A Proposal for a Classification Guiding the Selection of Appropriate Antibiotic Therapy for Intra-Abdominal Infections
Abstract
:1. Introduction
2. Anatomical Extent of Infection
3. Presumed Pathogens Involved and Individual Patient Risk Factors for Difficult-to-Treat Pathogens
4. Patients’ Clinical Condition
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sartelli, M.; Catena, F.; Ansaloni, L.; Leppaniemi, A.; Taviloglu, K.; van Goor, H.; Viale, P.; Lazzareschi, D.V.; Coccolini, F.; Corbella, D.; et al. Complicated intra-abdominal infections in Europe: A comprehensive review of the CIAO study. World J. Emerg. Surg. 2012, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Sartelli, M.; Catena, F.; Ansaloni, L.; Coccolini, F.; Corbella, D.; Moore, E.E.; Malangoni, M.; Velmahos, G.; Coimbra, R.; Koike, K.; et al. Complicated intra-abdominal infections worldwide: The definitive data of the CIAOW Study. World J. Emerg. Surg. 2014, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Sartelli, M.; Abu-Zidan, F.M.; Catena, F.; Griffiths, E.A.; Di Saverio, S.; Coimbra, R.; Ordoñez, C.A.; Leppaniemi, A.; Fraga, G.P.; Coccolini, F.; et al. Global validation of the WSES Sepsis Severity Score for patients with complicated intra-abdominal infections: A prospective multicentre study (WISS Study). World J. Emerg. Surg. 2015, 10, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merlino, J.I.; Malangoni, M.A.; Smith, C.M.; Lange, R.L. Prospective randomized trials affect the outcomes of intraabdominal infection. Ann. Surg. 2001, 233, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Swenson, B.R.; Metzger, R.; Hedrick, T.L.; McElearney, S.T.; Evans, H.L.; Smith, R.L.; Chong, T.W.; Popovsky, K.A.; Pruett, T.L.; Sawyer, R.G. Choosing antibiotics for intra-abdominal infections: What do we mean by “high risk”? Surg. Infect. 2009, 10, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Mazuski, J.E.; Tessier, J.M.; May, A.K.; Sawyer, R.G.; Nadler, E.P.; Rosengart, M.R.; Chang, P.K.; O’Neill, P.J.; Mollen, K.P.; Huston, J.M.; et al. The Surgical Infection Society Revised Guidelines on the Management of Intra-Abdominal Infection. Surg. Infect. 2017, 18, 1–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, M.L.; Ferrer, R.; Torrents, E.; Guillamat-Prats, R.; Gomà, G.; Suárez, D.; Álvarez-Rocha, L.; Pozo Laderas, J.C.; Martín-Loeches, I.; Levy, M.M.; et al. Impact of Source Control in Patients With Severe Sepsis and Septic Shock. Crit. Care Med. 2017, 45, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Tellor, B.; Skrupky, L.P.; Symons, W.; High, E.; Micek, S.T.; Mazuski, J.E. Inadequate Source Control and Inappropriate Antibiotics are Key Determinants of Mortality in Patients with Intra-Abdominal Sepsis and Associated Bacteremia. Surg. Infect. 2015, 16, 785–793. [Google Scholar] [CrossRef]
- Guilbart, M.; Zogheib, E.; Ntouba, A.; Rebibo, L.; Régimbeau, J.M.; Mahjoub, Y.; Dupont, H. Compliance with an empirical antimicrobial protocol improves the outcome of complicated intra-abdominal infections: A prospective observational study. Br. J. Anaesth. 2016, 117, 66–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krobot, K.; Yin, D.; Zhang, Q.; Sen, S.; Altendorf-Hofmann, A.; Scheele, J.; Sendt, W. Effect of inappropriate initial empiric antibiotic therapy on outcome of patients with community-acquired intra-abdominal infections requiring surgery. Eur. J. Clin. Microbiol. Infect. Dis. 2004, 23, 682–687. [Google Scholar] [CrossRef]
