Bacteria and Boar Semen Storage: Progress and Challenges
Abstract
:1. Introduction
2. Results
2.1. Bacterial Presence in Boar Semen
2.2. Semen Cold Storage and Bacterial Contamination
2.3. Consequences of Bacterial Contamination on Boar Semen
2.4. Antibiotic Use for Preservation of Boar Semen
2.5. Alternatives to Prevent Bacterial Contamination in Semen Storage
2.6. Use of Supplements and Other Antimicrobial Molecules
3. Future Prospects and Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schulze, M.; Ammon, C.; Rüdiger, K.; Jung, M.; Grobbel, M. Analysis of Hygienic Critical Control Points in Boar Semen Production. Theriogenology 2015, 83, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Kuster, C.E.; Althouse, G.C. The Impact of Bacteriospermia on Boar Sperm Storage and Reproductive Performance. Theriogenology 2016, 85, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Pezo, F.; Romero, F.; Zambrano, F.; Sánchez, R.S. Preservation of Boar Semen: An Update. Reprod. Domest. Anim. 2019, 54, 423–434. [Google Scholar] [CrossRef]
- Althouse, G.C. Sanitary Procedures for the Production of Extended Semen. Reprod. Domest. Anim. 2008, 43, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Althouse, G.C.; Kuster, C.E.; Clark, S.G.; Weisiger, R.M. Field investigations of bacterial contaminants and their effects on extended porcine semen. Theriogenology 2000, 53, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Althouse, G.C.; Lu, K.G. Bacteriospermia in Extended Porcine Semen. Theriogenology 2005, 63, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Wiebke, M.; Hensel, B.; Nitsche-Melkus, E.; Jung, M.; Schulze, M. Cooled Storage of Semen from Livestock Animals (Part I): Boar, Bull, and Stallion. Anim. Reprod. Sci. 2021, 246, 106822. [Google Scholar] [CrossRef] [PubMed]
- Althouse, G.C.; Pierdon, M.S.; Lu, K.G. Thermotemporal Dynamics of Contaminant Bacteria and Antimicrobials in Extended Porcine Semen. Theriogenology 2008, 70, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Ciornei, Ş.; Drugociu, D.; Ciornei, L.M.; Mareş, M.; Roşca, P. Total Aseptization of Boar Semen, to Increase the Biosecurity of Reproduction in Swine. Molecules 2021, 26, 6183. [Google Scholar] [CrossRef]
- Úbeda, J.L.; Ausejo, R.; Dahmani, Y.; Falceto, M.V.; Usan, A.; Malo, C.; Perez-Martinez, F.C. Adverse Effects of Members of the Enterobacteriaceae Family on Boar Sperm Quality. Theriogenology 2013, 80, 565–570. [Google Scholar] [CrossRef]
- Gòdia, M.; Ramayo-Caldas, Y.; Zingaretti, L.M.; Darwich, L.; López, S.; Rodríguez-Gil, J.E.; Yeste, M.; Sánchez, A.; Clop, A. A Pilot RNA-Seq Study in 40 Pietrain Ejaculates to Characterize the Porcine Sperm Microbiome. Theriogenology 2020, 157, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, H.; Yang, Q.; Li, P.; Wen, Y.; Han, X.; Li, B.; Jiang, H.; Li, X. Genomic Sequencing Reveals the Diversity of Seminal Bacteria and Relationships to Reproductive Potential in Boar Sperm. Front. Microbiol. 2020, 11, 1873. [Google Scholar] [CrossRef]
