use in commercial small-scale chicken flocks in the Mekong Delta of Vietnam. Prev. Vet. Med. 2019, 165, 15–22. [Google Scholar] [CrossRef]
- Pokharel, S.; Shrestha, P.; Adhikari, B. Antimicrobial use in food animals and human health: Time to implement ‘One Health’ approach. Antimicrob. Resist. Infect. Control 2020, 9, 181. [Google Scholar] [CrossRef] [PubMed]
- Caudell, M.A.; Quinlan, M.B.; Subbiah, M.; Call, D.R.; Roulette, C.J.; Roulette, J.W.; Roth, A.; Matthews, L.; Quinlan, R.J. Antimicrobial Use and Veterinary Care among Agro-Pastoralists in Northern Tanzania. PLoS ONE 2017, 12, e0170328. [Google Scholar] [CrossRef]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309. [Google Scholar] [CrossRef]
- Gray, P.; Jenner, R.; Norris, J.; Page, S.; Browning, G. Antimicrobial prescribing guidelines for poultry. Aust. Vet. J. 2021, 99, 181–235. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417. [Google Scholar] [CrossRef]
- Dadgostar, P. Antimicrobial resistance: Implications and costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef]
- Michael, C.A.; Dominey-Howes, D.; Labbate, M. The Antimicrobial Resistance Crisis: Causes, Consequences, and Management. Front. Public Health 2014, 2, 145. [Google Scholar] [CrossRef]
- de Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, 1002184. [Google Scholar] [CrossRef] [PubMed]
- Geta, K.; Kibret, M. Knowledge, attitudes and practices of animal farm owners/workers on antibiotic use and resistance in Amhara region, north western Ethiopia. Sci. Rep. 2021, 11, 21211. [Google Scholar] [CrossRef] [PubMed]
- Verraes, C.; Van Boxstael, S.; Van Meervenne, E.; Van Coillie, E.; Butaye, P.; Catry, B.; de Schaetzen, M.A.; Van Huffel, X.; Imberechts, H.; Dierick, K.; et al. Antimicrobial resistance in the food chain: A review. Int. J. Environ. Res. Public Health 2013, 10, 2643–2669. [Google Scholar] [CrossRef] [PubMed]
- Hassell, J.M.; Ward, M.J.; Muloi, D.; Bettridge, J.M.; Robinson, T.P.; Kariuki, S.; Ogendo, A.; Kiiru, J.; Imboma, T.; Kang’ethe, E.K.; et al. Clinically relevant antimicrobial resistance at the wildlife–livestock–human interface in Nairobi: An epidemiological study. Lancet Planet. Health 2019, 3, e259–e269. [Google Scholar] [CrossRef]
- Nulty, K.M.; Soon, J.M.; Wallace, C.A.; Nastasijevic, I. Antimicrobial resistance monitoring and surveillance in the meat chain: A report from five countries in the European Union and European Economic Area. Trends Food Sci. Technol. 2016, 58, 1–13. [Google Scholar] [CrossRef]
- Woolhouse, M.; Ward, M.; van Bunnik, B.; Farrar, J. Antimicrobial resistance in humans, livestock and the wider environment. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140083. [Google Scholar] [CrossRef]
- Chishimba, K.; Hang’ombe, B.M.; Muzandu, K.; Mshana, S.E.; Matee, M.I.; Nakajima, C.; Suzuki, Y. Detection of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Market-Ready Chickens in Zambia. Int. J. Microbiol. 2016, 2016, 5275724. [Google Scholar] [CrossRef]