- Davey, P.G.; Marwick, C. Appropriate vs. inappropriate antimicrobial therapy. Clin. Microbiol. Infect. 2008, 14 (Suppl. S3), 15–21. [Google Scholar] [CrossRef] [Green Version]
- Sturkenboom, M.C.; Goettsch, W.G.; Picelli, G.; in ‘t Veld, B.; Yin, D.D.; de Jong, R.B.; Go, P.M.; Herings, R.M. Inappropriate initial treatment of secondary intra-abdominal infections leads to increased risk of clinical failure and costs. Br. J. Clin. Pharmacol. 2005, 60, 438–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sartelli, M.; Catena, F.; Abu-Zidan, F.M.; Ansaloni, L.; Biffl, W.L.; Boermeester, M.A.; Ceresoli, M.; Chiara, O.; Coccolini, F.; De Waele, J.J.; et al. Management of intra-abdominal infections: Recommendations by the WSES 2016 consensus conference. World J. Emerg. Surg. 2017, 12, 22. [Google Scholar] [CrossRef] [Green Version]
- Sartelli, M. A focus on intra-abdominal infections. World J. Emerg. Surg. 2010, 5, 9. [Google Scholar] [CrossRef]
- Sartelli, M.; Weber, D.G.; Ruppé, E.; Bassetti, M.; Wright, B.J.; Ansaloni, L.; Catena, F.; Coccolini, F.; Abu-Zidan, F.M.; Coimbra, R.; et al. Erratum to: Antimicrobials: A global alliance for optimizing their rational use in intra-abdominal infections (AGORA). World J. Emerg. Surg. 2017, 12, 35. [Google Scholar] [CrossRef]
- Sartelli, M.; Coccolini, F.; Kluger, Y.; Agastra, E.; Abu-Zidan, F.M.; Abbas, A.E.S.; Ansaloni, L.; Adesunkanmi, A.K.; Atanasov, B.; Augustin, G.; et al. WSES/GAIS/SIS-E/WSIS/AAST global clinical pathways for patients with intra-abdominal infections. World J. Emerg. Surg. 2021, 16, 49. [Google Scholar] [CrossRef]
- Di Saverio, S.; Podda, M.; De Simone, B.; Ceresoli, M.; Augustin, G.; Gori, A.; Boermeester, M.; Sartelli, M.; Coccolini, F.; Tarasconi, A.; et al. Diagnosis and treatment of acute appendicitis: 2020 update of the WSES Jerusalem guidelines. World J. Emerg. Surg. 2020, 15, 27. [Google Scholar] [CrossRef]
- Pisano, M.; Allievi, N.; Gurusamy, K.; Borzellino, G.; Cimbanassi, S.; Boerna, D.; Coccolini, F.; Tufo, A.; Di Martino, M.; Leung, J.; et al. 2020 World Society of Emergency Surgery updated guidelines for the diagnosis and treatment of acute calculus cholecystitis. World J. Emerg. Surg. 2020, 15, 61. [Google Scholar] [CrossRef]
- Sartelli, M.; Weber, D.G.; Kluger, Y.; Ansaloni, L.; Coccolini, F.; Abu-Zidan, F.; Augustin, G.; Ben-Ishay, O.; Biffl, W.L.; Bouliaris, K.; et al. 2020 update of the WSES guidelines for the management of acute colonic diverticulitis in the emergency setting. World J. Emerg. Surg. 2020, 15, 32. [Google Scholar] [CrossRef]
- Sartelli, M.; Chichom-Mefire, A.; Labricciosa, F.M.; Hardcastle, T.; Abu-Zidan, F.M.; Adesunkanmi, A.K.; Ansaloni, L.; Bala, M.; Balogh, Z.J.; Beltrán, M.A.; et al. The management of intra-abdominal infections from a global perspective: 2017 WSES guidelines for management of intra-abdominal infections. World J. Emerg. Surg. 2017, 12, 29. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, R.G.; Claridge, J.A.; Nathens, A.B.; Rotstein, O.D.; Duane, T.M.; Evans, H.L.; Cook, C.H.; O’Neill, P.J.; Mazuski, J.E.; Askari, R.; et al. Trial of short-course antimicrobial therapy for intraabdominal infection. N. Engl. J. Med. 2015, 372, 1996–2005. [Google Scholar] [CrossRef] [Green Version]