- Costinar, L.; Herman, V.; Pitoiu, E.; Iancu, I.; Degi, J.; Hulea, A.; Pascu, C. Boar Semen Contamination: Identification of Gram-Negative Bacteria and Antimicrobial Resistance Profile. Animals 2022, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Dalmutt, A.C.; Moreno, L.Z.; Gomes, V.T.M.; Cunha, M.P.V.; Barbosa, M.R.F.; Sato, M.I.Z.; Knöbl, T.; Pedroso, A.C.; Moreno, A.M. Characterization of Bacterial Contaminants of Boar Semen: Identification by MALDI-TOF Mass Spectrometry and Antimicrobial Susceptibility Profiling. J. Appl. Anim. Res. 2020, 48, 559–565. [Google Scholar] [CrossRef]
- Scheinpflug, K.; Schiller, S.; Jäkel, H.; Schulze, M.; Waberski, D.; Mühldorfer, K. Relevance of Leptospira in Boar and for the Development of Alternative Antimicrobial Concepts in Boar Semen Preservation. Porc. Health Manag. 2020, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Even, G.; Mottais, D.; Morien, F.; Pham, M.D.; Ostergaard, A.; Martel, S.; Merlin, S.; Audebert, C. Porcine Bacteriospermia Examined by High-Throughput Sequencing. Theriogenology 2020, 142, 268–275. [Google Scholar] [CrossRef]
- Schulze, M.; Jung, M.; Hensel, B. Science-Based Quality Control in Boar Semen Production. Mol. Reprod. Dev. 2022. early view. [Google Scholar] [CrossRef] [PubMed]
- Nitsche-Melkus, E.; Bortfeldt, R.; Jung, M.; Schulze, M. Impact of Hygiene on Bacterial Contamination in Extended Boar Semen: An Eight-Year Retrospective Study of 28 European AI Centers. Theriogenology 2020, 146, 133–139. [Google Scholar] [CrossRef]
- Goldberg, A.M.G.; Argenti, L.E.; Faccin, J.E.; Linck, L.; Santi, M.; Bernardi, M.L.; Cardoso, M.R.I.; Wentz, I.; Bortolozzo, F.P. Risk Factors for Bacterial Contamination during Boar Semen Collection. Res. Vet. Sci. 2013, 95, 362–367. [Google Scholar] [CrossRef]
- Stojanov, I.; Milovanović, A.; Barna, T.; Prodanov Radulović, J.; Apić, J.; Stojanović, D.; Maksimović, N. Antimicrobial Resistance as a Problem for the Quality of Boar Semen. Acta Vet. Brno. 2020, 70, 136–146. [Google Scholar] [CrossRef]
- Johnson, L.A.; Weitze, K.F.; Fiser, P.; Maxwell, W.M.C. Storage of Boar Semen. Anim. Reprod. Sci. 2000, 62, 143–172. [Google Scholar] [CrossRef] [PubMed]
- Waberski, D.; Riesenbeck, A.; Schulze, M.; Weitze, K.F.; Johnson, L. Application of Preserved Boar Semen for Artificial Insemination: Past, Present and Future Challenges. Theriogenology 2019, 137, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Yeste, M. State-of-the-Art of Boar Sperm Preservation in Liquid and Frozen State. Anim. Reprod. 2017, 14, 69–81. [Google Scholar] [CrossRef]
- Schulze, M.; Nitsche-Melkus, E.; Jakop, U.; Jung, M.; Waberski, D. New Trends in Production Management in European Pig AI Centers. Theriogenology 2019, 137, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Menezes, T.d.A.; Mellagi, A.P.G.; da Silva Oliveira, G.; Bernardi, M.L.; Wentz, I.; Ulguim, R.d.R.; Bortolozzo, F.P. Antibiotic-Free Extended Boar Semen Preserved under Low Temperature Maintains Acceptable in-Vitro Sperm Quality and Reduces Bacterial Load. Theriogenology 2020, 149, 131–138. [Google Scholar] [CrossRef]
- Balogun, K.B.; Stewart, K.R. Effects of Air Exposure and Agitation on Quality of Stored Boar Semen Samples. Reprod. Domest. Anim. 2021, 56, 1200–1208. [Google Scholar] [CrossRef]
