Next-Generation Sequencing of Carbapenem-Resistant Klebsiella pneumoniae Strains Isolated from Patients Hospitalized in the University Hospital Facilities
Abstract
1. Introduction
2. Results
2.1. Isolation of CR K. pneumoniae Strains
2.2. Genome Sequencing of CR K. pneumoniae Strains
2.3. Occurrence of ST in Hospital Facilities
2.4. Antibiotic Resistance Genes of CR K. pneumoniae Strains
3. Discussion
4. Materials and Methods
4.1. Hospital Setting and Patients
4.2. Isolation and Selection of Bacterial Strains
4.3. Isolation of DNA and Preparation of Libraries for NGS
4.4. Bioinformatic Processing and Genome Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Earley, M.; Chen, L.; Hanson, B.M.; Yu, Y.; Liu, Z.; Salcedo, S.; Cober, E.; Li, L.; Kanj, S.S.; et al. Clinical outcomes and bacterial characteristics of carbapenem-resistant Klebsiella pneumoniae complex among patients from different global regions (CRACKLE-2): A prospective, multicentre, cohort study. Lancet Infect. Dis. 2022, 22, 401–412. [Google Scholar] [CrossRef]
- Gray, J.; Oppenheim, B.; Mahida, N. The Journal of Hospital Infection—A history of infection prevention and control in 100 volumes. J. Hosp. Infect. 2018, 100, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ben-David, D.; Masarwa, S.; Fallach, N.; Temkin, E.; Solter, E.; Carmeli, Y.; Schwaber, M.J. Success of a National Intervention in Controlling Carbapenem-resistant Enterobacteriaceae in Israel’s Long-term Care Facilities. Clin. Infect. Dis. 2019, 68, 964–971. [Google Scholar] [CrossRef] [PubMed]
- Logan, L.K.; Robert, A.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Andini, R.; Zampino, R. Management of carbapenem-resistant Enterobacteriaceae infections. Clin. Microbiol. Infect. 2019, 25, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Humphries, R.M.; Hindler, J.A.; Epson, E.; Horwich-Scholefield, S.; Miller, L.G.; Mendez, J.; Martinez, J.B.; Sinkowitz, J.; Sinkowtiz, D.; Hershey, C.; et al. Carbapenem-Resistant Enterobacteriaceae Detection Practices in California: What Are We Missing? Clin. Infect. Dis. 2018, 66, 1061–1067. [Google Scholar] [CrossRef]
- Federico Perez, F.; Bonomo, R.A. Evidence to improve the treatment of infections caused by carbapenem-resistant Gram-negative bacteria. Lancet Infect. Dis. 2018, 18, 358–360. [Google Scholar] [CrossRef]
- Kluytmans-van den Bergh, M.F.Q.; John, W.A.; Rossen, J.W.A.; Bruijning-Verhagen, P.C.J.; Bonten, M.J.M.; Friedrich, A.W.; Vandenbroucke-Grauls, C.M.J.E.; Willems, R.J.L.; Kluytmans, J.A.J.W. Whole-Genome Multilocus Sequence Typing of Extended-Spectrum-Beta-Lactamase-Producing Enterobacteriaceae. J. Clin. Microbiol. 2016, 54, 2919–2927. [Google Scholar] [CrossRef]
- Raro, O.H.F.; da Silva, R.M.C.; Filho, E.M.R.; Sukiennik, T.C.T.; Stadnik, C.; Dias, C.A.G.; Iglesias, J.O.; Pérez-Vázquez, M. Carbapenemase-Producing Klebsiella pneumoniae From Transplanted Patients in Brazil: Phylogeny, Resistome, Virulome and Mobile Genetic Elements Harboring blaKPC- 2 or blaNDM- 1. Front. Microbiol. 2020, 11, 1563. [Google Scholar] [CrossRef]