- Blot, S.; De Waele, J.J.; Vogelaers, D. Essentials for selecting antimicrobial therapy for intra-abdominal infections. Drugs 2012, 72, e17–e32. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kaushik, R. Peritonitis—The Eastern experience. World J. Emerg. Surg. 2006, 1, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, S.P.; Tiwary, S.K.; Mishra, M.; Gupta, S.K. An introduction of tertiary peritonitis. J. Emerg. Trauma Shock 2014, 7, 121–123. [Google Scholar]
- Reemst, P.H.; van Goor, H.; Goris, R.J. SIRS, MODS and tertiary peritonitis. Eur. J. Surg. Suppl. 1996, 576, 47–48. [Google Scholar]
- Lamme, B.; Mahler, C.W.; van Ruler, O.; Gouma, D.J.; Reitsma, J.B.; Boermeester, M.A. Clinical predictors of ongoing infection in secondary peritonitis: Systematic review. World J. Surg. 2006, 30, 2170–2181. [Google Scholar] [CrossRef] [PubMed]
- Montravers, P.; Dufour, G.; Guglielminotti, J.; Desmard, M.; Muller, C.; Houissa, H.; Allou, N.; Marmuse, J.P.; Augustin, P. Dynamic changes of microbial flora and therapeutic consequences in persistent peritonitis. Crit. Care 2015, 19, 70. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, T.; Almeida, M.; Friedman, N.D.; Aragão, I.; Costa-Pereira, A.; Sarmento, E.; Azevedo, L. Classification of healthcare-associated infection: A systematic review 10 years after the first proposal. BMC Med. 2014, 12, 40. [Google Scholar] [CrossRef] [Green Version]
- Seguin, P.; Fédun, Y.; Laviolle, B.; Nesseler, N.; Donnio, P.Y.; Mallédant, Y. Risk factors for multidrug-resistant bacteria in patients with post-operative peritonitis requiring intensive care. J. Antimicrob. Chemother. 2010, 65, 342–346. [Google Scholar] [CrossRef] [Green Version]
- Augustin, P.; Kermarrec, N.; Muller-Serieys, C.; Lasocki, S.; Chosidow, D.; Marmuse, J.P.; Valin, N.; Desmonts, J.M.; Montravers, P. Risk factors for multi drug resistant bacteria and optimization of empirical antibiotic therapy in postoperative peritonitis. Crit. Care 2010, 14, R20. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.S.; Ryu, J.A.; Chung, C.R.; Yang, J.; Jeon, K.; Suh, G.Y.; Lee, W.Y.; Park, C.M. Risk factors for acquisition of multidrug-resistant bacteria in patients with anastomotic leakage after colorectal cancer surgery. Int. J. Colorectal. Dis. 2015, 30, 497–504. [Google Scholar] [CrossRef]
- Solomkin, J.S.; Mazuski, J.E.; Bradley, J.S.; Rodvold, K.A.; Goldstein, E.J.; Baron, E.J.; O’Neill, P.J.; Chow, A.W.; Dellinger, E.P.; Eachempati, S.R.; et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: Guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 133–164. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, I.; Hackel, M.; Badal, R.; Bouchillon, S.; Hawser, S.; Biedenbach, D. A review of ten years of the study for monitoring antimicrobial resistance trends (SMART) from 2002 to 2011. Pharmaceuticals 2013, 6, 1335–1346. [Google Scholar] [CrossRef] [Green Version]
- Hawser, S.P.; Bouchillon, S.K.; Hoban, D.J.; Badal, R.E.; Cantón, R.; Baquero, F. Incidence and antimicrobial susceptibility of Escherichia coli and Klebsiella pneumoniae with extended-spectrum beta-lactamases in community- and hospital-associated intra-abdominal infections in Europe: Results of the 2008 Study for Monitoring Antimicrobial Resistance Trends (SMART). Antimicrob. Agents Chemother. 2010, 54, 3043–3046. [Google Scholar]