- Gączarzewicz, D.; Udała, J.; Piasecka, M.; Błaszczyk, B.; Stankiewicz, T. Bacterial Contamination of Boar Semen and Its Relationship to Sperm Quality Preserved in Commercial Extender Containing Gentamicin Sulfate. Pol. J. Vet. Sci. 2016, 19, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, A.M.G.; Cardoso, M.; Bernardi, M.L.; Wentz, I.; Bortolozzo, F.P. The Impact of Bacterial Contamination of the Ejaculate and Extender on the Quality of Swine Semen Doses. Semin. Cienc. Agrar. 2017, 38, 3095–3103. [Google Scholar] [CrossRef] [Green Version]
- Bussalleu, E.; Yeste, M.; Sepúlveda, L.; Torner, E.; Pinart, E.; Bonet, S. Effects of Different Concentrations of Enterotoxigenic and Verotoxigenic E. Coli on Boar Sperm Quality. Anim. Reprod. Sci. 2011, 127, 176–182. [Google Scholar] [CrossRef]
- Sepúlveda, L.; Bussalleu, E.; Yeste, M.; Bonet, S. Effect of Pseudomonas Aeruginosa on Sperm Capacitation and Protein Phosphorylation of Boar Spermatozoa. Theriogenology 2016, 85, 1421–1431. [Google Scholar] [CrossRef]
- Sepúlveda, L.; Bussalleu, E.; Yeste, M.; Bonet, S. Effects of Different Concentrations of Pseudomonas Aeruginosa on Boar Sperm Quality. Anim. Reprod. Sci. 2014, 150, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda, L.; Bussalleu, E.; Yeste, M.; Torner, E.; Bonet, S. How Do Different Concentrations of Clostridium Perfringens Affect the Quality of Extended Boar Spermatozoa? Anim. Reprod. Sci. 2013, 140, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Martínez, N.; Bussalleu, E.; Garcia-Bonavila, E.; Bonet, S.; Yeste, M. Effects of Enterobacter Cloacae on Boar Sperm Quality during Liquid Storage at 17 °C. Anim. Reprod. Sci. 2014, 148, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Pinart, E.; Domènech, E.; Bussalleu, E.; Yeste, M.; Bonet, S. A Comparative Study of the Effects of Escherichia Coli and Clostridium Perfringens upon Boar Semen Preserved in Liquid Storage. Anim. Reprod. Sci. 2017, 177, 65–78. [Google Scholar] [CrossRef]
- Schulze, M.; Jakop, U.; Jung, M.; Cabezón, F. Influences on Thermo-Resistance of Boar Spermatozoa. Theriogenology 2019, 127, 15–20. [Google Scholar] [CrossRef]
- Ďuračka, M.; Tvrda, E. The Presence of Bacterial Species in Boar Semen and Their Impact on the Sperm Quality and Oxida-Tive Balance. J. Anim. Sci. 2018, 96, 501. [Google Scholar] [CrossRef]
- Rodriguez, A.L.; van Soom, A.; Arsenakis, I.; Maes, D. Boar Management and Semen Handling Factors Affect the Quality of Boar Extended Semen. Porc. Health Manag. 2017, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Schulze, M.; Schäfer, J.; Simmet, C.; Jung, M.; Gabler, C. Detection and Characterization of Lactobacillus Spp. In the Porcine Seminal Plasma and Their Influence on Boar Semen Quality. PLoS ONE 2018, 13, e0202699. [Google Scholar] [CrossRef]
- Bonet, S.; Delgado-Bermúdez, A.; Yeste, M.; Pinart, E. Study of Boar Sperm Interaction with Escherichia Coli and Clostridium Perfringens in Refrigerated Semen. Anim. Reprod. Sci. 2018, 197, 134–144. [Google Scholar] [CrossRef]
- Gao, H.; Gao, Y.; Yang, C.; Dong, D.; Yang, J.; Peng, G.; Peng, J.; Wang, Y.; Pan, C.; Dong, W. Influence of Outer Membrane Vesicles of Proteus Mirabilis Isolated from Boar Semen on Sperm Function. Vet. Microbiol. 2018, 224, 34–42. [Google Scholar] [CrossRef]