- Piccirilli, A.; Cherubini, S.; Azzini, A.M.; Tacconelli, E.; Lo Cascio, G.; Maccacaro, L.; Bazaj, A.; Naso, L.; Amicosante, G.; LTCF-Veneto Working Group; et al. Whole-Genome Sequencing (WGS) of Carbapenem-Resistant, K. pneumoniae Isolated in Long-Term Care Facilities in the Northern Italian Region. Microorganisms 2021, 9, 1985. [Google Scholar] [CrossRef]
- Han, J.H.; Goldstein, E.J.C.; Wise, J.; Bilker, W.B.; Tolomeo, P.; Lautenbach, E. Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae in a Network of Long-Term Acute Care Hospitals. Clin. Infect. Dis. 2017, 64, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Righi, E.; Peri, A.M.; Harris, P.N.A.; Wailan, A.M.; Liborio, M.; Lane, S.W.; Paterson, D.L. Global prevalence of carbapenem resistance in neutropenic patients and association with mortality and carbapenem use: Systematic review and meta-analysis. J. Antimicrob. Chemother. 2017, 72, 668–677. [Google Scholar] [CrossRef]
- David, S.; Reuter, S.; Harris, S.R.; Glasner, C.; Feltwell, T.; Argimon, S.; Abudahab, K.; Goater, R.; Giani, T.; Errico, G.; et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat. Microbiol. 2019, 4, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Dong, N.; Chan, E.W.C.; Chen, S.; Zhang, R. Molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in China, 2016–2020. Lancet Infect. Dis. 2022, 22, 167–168. [Google Scholar] [CrossRef]
- Arena, F.; Vannetti, F.; Di Pilato, V.; Fabbri, L.; Colavecchio, O.L.; Giani, T.; Marraccini, C.; Pupillo, R.; Macchi, C.; Converti, F.; et al. Diversity of the epidemiology of carbapenemase-producing Enterobacteriaceae in long-term acute care rehabilitation settings from an area of hyperendemicity, and evaluation of an intervention bundle. J. Hosp. Infect. 2018, 100, 29–34. [Google Scholar] [CrossRef]
- Gorrie, C.L.; Mirceta, M.; Wick, R.R.; Judd, L.M.; Wyres, K.L.; Thomson, N.R.; Strugnell, R.A.; Pratt, N.F.; Garlick, J.S.; Watson, K.M.; et al. Antimicrobial-Resistant Klebsiella pneumoniae Carriage and Infection in Specialized Geriatric Care Wards Linked to Acquisition in the Referring Hospital. Clin. Infect. Dis. 2018, 67, 161–170. [Google Scholar] [CrossRef]
- Vega, S.; Acosta, F.; Landires, I.; Morán, M.; Gonzalez, J.; Pimentel-Peralta, G.; Núñez-Samudio, V.; Goodridge, A. Phenotypic and genotypic characteristics of carbapenemase—And extended spectrum β-lactamase-producing Klebsiella pneumoniae ozaenae clinical isolates within a hospital in Panama City. Ther. Adv. Infect. Dis. 2021, 8, 20499361211054918. [Google Scholar] [CrossRef]
- Perletti, G.; Magri, V.; Cai, T.; Stamatiou, K.; Trinchieri, A.; Montanari, E. Resistance of uropathogens to antibacterial agents: Emerging threats, trends and treatments. Arch. Ital. Urol. Androl. 2018, 90, 85–96. [Google Scholar] [CrossRef]
- Wyres, K.; Holt, K. Regional differences in carbapenem-resistant Klebsiella pneumoniae. Lancet Infect. Dis. 2022, 22, 309–310. [Google Scholar] [CrossRef]