- Schultsz, C.; Geerlings, S. Plasmid-mediated resistance in Enterobacterales: Changing landscape and implications for therapy. Drugs 2012, 72, 1–16. [Google Scholar] [CrossRef]
- Perez, F.; Bonomo, R.A. Can we really use beta-lactam/beta-lactam inhibitor combinations for the treatment of infections caused by extended-spectrum beta-lactamase-producing bacteria? Clin. Infect. Dis. 2012, 54, 175–177. [Google Scholar] [CrossRef] [Green Version]
- Robberts, F.J.; Kohner, P.C.; Patel, R. Unreliable extended-spectrum beta-lactamase detection in the presence of plasmid-mediated AmpC in Escherichia coli clinical isolates. J. Clin. Microbiol. 2009, 47, 358–361. [Google Scholar] [CrossRef] [Green Version]
- Tamma, P.D.; Humphries, R.M. PRO: Testing for ESBL production is necessary for ceftriaxone-non-susceptible Enterobacterales: Perfect should not be the enemy of progress. JAC Antimicrob. Resist. 2021, 3, dlab019. [Google Scholar] [CrossRef]
- Mathers, A.J.; Lewis, J.S., 2nd. CON: Testing for ESBL production is unnecessary for ceftriaxone-resistant Enterobacterales. JAC Antimicrob. Resist. 2021, 3, dlab020. [Google Scholar] [CrossRef]
- Hammond, M.L. Ertapenem: A group 1 carbapenem with distinct antibacterial and pharmacological properties. J. Antimicrob. Chemother. 2004, 53, ii7–ii9. [Google Scholar] [CrossRef] [Green Version]
- Karaiskos, I.; Giamarellou, H. Carbapenem-Sparing Strategies for ESBL Producers: When and How. Antibiotics 2020, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Harris, P.N.A.; Tambyah, P.A.; Lye, D.C.; Mo, Y.; Lee, T.H.; Yilmaz, M.; Alenazi, T.H.; Arabi, Y.; Falcone, M.; Bassetti, M.; et al. Effect of Piperacillin-tazobactam vs meropenem on 30-day mortality for patients with E coli or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance: A randomized clinical trial. JAMA 2018, 320, 984–994. [Google Scholar] [CrossRef] [Green Version]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2021, 72, e169–e183. [Google Scholar]
- Gatti, M.; Viaggi, B.; Rossolini, G.M.; Pea, F.; Viale, P. An Evidence-Based Multidisciplinary Approach Focused at Creating Algorithms for Targeted Therapy of BSIs, cUTIs, and cIAIs Caused by Enterobacterales in Critically Ill Adult Patients. Infect. Drug Resist. 2021, 14, 2461–2498. [Google Scholar] [CrossRef]
- Montravers, P.; Dupont, H.; Leone, M.; Constantin, J.M.; Mertes, P.M.; Société Française D’anesthésie et de Réanimation (Sfar); Société de Réanimation de Langue Française (SRLF); Laterre, P.F.; Misset, B.; Société de Pathologie Infectieuse de Langue Française (SPILF); et al. Guidelines for management of intra-abdominal infections. Anaesth. Crit. Care Pain Med. 2015, 34, 117–130. [Google Scholar] [CrossRef] [Green Version]
- Heizmann, W.R.; Löschmann, P.A.; Eckmann, C.; Von Eiff, C.; Bodmann, K.F.; Petrik, C. Clinical efficacy of tigecycline used as monotherapy or in combination regimens for complicated infections with documented involvement of multiresistant bacteria. Infection 2015, 43, 37–43. [Google Scholar] [CrossRef] [Green Version]