- Delgado-Bermúdez, A.; Bonet, S.; Yeste, M.; Pinart, E. Long-Term Storage of Boar Seminal Doses Contaminated with Proteus Vulgaris: A Dose-Dependent Effect on Sperm Motility and Sperm-Bacteria Interaction. Anim. Reprod. Sci. 2020, 216, 106349. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T.; Mihara, T.; Fujita, Y.; Yoshida, S.; Teshima, H.; Shimada, M. Polymyxin B Neutralizes Bacteria-Released Endotoxin and Improves the Quality of Boar Sperm during Liquid Storage and Cryopreservation. Theriogenology 2010, 74, 1691–1700. [Google Scholar] [CrossRef] [PubMed]
- Bryła, M.; Trzcińska, M. Quality and Fertilizing Capacity of Boar Spermatozoa during Liquid Storage in Extender Supplemented with Different Antibiotics. Anim. Reprod. Sci. 2015, 163, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.Y.; Ren, F.; Fang, Q.; Dai, G.C.; Li, Y.; Li, Q.; Xi, H.M.; Li, H.; Hao, Y.Y.; Hu, J.H. Effects of Sulfanilamide on Boar Sperm Quality, Bacterial Composition, and Fertility during Liquid Storage at 17 °C. Anim. Sci. J. 2019, 90, 1161–1169. [Google Scholar] [CrossRef]
- Luther, A.M.; Nguyen, T.Q.; Verspohl, J.; Waberski, D. Antimicrobially Active Semen Extenders Allow the Reduction of Antibiotic Use in Pig Insemination. Antibiotics 2021, 10, 1319. [Google Scholar] [CrossRef]
- Schulze, M.; Grobbel, M.; Riesenbeck, A.; Brüning, S.; Schaefer, J.; Jung, M.; Grossfeld, R. Dose Rates of Antimicrobial Substances in Boar Semen Preservation—Time to Establish New Protocols. Reprod. Domest. Anim. 2017, 52, 397–402. [Google Scholar] [CrossRef]
- Tvrdá, E.; Bučko, O.; Rojková, K.; Ďuračka, M.; Kunová, S.; Kováč, J.; Benko, F.; Kačániová, M. The Efficiency of Selected Extenders against Bacterial Contamination of Boar Semen in a Swine Breeding Facility in Western Slovakia. Animals 2021, 11, 3320. [Google Scholar] [CrossRef]
- Gòdia, M.; Ramayo-Caldas, Y.; Zingaretti, L.M.; López, S.; Rodriguez-Gil, J.E.; Yeste, M.; Sánchez, A.; Clop, A. A RNA-Seq Characterization of the Porcine Sperm Microbiome. bioRxiv 2020. [Google Scholar] [CrossRef]
- Shaoyong, W.; Li, Q.; Ren, Z.Q.; Wei, C.S.; Chu, G.Y.; Dong, W.Z.; Yang, G.S.; Pang, W.J. Evaluation of ε-Polylysine as Antimicrobial Alternative for Liquid-Stored Boar Semen. Theriogenology 2019, 130, 146–156. [Google Scholar] [CrossRef]
- Elmi, A.; Prosperi, A.; Zannoni, A.; Bertocchi, M.; Scorpio, D.G.; Forni, M.; Foni, E.; Bacci, M.L.; Ventrella, D. Antimicrobial Capabilities of Non-Spermicidal Concentrations of Tea Tree (Melaleuca Alternifolia) and Rosemary (Rosmarinus Officinalis) Essential Oils on the Liquid Phase of Refrigerated Swine Seminal Doses. Res. Vet. Sci. 2019, 127, 76–81. [Google Scholar] [CrossRef]
- Shaoyong, W.; Li, Q.; Ren, Z.; Xiao, J.; Diao, Z.; Yang, G.; Pang, W. Effects of Kojic Acid on Boar Sperm Quality and Anti-Bacterial Activity during Liquid Preservation at 17 C. Theriogenology 2019, 140, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Lustykova, A.; Frydrychova, S.; Seifert, J.; Kucharova, S.; Truneckova, J.; Rozkot, M.; Vydrzalova, M.; Mosio, P.; Brozkova, I.; Motková, P. The effect of different concentration of gallic acid on sperm motility and inhibition of microorganisms in liquid preserved boar semen. Res. Pig Breed. 2019, 13, 6–10. [Google Scholar]
- Manpoong, N.K.; Ahmed, K.; Bhattacharya, D.K.; Sarma, D.K.; Ahmed, N.; Das, A. Efficacy of Potassium Permanganate and Turmeric as Antimicrobial Agents on the Bacterial Load and Quality of Boar Semen during Preservation at 15 °C. Vet. Arh. 2020, 90, 443–451. [Google Scholar] [CrossRef]