- Varga, C.; Guerin, M.T.; Brash, M.L.; Slavic, D.; Boerlin, P.; Susta, L. Antimicrobial resistance in fecal Escherichia coli and Salmonella enterica isolates: A two-year prospective study of small poultry flocks in Ontario, Canada. BMC Vet. Res. 2019, 15, 464. [Google Scholar] [CrossRef]
- Mainda, G.; Bessell, P.B.; Muma, J.B.; McAteer, S.P.; Chase-Topping, M.E.; Gibbons, J.; Stevens, M.P.; Gally, D.L.; Barend, B.M. Prevalence and patterns of antimicrobial resistance among Escherichia coli isolated from Zambian dairy cattle across different production systems. Sci. Rep. 2015, 5, 26589. [Google Scholar] [CrossRef]
- Kabali, E.; Pandey, G.S.; Munyeme, M.; Kapila, P.; Mukubesa, A.N.; Ndebe, J.; Muma, J.B.; Mubita, C.; Muleya, W.; Muonga, E.M.; et al. Identification of Escherichia coli and Related Enterobacteriaceae and Examination of Their Phenotypic Antimicrobial Resistance Patterns: A Pilot Study at A Wildlife–Livestock Interface in Lusaka, Zambia. Antibiotics 2021, 10, 238. [Google Scholar] [CrossRef]
- Muloi, D.; Kiiru, J.; Ward, M.J.; Hassell, J.M.; Bettridge, J.M.; Robinson, T.P.; van Bunnik, B.A.D.; Chase-Topping, M.; Robertson, G.; Pedersen, A.B.; et al. Epidemiology of antimicrobial-resistant Escherichia coli carriage in sympatric humans and livestock in a rapidly urbanizing city. Int. J. Antimicrob. Agents 2019, 54, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Barbour, E.K.; Nabbut, N.H. Isolation of salmonella and some other potential pathogens from two chicken breeding farms in Saudi Arabia. Avian Dis. 1982, 26, 234–244. [Google Scholar] [CrossRef] [PubMed]
- de Jong, A.; Stephan, B.; Silley, P. Fluoroquinolone resistance of Escherichia coli and Salmonella from healthy livestock and poultry in the EU. J. Appl. Microbiol. 2012, 112, 239–245. [Google Scholar] [CrossRef]
- Boulianne, M.; Arsenault, J.; Daignault, D.; Archambault, M.; Letellier, A.; Dutil, L. Drug use and antimicrobial resistance among escherichia coli and enterococcus spp. Isolates from chicken and turkey flocks slaughtered in Quebec, Canada. Can. J. Vet. Res. 2016, 80, 49–59. [Google Scholar] [PubMed]
- Samutela, M.T.; Kalonda, A.; Mwansa, J.; Lukwesa-Musyani, C.; Mwaba, J.; Mumbula, E.M.; Mwenya, D.; Simulundu, E.; Kwenda, G. Molecular characterisation of methicillin-resistant Staphylococcus aureus (MRSA) isolated at a large referral hospital in Zambia. Pan Afr. Med. J. 2017, 26, 108. [Google Scholar] [CrossRef]
- Yehia, H.M.; Elkhadragy, M.F.; Aljahani, A.H.; Alarjani, K.M. Prevalence and antibiotic resistance of Listeria monocytogenes in camel meat. Biosci. Rep. 2020, 40, 20201062. [Google Scholar] [CrossRef] [PubMed]
- Mpundu, P.; Mbewe, A.R.; Muma, J.B.; Mwasinga, W.; Mukumbuta, N.; Munyeme, M. A global perspective of antibiotic-resistant Listeria monocytogenes prevalence in assorted ready to eat foods: A systematic review. Vet. World 2021, 14, 2219–2229. [Google Scholar] [CrossRef]