- McGovern, P.C.; Wible, M.; El-Tahtawy, A.; Biswas, P.; Meyer, R.D. All-cause mortality imbalance in the tigecycline phase 3 and 4 clinical trials. Int. J. Antimicrob. Agents 2013, 41, 463–467. [Google Scholar] [CrossRef] [Green Version]
- Bassetti, M.; McGovern, P.C.; Wenisch, C.; Meyer, R.D.; Yan, J.L.; Wible, M.; Rottinghaus, S.T.; Quintana, A. Clinical response and mortality in tigecycline complicated intra-abdominal infection and complicated skin and soft-tissue infection trials. Int. J. Antimicrob. Agents 2015, 46, 346–350. [Google Scholar] [CrossRef] [Green Version]
- Scott, L.J. Eravacycline: A Review in Complicated Intra-Abdominal Infections. Drugs 2019, 79, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Solomkin, J.; Hershberger, E.; Miller, B.; Popejoy, M.; Friedland, I.; Steenbergen, J.; Yoon, M.; Collins, S.; Yuan, G.; Barie, P.S. Ceftolozane/Tazobactam plus metronidazole for complicated intra-abdominal infections in an era of multidrug resistance: Results from a randomized, double-blind, phase 3 trial (ASPECT-cIAI). Clin. Infect. Dis. 2015, 60, 1462–1471. [Google Scholar] [CrossRef] [Green Version]
- Mazuski, J.E.; Gasink, L.B.; Armstrong, J.; Broadhurst, H.; Stone, G.G.; Rank, D.; Llorens, L.; Newell, P.; Pachl, J. Efficacy and safety of ceftazidime-avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infection: Results from a randomized, controlled, double-blind, phase 3 program. Clin. Infect. Dis. 2016, 62, 1380–1389. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, P.; Cuzon, G.; Naas, T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis. 2009, 9, 228–236. [Google Scholar] [CrossRef]
- Lübbert, C.; Rodloff, A.C.; Laudi, S.; Simon, P.; Busch, T.; Mössner, J.; Bartels, M.; Kaisers, U.X. Lessons learned from excess mortality associated with Klebsiella pneumoniae carbapenemase 2-producing K. pneumoniae in liver transplant recipients. Liver Transpl. 2014, 20, 736–738. [Google Scholar] [CrossRef]
- Tzouvelekis, L.S.; Markogiannakis, A.; Piperaki, E.; Souli, M.; Daikos, G.L. Treating infections caused by carbapenemase-producing Enterobacterales. Clin. Microbiol. Infect. 2014, 20, 862–872. [Google Scholar] [CrossRef]
- Munoz-Price, L.S.; Poirel, L.; Bonomo, R.A.; Schwaber, M.J.; Daikos, G.L.; Cormican, M.; Cornaglia, G.; Garau, J.; Gniadkowski, M.; Hayden, M.K.; et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect. Dis. 2013, 13, 785–796. [Google Scholar] [CrossRef] [Green Version]
- Van Duin, D.; Lok, J.J.; Earley, M.; Cober, E.; Richter, S.S.; Perez, F.; Salata, R.A.; Kalayjian, R.C.; Watkins, R.R.; Doi, Y.; et al. Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant Enterobacterales. Clin. Infect. Dis. 2018, 66, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Castón, J.J.; Lacort-Peralta, I.; Martín-Dávila, P.; Loeches, B.; Tabares, S.; Temkin, L.; Torre-Cisneros, J.; Paño-Pardo, J.R. Clinical efficacy of ceftazidime/avibactam versus other active agents for the treatment of bacteremia due to carbapenemase-producing Enterobacterales in hematologic patients. Int. J. Infect. Dis. 2017, 59, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Tumbarello, M.; Trecarichi, E.M.; Corona, A.; De Rosa, F.G.; Bassetti, M.; Mussini, C.; Menichetti, F.; Viscoli, C.; Campoli, C.; Venditti, M.; et al. Efficacy of ceftazidime-avibactam salvage therapy in patients with infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Clin. Infect. Dis. 2019, 68, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Shields, R.K.; Nguyen, M.H.; Chen, L.; Press, E.G.; Potoski, B.A.; Marini, R.V.; Doi, Y.; Kreiswirth, B.N.; Clancy, C.J. Ceftazidime-Avibactam is superior to other treatment regimens against carbapenem-resistant Klebsiella pneumoniae bacteremia. Antimicrob. Agents Chemother. 2017, 61, 8. [Google Scholar] [CrossRef] [Green Version]