- Yin, D.; Zhang, L.; Wang, A.; He, L.; Cao, Y.; Hu, F.; Wang, C. Clinical and molecular epidemiologic characteristics of carbapenem-resistant Klebsiella pneumoniae infection/colonization among neonates in China. J. Hosp. Infect. 2018, 100, 21–28. [Google Scholar] [CrossRef]
- Da Silva, Y.; Ferrari, R.; Marin, V.A.; Junior, C.A.C. A Global Overview of β-lactam Resistance Genes in Klebsiella pneumonia. Open Infect. Dis. J. 2019, 11, 22–34. [Google Scholar] [CrossRef]
- Ippolito, M.; Misseri, G.; Catalisano, G.; Marino, C.; Ingoglia, G.; Alessi, M.; Consiglio, E.; Gregoretti, C.; Giarratano, A.; Cortegiani, A. Ventilator-Associated Pneumonia in Patients with COVID-19: A Systematic Review and Meta-Analysis. Antibiotics 2021, 10, 545. [Google Scholar] [CrossRef] [PubMed]
- Mędrzycka-Dąbrowska, W.; Lange, S.; Zorena, K.; Dąbrowski, S.; Ozga, D.; Tomaszek, L. Carbapenem-Resistant Klebsiella pneumoniae Infections in ICU COVID-19 Patients-A Scoping Review. J. Clin. Med. 2021, 10, 2067. [Google Scholar] [CrossRef]
- Petrosillo, N.; Taglietti, F.; Granata, G. Treatment Options for Colistin Resistant Klebsiella pneumoniae: Present and Future. J. Clin. Med. 2019, 8, 934. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Daikos, G.L.; Tiseo, G.; Bassoulis, D.; Giordano, C.; Galfo, V.; Leonildi, A.; Tagliaferri, E.; Barnini, S.; Sani, S.; et al. Efficacy of Ceftazidime-avibactam Plus Aztreonam in Patients With Bloodstream Infections Caused by Metallo-β-lactamase-Producing Enterobacterales. Clin. Infect. Dis. 2021, 72, 1871–1878. [Google Scholar] [CrossRef]
- Sheu, C.C.; Chang, Y.T.; Lin, S.Y.; Chen, Y.H.; Hsueh, P.R. Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Update on Therapeutic Options. Front. Microbiol. 2019, 10, 80. [Google Scholar] [CrossRef]
- Morrissey, I.; Olesky, M.; Hawser, S.; Lob, S.H.; Karlowsky, J.A.; Corey, G.R.; Bassetti, M.; Fyfe, C. In Vitro Activity of Eravacycline against Gram-Negative Bacilli Isolated in Clinical Laboratories Worldwide from 2013 to 2017. Antimicrob. Agents Chemother. 2020, 64, e01699-19. [Google Scholar] [CrossRef]
- Mojica, M.F.; Rossi, M.A.; Vila, A.J.; Bonomo, R.A. The urgent need for metallo-β-lactamase inhibitors: An unattended global threat. Lancet Infect. Dis. 2022, 22, e28–e34. [Google Scholar] [CrossRef]
- Sansone, P.; Giaccari, L.G.; Coppolino, F.; Aurilio, C.; Barbarisi, A.; Passavanti, M.B.; Pota, V.; Pace, M.C. Cefiderocol for Carbapenem-Resistant Bacteria: Handle with Care! A Review of the Real-World Evidence. Antibiotics 2022, 11, 904. [Google Scholar] [CrossRef]
- Trajčíková, E.; Kurin, E.; Slobodníková, L.; Straka, M.; Lichváriková, A.; Dokupilová, S.; Čičová, I.; Nagy, M.; Mučaji, P.; Bittner Fialová, S. Antimicrobial and Antioxidant Properties of Four Lycopus Taxa and an Interaction Study of Their Major Compounds. Molecules 2020, 25, 1422. [Google Scholar] [CrossRef]
- EUCAST EUCAST Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 12.0. 2022. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf (accessed on 1 January 2022).