- Albernaz-Gonçalves, R.; Olmos, G.; Hötzel, M.J. Exploring Farmers’ Reasons for Antibiotic Use and Misuse in Pig Farms in Brazil. Antibiotics 2021, 10, 331. [Google Scholar] [CrossRef]
- Benavides, J.A.; Streicker, D.G.; Gonzales, M.S.; Rojas-Paniagua, E.; Shiva, C. Knowledge and use of antibiotics among low-income small-scale farmers of Peru. Prev. Vet. Med. 2021, 189, 105287. [Google Scholar] [CrossRef]
- Phares, C.A.; Danquah, A.; Atiah, K.; Agyei, F.K.; Michael, O.-T. Antibiotics utilization and farmers’ knowledge of its effects on soil ecosystem in the coastal drylands of Ghana. PLoS ONE 2020, 15, e0228777. [Google Scholar] [CrossRef]
- Chauhan, A.S.; George, M.S.; Chatterjee, P.; Lindahl, J.; Grace, D.; Kakkar, M. The social biography of antibiotic use in smallholder dairy farms in India. Antimicrob. Resist. Infect. Control 2018, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Sangthong, R.; McNeil, E.; Tang, R.; Chongsuvivatwong, V. Antibiotic use in chicken farms in northwestern China. Antimicrob. Resist. Infect. Control 2020, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Redding, L.E.; Barg, F.K.; Smith, G.; Galligan, D.T.; Levy, M.Z.; Hennessy, S. The role of veterinarians and feed-store vendors in the prescription and use of antibiotics on small dairy farms in rural Peru. J. Dairy Sci. 2013, 96, 7349–7354. [Google Scholar] [CrossRef] [PubMed]
- Jibril, A.H.; Okeke, I.N.; Dalsgaard, A.; Olsen, J.E. Association between antimicrobial usage and resistance in Salmonella from poultry farms in Nigeria. BMC Vet. Res. 2021, 17, 234. [Google Scholar] [CrossRef] [PubMed]
- Harbarth, S.; Balkhy, H.H.; Goossens, H.; Jarlier, V.; Kluytmans, J.; Laxminarayan, R.; Saam, M.; Van Belkum, A.; Pittet, D. Antimicrobial resistance: One world, one fight! Antimicrob. Resist. Infect. Control 2015, 4, 49. [Google Scholar] [CrossRef]
- Masud, A.A.; Rousham, E.K.; Islam, M.A.; Alam, M.U.; Rahman, M.; Mamun, A.A.; Sarker, S.; Asaduzzaman, M.; Unicomb, L. Drivers of Antibiotic Use in Poultry Production in Bangladesh: Dependencies and Dynamics of a Patron-Client Relationship. Front. Vet. Sci. 2020, 7, 78. [Google Scholar] [CrossRef]
- Roth, N.; Käsbohrer, A.; Mayrhofer, S.; Zitz, U.; Hofacre, C.; Domig, K.J. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult. Sci. 2019, 98, 1791–1804. [Google Scholar] [CrossRef]
- Mackenzie, J.S.; Jeggo, M. The one health approach-why is it so important? Trop. Med. Infect. Dis. 2019, 4, 88. [Google Scholar] [CrossRef]
- Kimera, Z.I.; Mshana, S.E.; Rweyemamu, M.M.; Mboera, L.E.G.; Matee, M.I.N. Antimicrobial use and resistance in food-producing animals and the environment: An African perspective. Antimicrob. Resist. Infect. Control 2020, 9, 37. [Google Scholar] [CrossRef]
- Varona, O.M.; Chaintarli, K.; Muller-Pebody, B.; Anjum, M.F.; Eckmanns, T.; Norström, M.; Boone, I.; Tenhagen, B.A. Monitoring antimicrobial resistance and drug usage in the human and livestock sector and foodborne antimicrobial resistance in six European countries. Infect. Drug Resist. 2020, 13, 957–993. [Google Scholar] [CrossRef]