- Temkin, E.; Torre-Cisneros, J.; Beovic, B.; Benito, N.; Giannella, M.; Gilarranz, R.; Jeremiah, C.; Loeches, B.; Machuca, I.; Jiménez-Martín, M.J.; et al. Ceftazidime-Avibactam as salvage therapy for infections caused by carbapenem-resistant organisms. Antimicrob. Agents Chemother. 2017, 61, 2. [Google Scholar] [CrossRef] [Green Version]
- King, M.; Heil, E.; Kuriakose, S.; Bias, T.; Huang, V.; El-Beyrouty, C.; McCoy, D.; Hiles, J.; Richards, L.; Gardner, J.; et al. Multicenter study of outcomes with ceftazidime-avibactam in patients with carbapenem-resistant Enterobacterales infections. Antimicrob. Agents Chemother. 2017, 61, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wunderink, R.G.; Giamarellos-Bourboulis, E.J.; Rahav, G.; Rahav, G.; Mathers, A.J.; Bassetti, M.; Vazquez, J.; Cornely, O.A.; Solomkin, J.; Bhowmick, T.; et al. Effect and safety of meropenem-vaborbactam versus best-available therapy in patients with carbapenem-resistant Enterobacterales infections: The TANGO II randomized clinical trial. Infect. Dis. Ther. 2018, 7, 439–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ackley, R.; Roshdy, D.; Meredith, J.; Minor, S.; Anderson, W.E.; Capraro, G.A.; Polk, C. Meropenem-Vaborbactam versus Ceftazidime-Avibactam for Treatment of Carbapenem-Resistant Enterobacterales Infections. Antimicrob. Agents Chemother. 2020, 64, 5. [Google Scholar] [CrossRef]
- Alosaimy, S.; Jorgensen, S.C.J.; Lagnf, A.M.; Morrisette, T.; Scipione, M.R.; Zhao, J.J.; Jorgensen, S.C.; Mynatt, R.; Carlson, T.J.; Jo, J.; et al. Real-world multicenter analysis of clinical outcomes and safety of meropenem-vaborbactam in patients treated for serious gram-negative bacterial infections. Open Forum Infect. Dis. 2020, 7, ofaa051. [Google Scholar] [CrossRef] [PubMed]
- Motsch, J.; Murta de Oliveira, C.; Stus, V.; Köksal, I.; Lyulko, O.; Boucher, H.W.; Kaye, K.S.; File, T.M.; Brown, M.L.; Khan, I.; et al. RESTORE-IMI 1: A Multicenter, Randomized, Double-blind Trial Comparing Efficacy and Safety of Imipenem/Relebactam vs Colistin Plus Imipenem in Patients With Imipenem-nonsusceptible Bacterial Infections. Clin. Infect. Dis. 2020, 70, 1799–1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benchetrit, L.; Mathy, V.; Armand-Lefevre, L.; Bouadma, L.; Timsit, J.-F. Successful treatment of septic shock due to NDM-1-producing Klebsiella pneumoniae using ceftazidime/avibactam combined with aztreonam in solid organ transplant recipients: Report of two cases. Int. J. Antimicrob. Agents 2020, 55, 105842. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Daikos, G.L.; Tiseo, G.; Bassoulis, D.; Giordano, C.; Galfo, V.; Leonildi, A.; Tagliaferri, E.; Barnini, S.; Sani, S.; et al. Efficacy of Ceftazidime-avibactam Plus Aztreonam in Patients With Bloodstream Infections Caused by Metallo-β-lactamase-Producing Enterobacterales. Clin. Infect. Dis. 2021, 72, 1871–1878. [Google Scholar] [CrossRef]