- Hensel, B.; Jakop, U.; Scheinpflug, K.; Schröter, F.; Sandmann, M.; Mühldorfer, K.; Schulze, M. Low Temperature Preservation: Influence of Putative Bioactive Microalgae and Hop Extracts on Sperm Quality and Bacterial Load in Porcine Semen. Sustain. Chem. Pharm. 2021, 19, 100359. [Google Scholar] [CrossRef]
- Lan, Q.; Xie, Y.; Pan, J.; Chen, Q.; Xiao, T.; Fang, S. The Antibacterial and Antioxidant Roles of Buckwheat Honey (BH) in Liquid Preservation of Boar Semen. Biomed. Res. Int. 2021, 2021, 5573237. [Google Scholar] [CrossRef]
- Schulze, M.; Junkes, C.; Mueller, P.; Speck, S.; Ruediger, K.; Dathe, M.; Mueller, K. Effects of Cationic Antimicrobial Peptides on Liquid-Preserved Boar Spermatozoa. PLoS ONE 2014, 9, e100490. [Google Scholar] [CrossRef] [Green Version]
- Speck, S.; Courtiol, A.; Junkes, C.; Dathe, M.; Müller, K.; Schulze, M. Cationic Synthetic Peptides: Assessment of Their Antimicrobial Potency in Liquid Preserved Boar Semen. PLoS ONE 2014, 9, e105949. [Google Scholar] [CrossRef] [Green Version]
- Bussalleu, E.; Sancho, S.; Briz, M.D.; Yeste, M.; Bonet, S. Do Antimicrobial Peptides PR-39, PMAP-36 and PMAP-37 Have Any Effect on Bacterial Growth and Quality of Liquid-Stored Boar Semen? Theriogenology 2017, 89, 235–243. [Google Scholar] [CrossRef]
- Fang, Q.; Wang, J.; Hao, Y.Y.; Li, H.; Hu, J.X.; Yang, G.S.; Hu, J.H. Effects of Iodine Methionine on Boar Sperm Quality during Liquid Storage at 17 °C. Reprod. Domest. Anims. 2017, 52, 1061–1066. [Google Scholar] [CrossRef]
- Puig-Timonet, A.; Castillo-Martín, M.; Pereira, B.A.; Pinart, E.; Bonet, S.; Yeste, M. Evaluation of Porcine Beta Defensins-1 and -2 as Antimicrobial Peptides for Liquid-Stored Boar Semen: Effects on Bacterial Growth and Sperm Quality. Theriogenology 2018, 111, 9–18. [Google Scholar] [CrossRef]
- López-Pérez, R.; Acosta-Torres, L.S.; Serrano-Díaz, P.; Avilés-López, Y.S.; Toscano-Torres, I.A.; Olivo-Zepeda, I.B.; Pérez-Duran, F.; Núñez-Anita, R.E. Silver nanoparticles prevent bacterial growth without toxic effects on swine semen. Actas Iberoam. Conserv. Anim. 2017, 10, 34–40. [Google Scholar]
- Pérez-Duran, F.; Acosta-Torres, L.S.; Serrano-Díaz, P.N.; Toscano-Torres, I.A.; Olivo-Zepeda, I.B.; García-Caxin, E.; Nuñez-Anita, R.E. Toxicity and Antimicrobial Effect of Silver Nanoparticles in Swine Sperms. Syst. Biol. Reprod. Med. 2020, 66, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Dathe, M.; Waberski, D.; Müller, K. Liquid Storage of Boar Semen: Current and Future Perspectives on the Use of Cationic Antimicrobial Peptides to Replace Antibiotics in Semen Extenders. Theriogenology 2016, 85, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Nitsche-Melkus, E.; Hensel, B.; Jung, M.; Jakop, U. Antibiotics and Their Alternatives in Artificial Breeding in Livestock. Anim. Reprod. Sci. 2020, 220, 106284. [Google Scholar] [CrossRef]
- Jäkel, H.; Scheinpflug, K.; Mühldorfer, K.; Gianluppi, R.; Lucca, M.S.; Mellagi, A.P.G.; Bortolozzo, F.P.; Waberski, D. In Vitro Performance and in Vivo Fertility of Antibiotic-Free Preserved Boar Semen Stored at 5 °C. J. Anim. Sci. Biotechnol. 2021, 12, 9. [Google Scholar] [CrossRef]