- Lambrou, A.S.; Innes, G.K.; O’Sullivan, L.; Luitel, H.; Bhattarai, R.K.; Basnet, H.B.; Heaney, C.D. Policy implications for awareness gaps in antimicrobial resistance (AMR) and antimicrobial use among commercial Nepalese poultry producers. Glob. Health Res. Policy 2021, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; Kalam, M.A.; Alim, M.A.; Shano, S.; Nayem, M.R.K.; Badsha, M.R.; Mamun, M.A.A.; Hoque, A.; Tanzin, A.Z.; Nath, C.; et al. Knowledge, attitude, and practices on antimicrobial use and antimicrobial resistance among commercial poultry farmers in Bangladesh. Antibiotics 2021, 10, 784. [Google Scholar] [CrossRef] [PubMed]
- Nkansa, M.; Agbekpornu, H.; Kikimoto, B.B.; Chandler, C.I. Antibiotic Use Among Poultry Farmers in the Dormaa Municipality, Ghana. Report for Fleming Fund Fellowship Programme. Rep. Fleming Fund Fellowsh. Program. 2020, 1–72. [Google Scholar] [CrossRef]
- Dumas, S.E.; Lungu, L.; Mulambya, N.; Daka, W.; McDonald, E.; Steubing, E.; Lewis, T.; Backel, K.; Jange, J.; Lucio-Martinez, B.; et al. Sustainable smallholder poultry interventions to promote food security and social, agricultural, and ecological resilience in the Luangwa Valley, Zambia. Food Secur. 2016, 8, 507–520. [Google Scholar] [CrossRef]
- Samboko, P.C.; Zulu-Mbata, O.; Chapoto, A. Analysis of the animal feed to poultry value chain in Zambia. Dev. South. Afr. 2018, 35, 351–368. [Google Scholar] [CrossRef]
- Munang’andu, H.M.; Kabilika, S.H.; Chibomba, O.; Munyeme, M.; Muuka, G.M. Bacteria Isolations from Broiler and Layer Chicks in Zambia. J. Pathog. 2012, 2012, 520564. [Google Scholar] [CrossRef]
- Mtonga, S.; Nyirenda, S.S.; Mulemba, S.S.; Ziba, M.W.; Muuka, G.M.; Fandamu, P. Epidemiology and antimicrobial resistance of pathogenic E. coli in chickens from selected poultry farms in Zambia. J. Zoonotic Dis. 2020, 2021, 18–28. [Google Scholar] [CrossRef]
- Ndukui, J.G.; Gikunju, J.K.; Aboge, G.O.; Mbaria, J.M. Antimicrobial Use in Commercial Poultry Production Systems in Kiambu County, Kenya: A Cross-Sectional Survey on Knowledge, Attitudes and Practices. Open J. Anim. Sci. 2021, 11, 658–681. [Google Scholar] [CrossRef]
- McKernan, C.; Benson, T.; Farrell, S.; Dean, M. Antimicrobial use in agriculture: Critical review of the factors influencing behaviour. JAC Antimicrob. Resist. 2021, 3, dlab178. [Google Scholar] [CrossRef]
- Nhung, N.T.; Chansiripornchai, N.; Carrique-Mas, J.J. Antimicrobial resistance in bacterial poultry pathogens: A review. Front. Vet. Sci. 2017, 4, 126. [Google Scholar] [CrossRef]
- Moffo, F.; Mouliom Mouiche, M.M.; Kochivi, F.L.; Dongmo, J.B.; Djomgang, H.K.; Tombe, P.; Mbah, C.K.; Mapiefou, N.P.; Mingoas, J.P.K.; Awah-Ndukum, J. Knowledge, attitudes, practices and risk perception of rural poultry farmers in Cameroon to antimicrobial use and resistance. Prev. Vet. Med. 2020, 182, 105087. [Google Scholar] [CrossRef]