- Hobson, C.A.; Bonacorsi, S.; Fahd, M.; Baruchel, A.; Cointe, A.; Poey, N.; Jacquier, H.; Doit, C.; Monjault, A.; Tenaillon, O.; et al. Successful Treatment of Bacteremia Due to NDM-1-Producing Morganella morganii with Aztreonam and Ceftazidime-Avibactam Combination in a Pediatric Patient with Hematologic Malignancy. Antimicrob. Agents Chemother. 2019, 63, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Giurazza, R.; Mazza, M.C.; Andini, R.; Sansone, P.; Pace, M.C.; Durante-Mangoni, E. Emerging Treatment Options for Multi-Drug-Resistant Bacterial Infections. Life 2021, 11, 519. [Google Scholar] [CrossRef]
- Noskin, G.A. Vancomycin-resistant Enterococci: Clinical, microbiologic, and epidemiologic features. J. Lab. Clin. Med. 1997, 130, 14–20. [Google Scholar] [CrossRef]
- Morvan, A.C.; Hengy, B.; Garrouste-Orgeas, M.; Ruckly, S.; Forel, J.M.; Argaud, L.; Rimmelé, T.; Bedos, J.P.; Azoulay, E.; Dupuis, C.; et al. Impact of species and antibiotic therapy of enterococcal peritonitis on 30-day mortality in critical care-an analysis of the OUTCOMEREA database. Crit. Care 2019, 23, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, X.; Li, L.; Xuan, J.; Zeng, Z.; Zhao, H.; Cai, S.; Huang, Q.; Guo, X.; Chen, Z. Risk Factors for Enterococcal Intra-Abdominal Infections and Outcomes in Intensive Care Unit Patients. Surg. Infect. 2021, 22, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.M.; Tessier, J.M.; Sawyer, R.; Dellinger, E.P.; Miller, P.R.; Namias, N.; West, M.A.; Cook, C.H.; O’Neill, P.J.; Napolitano, L.; et al. Does Isolation of Enterococcus Affect Outcomes in Intra-Abdominal Infections? Surg. Infect. 2017, 18, 879–885. [Google Scholar] [CrossRef]
- Dupont, H.; Montravers, P.; Mohler, J.; Carbon, C. Disparate findings on the role of virulence factors of Enterococcus faecalis in mouse and rat models of peritonitis. Infect. Immun. 1998, 66, 2570–2575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, S.; Hufnagel, M.; Theilacker, C.; Huebner, J. Enterococcal infections: Host response, therapeutic, and prophylactic possibilities. Vaccine 2004, 22, 822–830. [Google Scholar] [CrossRef]
- Fisher, K.; Phillips, C. The ecology, epidemiology and virulence of Enterococcus. Microbiology 2009, 155, 1749–1757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, I.; Iredell, J.R.; Woods, M.; Lipman, J. The implications of enterococci for the intensive care unit. Crit. Care Resusc. 2007, 9, 69–75. [Google Scholar]
- McBride, S.J.; Upton, A.; Roberts, S.A. Clinical characteristics and outcomes of patients with vancomycin-susceptible Enterococcus faecalis and Enterococcus faecium bacteraemia—A five-year retrospective review. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 107–114. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, W.A.; Malachowa, N.; DeLeo, F.R. Vancomycin Resistance in Staphylococcus aureus. Yale J. Biol. Med. 2017, 90, 269–281. [Google Scholar] [PubMed]