- Waberski, D.; Luther, A.M.; Grünther, B.; Jäkel, H.; Henning, H.; Vogel, C.; Peralta, W.; Weitze, K.F. Sperm Function in Vitro and Fertility after Antibiotic-Free, Hypothermic Storage of Liquid Preserved Boar Semen. Sci. Rep. 2019, 9, 14748. [Google Scholar] [CrossRef] [Green Version]
- Paschoal, A.F.L.; Luther, A.M.; Jäkel, H.; Scheinpflug, K.; Mühldorfer, K.; Bortolozzo, F.P.; Waberski, D. Determination of a Cooling-Rate Frame for Antibiotic-Free Preservation of Boar Semen at 5 °C. PLoS ONE 2020, 15, e0234339. [Google Scholar] [CrossRef]
- Martínez-Pastor, F.; Lacalle, E.; Martínez-Martínez, S.; Fernández-Alegre, E.; Álvarez-Fernández, L.; Martinez-Alborcia, M.J.; Bolarin, A.; Morrell, J.M. Low Density Porcicoll Separates Spermatozoa from Bacteria and Retains Sperm Quality. Theriogenology 2021, 165, 28–36. [Google Scholar] [CrossRef]
- Morrell, J.M. Effect of Colloid Centrifugation on Boar Sperm Quality during Storage and Function in in Vitro Fertilization. Theriogenology 2019, 137, 122–126. [Google Scholar] [CrossRef]
- Morrell, J.M.; Wallgren, M. Removal of Bacteria from Boar Ejaculates by Single Layer Centrifugation Can Reduce the Use of Antibiotics in Semen Extenders. Anim. Reprod. Sci. 2011, 123, 64–69. [Google Scholar] [CrossRef]
- Morrell, J.M.; Núñez-González, A.; Crespo-Félez, I.; Martínez-Martínez, S.; Martínez Alborcia, M.J.; Fernández-Alegre, E.; Dominguez, J.C.; Gutiérrez-Martín, C.B.; Martínez-Pastor, F. Removal of Bacteria from Boar Semen Using a Low-Density Colloid. Theriogenology 2019, 126, 272–278. [Google Scholar] [CrossRef]
- Valdez-Miramontes, C.E.; de Haro-Acosta, J.; Aréchiga-Flores, C.F.; Verdiguel-Fernández, L.; Rivas-Santiago, B. Antimicrobial Peptides in Domestic Animals and Their Applications in Veterinary Medicine. Peptides 2021, 142, 170576. [Google Scholar] [CrossRef] [PubMed]
- Hensel, B.; Jakop, U.; Scheinpflug, K.; Mühldorfer, K.; Schröter, F.; Schäfer, J.; Greber, K.; Jung, M.; Schulze, M. Low Temperature Preservation of Porcine Semen: Influence of Short Antimicrobial Lipopeptides on Sperm Quality and Bacterial Load. Sci. Rep. 2020, 10, 13225. [Google Scholar] [CrossRef] [PubMed]
- Feugang, J.M.; Rhoads, C.E.; Mustapha, P.A.; Tardif, S.; Parrish, J.J.; Willard, S.T.; Ryan, P.L. Treatment of Boar Sperm with Nanoparticles for Improved Fertility. Theriogenology 2019, 137, 75–81. [Google Scholar] [CrossRef] [PubMed]
Authors | Species | Total Motility | Membrane Integrity | Acrosome Integrity | Mitochondrial Membrane Potential | Capacitation Ability | Ros Levels | Lipid Peroxidation |
Bussalleu et al., 2011 [29] | enterotoxigenic Escherichia coli (ETEC) and verotoxigenic Escherichia coli (VTEC) | ↓ | ↓ | - | - | - | - | - |
Úbeda et al., 2013 [10] | Klebsiella oxytoca, Serratia marcenses, Proteus mirabilis and Morganella morganii | ↓ | - | - | - | - | - | - |
Sepúlveda et al., 2013 [32] | Clostridium perfringens | ↓ | ↓ | - | - | - | - | - |
Prieto-Martínez et al., 2014 [33] | Enterobacter cloacae | ↓ | ↓ | - | - | - | - | - |
Sepúlveda et al., 2014 [31] | Pseudomonas aeruginosa | ↓ | ↓ | ↓ | - | - | - | - |
Sepúlveda et al., 2016 [30] | Pseudomonas aeruginosa | ↓ | - | - | - | ↓ | - | - |
Pinart et al., 2017 [34] | Escherichia coli and Clostridium perfringens | ↓ | ↓ | - | - | - | - | - |