- Kramer, T.; Jansen, L.E.; Lipman, L.J.A.; Smit, L.A.M.; Heederik, D.J.J.; Dorado-García, A. Farmers’ knowledge and expectations of antimicrobial use and resistance are strongly related to usage in Dutch livestock sectors. Prev. Vet. Med. 2017, 147, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Paintsil, E.K.; Ofori, L.A.; Akenten, C.W.; Fosu, D.; Ofori, S.; Lamshöft, M.; May, J.; Danso, K.O.; Krumkamp, R.; Dekker, D. Antimicrobial usage in commercial and domestic poultry farming in two communities in the ashanti region of ghana. Antibiotics 2021, 10, 800. [Google Scholar] [CrossRef] [PubMed]
- Hedman, H.D.; Vasco, K.A.; Zhang, L. A Review of Antimicrobial Resistance in Poultry Farming within Low-Resource Settings. Animals 2020, 10, 1264. [Google Scholar] [CrossRef]
- Afakye, K.; Kiambi, S.; Koka, E.; Kabali, E.; Dorado-Garcia, A.; Amoah, A.; Kimani, T.; Adjei, B.; Caudell, M.A. The Impacts of Animal Health Service Providers on Antimicrobial Use Attitudes and Practices: An Examination of Poultry Layer Farmers in Ghana and Kenya. Antibiotics 2020, 9, 554. [Google Scholar] [CrossRef] [PubMed]
- Caudell, M.A.; Dorado-Garcia, A.; Eckford, S.; Creese, C.; Byarugaba, D.K.; Afakye, K.; Chansa-Kabali, T.; Fasina, F.O.; Kabali, E.; Kiambi, S.; et al. Towards a bottom-up understanding of antimicrobial use and resistance on the farm: A knowledge, attitudes, and practices survey across livestock systems in five African countries. PLoS ONE 2020, 15, e0220274. [Google Scholar] [CrossRef]
- Pham-Duc, P.; Cook, M.A.; Cong-Hong, H.; Nguyen-Thuy, H.; Padungtod, P.; Nguyen-Thi, H.; Dang-Xuan, S. Knowledge, attitudes and practices of livestock and aquaculture producers regarding antimicrobial use and resistance in Vietnam. PLoS ONE 2019, 14, e0223115. [Google Scholar] [CrossRef]
- Glasgow, L.; Forde, M.; Brow, D.; Mahoney, C.; Fletcher, S.; Rodrigo, S. Antibiotic Use in Poultry Production in Grenada. Vet. Med. Int. 2019, 2019, 6785195. [Google Scholar] [CrossRef]
- Alhaji, N.B.; Haruna, A.E.; Muhammad, B.; Lawan, M.K.; Isola, T.O. Antimicrobials usage assessments in commercial poultry and local birds in North-central Nigeria: Associated pathways and factors for resistance emergence and spread. Prev. Vet. Med. 2018, 154, 139–147. [Google Scholar] [CrossRef]
- Boamah, V.; Agyare, C. Antibiotic Practices and Factors Influencing the Use of Antibiotics in Selected Poultry Farms in Ghana. J. Antimicro. 2016, 2, 1000120. [Google Scholar]
- Johnson, S.; Bugyei, K.; Nortey, P.; Tasiame, W. Antimicrobial drug usage and poultry production: Case study in Ghana. Anim. Prod. Sci. 2019, 59, 177–182. [Google Scholar] [CrossRef]
- Kamini, M.G.; Tatfo Keutchatang, F.; Yangoua Mafo, H.; Kansci, G.; Medoua Nama, G. Antimicrobial usage in the chicken farming in Yaoundé, Cameroon: A cross-sectional study. Int. J. Food Contam. 2016, 3, 10. [Google Scholar] [CrossRef]