- Nordmann, P.; Poirel, L.; Dortet, L. Rapid Detection of Carbapenemase-producing Enterobacteriaceae. Emerging Infect. Dis. 2012, 18, 1503–1507. [Google Scholar] [CrossRef] [PubMed]
- Gattringer, R.; Niks, M.; Ostertág, R.; Schwarz, K.; Medvedovic, H.; Graninger, W.; Georgopoulos, A. Evaluation of MIDITECH automated colorimeter MIC reading for antimicrobial susceptibility testing. J. Antimicrob. Chemother. 2002, 49, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Prjibelski, A.D.; Antipov, D.; Meleshko, D.; Lapidus, A.L.; Korobeynikov, A.I. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinform. 2020, 70, e102. [Google Scholar] [CrossRef] [PubMed]
- Bialek-Davenet, S.; Criscuolo, A.; Ailloud, F.; Passet, V.; Jones, L.; Delannoy-Vieillard, A.S.; Garin, B.; Le Hello, S.; Arlet, G.; Nicolas-Chanoine, M.H.; et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg. Infect. Dis. 2014, 20, 1812–1820. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Alikhan, N.F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef]
Gender | n | % | |
---|---|---|---|
Male | 17 | 41.5 | |
Female | 24 | 58.5 | |
Age (years) | |||
<60 | 4 | 9.8 | |
≥60 | 37 | 90.2 | |
Mean (range) | 74.7 | (25–96) | |
Setting | |||
No. 1 | First internal clinic | 23 | 56.1 |
Surgical clinic | 2 | 4.9 | |
Dermatovenerological clinic | 2 | 4.9 | |
Neurological clinic | 1 | 2.4 | |
No. 2 | Geriatric clinic | 5 | 12.2 |
Long-term care department | 3 | 7.3 | |
Aftercare department | 2 | 4.9 | |
No. 3 | Institute of Pathological Anatomy | 3 | 7.3 |
Specimen | |||
Rectal swab or stool | 23 | 56.1 | |
Wound, abscess, or organ swab | 5 | 12.2 | |
Urine | 8 | 19.5 | |
Throat swab or sputum | 5 | 12.2 |
Sublineage | Clonal Group | ST | Serotype | No of Strains |
---|---|---|---|---|
SL258 | CG340 | 11 | K15:O4 | 25 |
K105:O2 | 1 | |||
340 | K15:O4 | 1 | ||
CG258 | 258 | K106:O2 | 7 | |
K107:O2 | 1 | |||
SL15 | CG15 | 15 | K112:O1 | 1 |
SL2004 | CG584 | 584 | K38:O3 | 4 |
K50:O3 | 1 |
bleMBL | 92 | 0 | 0 | 0 | 0 |
qacEΔ1 | 92 | 0 | 75 | 100 | 0 |
oqxA, oqxB20 | 0 | 100 | 0 | 0 | 0 |
oqxA, oqxB14 | 0 | 0 | 0 | 0 | 100 |
oqxA, oqxB | 100 | 0 | 100 | 100 | 0 |
tet(D) | 0 | 0 | 0 | 100 | 0 |
tet(A) | 11 | 0 | 0 | 0 | 100 |
qnrB4 | 3 | 0 | 0 | 0 | 0 |
qnrB1 | 0 | 0 | 0 | 0 | 100 |
qnrA3 | 3 | 0 | 0 | 0 | 0 |
mphA | 7 | 0 | 75 | 0 | 0 |
catA1/catA4 | 7 | 0 | 75 | 0 | 0 |
catB | 84 | 0 | 0 | 0 | 0 |
fosA | 100 | 100 | 100 | 100 | 100 |
Arr3 | 3 | 0 | 0 | 0 | 0 |
Arr2 | 80 | 0 | 0 | 0 | 0 |
aph(6)-Id | 3 | 100 | 0 | 100 | 100 |
aph(3″)-Ib | 3 | 100 | 0 | 100 | 100 |
aph(3′)-Ia | 0 | 0 | 75 | 0 | 0 |
aac(6′)-Ib4 | 19 | 0 | 0 | 0 | 0 |
aac(6′)-Ib | 57 | 0 | 0 | 0 | 0 |
aac(3)-IId | 3 | 0 | 0 | 100 | 0 |
aac(3)-IIa | 76 | 100 | 0 | 0 | 100 |
rmtF1 | 76 | 0 | 0 | 0 | 0 |
aadA16 | 7 | 0 | 0 | 0 | 0 |
aadA2 | 88 | 0 | 75 | 100 | 0 |
sul2 | 3 | 100 | 0 | 100 | 100 |
sul1 | 92 | 0 | 75 | 100 | 0 |
dfrA27 | 3 | 0 | 0 | 0 | 0 |