Bonet et al., 2018 [39] | Escherichia coli and Clostridium perfringens | - | ↓ | ↓ | - | - | - | - |
Ďuračka and Tvrda 2018 [36] | Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus | ↓ | - | - | ↓ | - | ↑ | ↑ |
Ďuračka and Tvrda 2018 [36] | Rothia nasimurium, Acinetobacter lwoffii, and Staphylococcus simulans | ND | ND | ND | ND | ND | ↑ | ↑ |
Gao et al., 2018 [40] | Proteus mirabilis | ↓ | - | - | - | - | ↑ | - |
Schulze et al., 2018 [38] | Lactobacillus | ↓ | ↓ | - | ↓ | - | - | - |
Delgado-Bermúdez et al., 2020 [41] | Proteus vulgaris | - | ↓ | ↓ | - | - | - | - |
Authors | Added Compound | Recommended Concentrations | |
---|---|---|---|
Antibiotics | Bryla et al., 2015 [43] | Gentamicin, florfenicol and polymyxin B. | Combination of 100 μg/mL gentamicin and 100 μg/mL florfenicol |
Schulze et al., 2017 [46] | Gentamicin | 512 mg/L | |
Feng et al., 2019 [44] | Sulfanilamide. | 0.02 g/L | |
Shaoyong et al., 2019 [49] | ε-Polylysine | 0.16 g/L | |
Luther et al., 2021 [45] | Androstar® Premium, Beltsville Thawing Solution, BTS®, Gentamicin, Apramycin, Ampicillin | Gentamicin 0.1 mg/mL, Apramycin 0.125 mg/mL and Ampicillin 0.125 mg/mL | |
Tvrdá et al., 2021 [47] | Gentamicin, aminoglycoside, cephalosporin, lincomycin, spectinomycin | - | |
Natural Compounds | Elmi et al., 2019 [50] | Melaleuca alternifolia and Rosmarinus officinalis | 0.4 mg/mL |
Shaoyong et al., 2019 [51] | Kojic acid | 0.04 g/L | |
Lustykova et al., 2020 [52] | Gallic acid | 0.008 mol/L | |
Manpoong et al., 2020 [53] | Turmeric and KMnO4 | Turmeric 0.5 mM and KMnO4 10 μM | |
Hensel et al., 2021 [54] | Extracts from microalgae and hops | 2 μg/mL | |
Lan et al., 2021 [55] | Buckwheat honey | 0.5% | |
Antimicrobial Peptides | Schulze et al., 2014 [56] | c-WFW and c-WWW | 4 μM |
Speck et al., 2014 [57] | c-WWW, c-WFW, and MK5E | c-WWW 2 μM, c-WFW 4 μM and MK5E 1 μM | |
Bussalleu et al., 2017 [58] | PR-39, PMAP-36, and PMAP-37 | 10 μM | |
Fang et al., 2017 [59] | Iodine methionine | 80 μM | |
Puig-Timonet et al., 2018 [60] | PBD1 and PBD2 | 3 μM | |
Hensel et al., 2021 [54] | C16-KKK-NH2 and C16-KKKK-NH2 | 8 μg/mL | |
Nanoparticles | López-Pérez et al., 2017 [61] | AgNPs | 4 mM |
Pérez-Durán et al., 2020 [62] | AgNPs | 20 mg/mL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras, M.J.; Núñez-Montero, K.; Bruna, P.; García, M.; Leal, K.; Barrientos, L.; Weber, H. Bacteria and Boar Semen Storage: Progress and Challenges. Antibiotics 2022, 11, 1796. https://doi.org/10.3390/antibiotics11121796
Contreras MJ, Núñez-Montero K, Bruna P, García M, Leal K, Barrientos L, Weber H. Bacteria and Boar Semen Storage: Progress and Challenges. Antibiotics. 2022; 11(12):1796. https://doi.org/10.3390/antibiotics11121796
Chicago/Turabian StyleContreras, María José, Kattia Núñez-Montero, Pablo Bruna, Matías García, Karla Leal, Leticia Barrientos, and Helga Weber. 2022. "Bacteria and Boar Semen Storage: Progress and Challenges" Antibiotics 11, no. 12: 1796. https://doi.org/10.3390/antibiotics11121796
APA StyleContreras, M. J., Núñez-Montero, K., Bruna, P., García, M., Leal, K., Barrientos, L., & Weber, H. (2022). Bacteria and Boar Semen Storage: Progress and Challenges. Antibiotics, 11(12), 1796. https://doi.org/10.3390/antibiotics11121796