- Sasanya, J.J.; Ogawal Okeng, J.W.; Ejobi, F.; Muganwa, M. Use of sulfonamides in layers in Kampala district, Uganda and sulfonamide residues in commercial eggs. Afr. Health Sci. 2005, 5, 33–39. [Google Scholar] [CrossRef]
- Conan, A.; Goutard, F.L.; Sorn, S.; Vong, S. Biosecurity measures for backyard poultry in developing countries: A systematic review. BMC Vet. Res. 2012, 8, 240. [Google Scholar] [CrossRef]
- Scott, A.B.; Singh, M.; Groves, P.; Hernandez-Jover, M.; Barnes, B.; Glass, K.; Moloney, B.; Black, A.; Toribio, J.A. Biosecurity practices on Australian commercial layer and meat chicken farms: Performance and perceptions of farmers. PLoS ONE 2018, 13, e0195582. [Google Scholar] [CrossRef]
- Ismael, A.; Abdella, A.; Shimelis, S.; Tesfaye, A.; Muktar, Y. Assessment of Biosecurity Status in Commercial Chicken Farms Found in Bishoftu Town, Oromia Regional State, Ethiopia. Vet. Med. Int. 2021, 2021, 5591932. [Google Scholar] [CrossRef]
- Maduka, C.V.; Igbokwe, I.O.; Atsanda, N.N. Appraisal of Chicken Production with Associated Biosecurity Practices in Commercial Poultry Farms Located in Jos, Nigeria. Scientifica 2016, 2016, 1914692. [Google Scholar] [CrossRef]
- Hafez, H.M.; Attia, Y.A. Challenges to the Poultry Industry: Current Perspectives and Strategic Future After the COVID-19 Outbreak. Front. Vet. Sci. 2020, 7, 516. [Google Scholar] [CrossRef]
- Krishnan, S.B.; Peterburs, T. Zambia Jobs in Value Chains: Opportunities in Agribusiness; World Bank: Washington, DC, USA, 2017. [Google Scholar]
Factor | Attribute | Total Population (N = 77) n, (%) | Not Aware of AMR (n = 41 {53.3%}) | Aware of AMR (n = 36 {46.8%}) | p-Value |
---|---|---|---|---|---|
Sex of farm owner | Female Male | 7 (9.1) 70 (90.9) | 2 (4.9) 39 (95.1) | 5 (13.9) 31 (86.1) | 0.170 a |
District | Chongwe Kafue Kitwe Lusaka Ndola Rufunsa | 17 (22.1) 20 (25.9) 22 (28.6) 5 (6.5) 10 (12.9) 3 (3.9) | 11 (26.8) 9 (21.9) 14 (34.12) - 7 (17.1) - | 6 (16.7) 11 (30.6) 8 (22.2) 5 (13.9) 3 (8.3) 3 (8.3) | 0.025 a |
Type of farmer | Commercial Medium-scale Small-scale | 39 (50.7) 20 (25.9) 18 (23.4) | 14 (34.2) 16 (39.0) 11 (26.8) | 25 (69.4) 4 (11.1) 7 (19.4) | 0.004 b |
Antibiotic use | No Yes | 11 (14.3) 66 (85.7) | 6 (14.6) 35 (85.4) | 5 (13.9) 31 (86.1) | 0.926 b |
Source of antibiotics | Agrovet/Pharmacy Agrovet Pharmacy Not accessed Veterinarian/agrovet | 16 (20.8) 24 (31.2) 7 (9.1) 11 (14.3) 19 (24.7) | 8 (19.5) 8 (19.5) 7 (17.1) 6 (14.6) 12 (29.3) | 8 (22.2) 16 (44.4) - 5 (13.9) 7 (19.4) | 0.023 a |
Use of prescription | No Sometimes Yes | 39 (50.7) 15 (19.5) 23 (29.9) | 31 (75.6) 6 (14.6) 4 (9.8) | 8 (22.2) 9 (25.0) 19 (52.8) | <0.001 b |
Prevention of diseases using antibiotics | No Yes | 32 (41.6) 45 (58.4) | 13 (31.7) 28 (68.3) | 19 (52.8) 17 (47.2) | 0.061 b |
Improving production using antibiotics | No Yes | 40 (51.9) 37 (48.1) | 19 (46.3) 22 (53.7) | 21 (58.3) 15 (41.7) | 0.293 b |