dfrA12 | 88 | 0 | 75 | 0 | 0 |
blaOXA-9 | 3 | 0 | 0 | 0 | 0 |
blaOXA-1 | 80 | 100 | 0 | 100 | 100 |
blaDHA-1 | 3 | 0 | 0 | 0 | 0 |
blaNDM-1 | 92 | 0 | 0 | 0 | 0 |
blaKPC-3 | 0 | 0 | 13 | 0 | 0 |
blaKPC-2 | 0 | 0 | 87 | 0 | 100 |
blaTEM-156 | 8 | 0 | 0 | 0 | 0 |
blaTEM-116 | 4 | 0 | 0 | 0 | 0 |
blaTEM-1 | 11 | 100 | 63 | 100 | 100 |
blaCTX-M-15 | 88 | 100 | 0 | 100 | 100 |
blaSHV-168 | 0 | 0 | 0 | 0 | 100 |
blaSHV-28 | 0 | 100 | 0 | 0 | 0 |
blaSHV-27 | 0 | 0 | 0 | 0 | 0 |
blaSHV-12 | 0 | 0 | 87 | 0 | 0 |
blaSHV-11 | 100 | 0 | 13 | 100 | 0 |
ST11 | ST15 | ST258 | ST340 | ST584 |
Antibiotics | MIC Range | MIC50 | MIC90 | %R | %S | ||
---|---|---|---|---|---|---|---|
Cefoperazone/sulbactam | 32 | - | 128 | 128 | 128 | 100 | 0 |
Piperacillin/tazobactam | 64 | - | 128 | 128 | 128 | 100 | 0 |
Cefuroxime | 32 | - | 64 | 64 | 64 | 100 | 0 |
Cefotaxime | 16 | - | 64 | 64 | 64 | 100 | 0 |
Ceftazidime | 32 | - | 64 | 64 | 64 | 100 | 0 |
Ceftazidime/avibactam | 0.064 | - | 64 | 64 | 64 | 58.5 | 41.5 |
Cefepime | 16 | - | 64 | 64 | 64 | 100 | 0 |
Ertapenem | 0.25 | - | 8 | 8 | 8 | 97.6 | 2.4 |
Meropenem | 0.125 | - | 32 | 32 | 32 | 63.4 | 21.9 |
Amikacin | 0.5 | - | 128 | 128 | 128 | 78.1 | 21.9 |
Gentamicin | 0.25 | - | 32 | 32 | 32 | 82.9 | 17.1 |
Tobramycin | 0.5 | - | 32 | 32 | 32 | 97.6 | 2.4 |
Ciprofloxacin | 2 | - | 8 | 8 | 8 | 100 | 0 |
Tigecycline | 0.5 | - | 8 | 1 | 2 | 7.3 | 68.3 |
Eravacycline | 0.25 | - | 2 | 0.5 | 0.5 | 7.3 | 90.2 |
Colistin | 0.25 | - | 4 | 1 | 2 | 2.5 | 97.5 |
Trimethoprim/sulfamethoxazole | 1 | - | 8 | 8 | 8 | 80.5 | 7.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koreň, J.; Andrezál, M.; Drahovská, H.; Hubenáková, Z.; Liptáková, A.; Maliar, T. Next-Generation Sequencing of Carbapenem-Resistant Klebsiella pneumoniae Strains Isolated from Patients Hospitalized in the University Hospital Facilities. Antibiotics 2022, 11, 1538. https://doi.org/10.3390/antibiotics11111538
Koreň J, Andrezál M, Drahovská H, Hubenáková Z, Liptáková A, Maliar T. Next-Generation Sequencing of Carbapenem-Resistant Klebsiella pneumoniae Strains Isolated from Patients Hospitalized in the University Hospital Facilities. Antibiotics. 2022; 11(11):1538. https://doi.org/10.3390/antibiotics11111538
Chicago/Turabian StyleKoreň, Ján, Michal Andrezál, Hana Drahovská, Zuzana Hubenáková, Adriána Liptáková, and Tibor Maliar. 2022. "Next-Generation Sequencing of Carbapenem-Resistant Klebsiella pneumoniae Strains Isolated from Patients Hospitalized in the University Hospital Facilities" Antibiotics 11, no. 11: 1538. https://doi.org/10.3390/antibiotics11111538
APA StyleKoreň, J., Andrezál, M., Drahovská, H., Hubenáková, Z., Liptáková, A., & Maliar, T. (2022). Next-Generation Sequencing of Carbapenem-Resistant Klebsiella pneumoniae Strains Isolated from Patients Hospitalized in the University Hospital Facilities. Antibiotics, 11(11), 1538. https://doi.org/10.3390/antibiotics11111538