Consultation of Veterinarian | No Yes | 11 (14.3) 66 (85.7) | 9 (21.9) 32 (78.1) | 2 (5.6) 34 (94.4) | 0.040 b |
Knowledge of observation period | No Yes | 29 (37.7) 48 (62.3) | 25 (60.9) 16 (39.0) | 4 (11.1) 32 (88.9) | <0.001 b |
Treatment of market-ready birds | No Yes | 55 (71.4) 22 (28.6) | 20 (48.8) 21 (51.2) | 35 (97.2) 1 (2.8) | <0.001 b |
Biosecurity practices | No Yes | 7 (9.1) 70 (90.9) | 7 (17.1) 34 (82.9) | - 36 (100) | 0.013 a |
Factor | Attribute | Crude Estimates | Adjusted Estimates | ||
---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | ||
Sex of farm owner | Male Female | Ref 3.14 | 0.57, 17.33 | Ref 17.14 | 1.02, 286.74 a |
Type of farmer | Medium Commercial Small scale | Ref 7.14 2.55 | 1.99, 25.59 0.60, 10.84 | Ref 14.07 9.26 | 2.09, 94.70 b 0.76, 112.69 |
Source of antibiotics | Agrovet/pharmacy Agrovet only Not accessed Veterinarian/Agrovet | Ref 3.75 1.56 1.09 | 0.55, 7.31 a 0.36, 6.76 0.31, 3.88 | Ref 1.38 1.10 0.07 | 0.11, 18.20 0.04, 27.58 0.01, 1.31 |
Use of prescription | No Sometimes Yes | Ref 5.81 18.40 | 1.60, 21.17 b 4.87, 69.54 b | Ref 5.25 99.66 | 0.48, 57.49 7.14, 1391.65 b |
Treatment of market-ready birds | Yes No | Ref 36.75 | 4.59, 294.15 b | Ref 41.92 | 1.26, 1396.36 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mudenda, S.; Malama, S.; Munyeme, M.; Hang’ombe, B.M.; Mainda, G.; Kapona, O.; Mukosha, M.; Yamba, K.; Bumbangi, F.N.; Mfune, R.L.; et al. Awareness of Antimicrobial Resistance and Associated Factors among Layer Poultry Farmers in Zambia: Implications for Surveillance and Antimicrobial Stewardship Programs. Antibiotics 2022, 11, 383. https://doi.org/10.3390/antibiotics11030383
Mudenda S, Malama S, Munyeme M, Hang’ombe BM, Mainda G, Kapona O, Mukosha M, Yamba K, Bumbangi FN, Mfune RL, et al. Awareness of Antimicrobial Resistance and Associated Factors among Layer Poultry Farmers in Zambia: Implications for Surveillance and Antimicrobial Stewardship Programs. Antibiotics. 2022; 11(3):383. https://doi.org/10.3390/antibiotics11030383
Chicago/Turabian StyleMudenda, Steward, Sydney Malama, Musso Munyeme, Bernard Mudenda Hang’ombe, Geoffrey Mainda, Otridah Kapona, Moses Mukosha, Kaunda Yamba, Flavien Nsoni Bumbangi, Ruth Lindizyani Mfune, and et al. 2022. "Awareness of Antimicrobial Resistance and Associated Factors among Layer Poultry Farmers in Zambia: Implications for Surveillance and Antimicrobial Stewardship Programs" Antibiotics 11, no. 3: 383. https://doi.org/10.3390/antibiotics11030383
APA StyleMudenda, S., Malama, S., Munyeme, M., Hang’ombe, B. M., Mainda, G., Kapona, O., Mukosha, M., Yamba, K., Bumbangi, F. N., Mfune, R. L., Daka, V., Mwenya, D., Mpundu, P., Siluchali, G., & Muma, J. B. (2022). Awareness of Antimicrobial Resistance and Associated Factors among Layer Poultry Farmers in Zambia: Implications for Surveillance and Antimicrobial Stewardship Programs. Antibiotics, 11(3), 383. https://doi.org/10.3390/antibiotics11030383