- Riché, F.C.; Dray, X.; Laisné, M.J.; Matéo, J.; Raskine, L.; Sanson-Le Pors, M.J.; Payen, D.; Valleur, P.; Cholley, B.P. Factors associated with septic shock and mortality in generalized peritonitis: Comparison between community-acquired and postoperative peritonitis. Crit. Care 2009, 13, R99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, M.M.; Fink, M.P.; Marshall, J.C.; Abraham, E.; Angus, D.; Cook, D.; Cohen, J.; Opal, S.M.; Vincent, J.L.; Ramsay, G.; et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med. 2003, 31, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Esteban, A.; Frutos-Vivar, F.; Ferguson, N.D.; Peñuelas, O.; Lorente, J.A.; Gordo, F.; Honrubia, T.; Algora, A.; Bustos, A.; García, G.; et al. Sepsis incidence and outcome: Contrasting the intensive care unit with the hospital ward. Crit. Care Med. 2007, 35, 1284–1289. [Google Scholar] [CrossRef] [PubMed]
- Rubio, I.; Osuchowski, M.F.; Shankar-Hari, M.; Skirecki, T.; Winkler, M.S.; Lachmann, G.; La Rosée, P.; Monneret, G.; Venet, F.; Bauer, M.; et al. Current gaps in sepsis immunology: New opportunities for translational research. Lancet Infect. Dis. 2019, 19, e422–e436. [Google Scholar] [CrossRef]
- Shani, V.; Muchtar, E.; Kariv, G.; Robenshtok, E.; Leibovici, L. Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob. Agents Chemother. 2010, 54, 4851–4863. [Google Scholar]
- Bassetti, M.; Rello, J.; Blasi, F.; Goossens, H.; Sotgiu, G.; Tavoschi, L.; Zasowski, E.J.; Arber, M.R.; McCool, R.; Patterson, J.V.; et al. Systematic review of the impact of appropriate versus inappropriate initial antibiotic therapy on outcomes of patients with severe bacterial infections. Int. J. Antimicrob. Agents 2020, 56, 106184. [Google Scholar] [CrossRef] [PubMed]
- Weinberger, J.; Rhee, C.; Klompas, M. A critical analysis of the literature on time-to-antibiotics in suspected sepsis. J. Infect. Dis. 2020, 222, S110–S118. [Google Scholar] [CrossRef]
- Seymour, C.W.; Gesten, F.; Prescott, H.C.; Friedrich, M.E.; Iwashyna, T.J.; Phillips, G.S.; Lemeshow, S.; Osborn, T.; Terry, K.M.; Levy, M.M. Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. N. Engl. J. Med. 2017, 376, 2235–2244. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Tabah, A.; Cotta, M.O.; Garnacho-Montero, J.; Schouten, J.; Roberts, J.A.; Lipman, J.; Tacey, M.; Timsit, J.-F.; Leone, M.; Zahar, J.R.; et al. A systematic review of the definitions, determinants, and clinical outcomes of antimicrobial de-escalation in the intensive care unit. Clin. Infect. Dis. 2016, 62, 1009–1017. [Google Scholar] [CrossRef] [Green Version]
- De Waele, J.J.; Schouten, J.; Beovic, B.; Tabah, A.; Leone, M. Antimicrobial de-escalation as part of antimicrobial stewardship in intensive care: No simple answers to simple questions—A viewpoint of experts. Intensive Care Med. 2020, 46, 236–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montravers, P.; Augustin, P.; Grall, N.; Desmard, M.; Allou, N.; Marmuse, J.P.; Guglielminotti, J. Characteristics and outcomes of anti-infective de-escalation during health care-associated intra-abdominal infections. Crit. Care 2016, 20, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pea, F.; Viale, P. Bench-to-bedside review: Appropriate antibiotic therapy in severe sepsis and septic shock—Does the dose matter? Crit. Care 2009, 13, 214. [Google Scholar] [CrossRef] [Green Version]
- Lau, W.K.; Mercer, D.; Itani, K.M.; Nicolau, D.P.; Kuti, J.L.; Mansfield, D.; Dana, A. Randomized, open-label, comparative study of piperacillin-tazobactam administered by continuous infusion versus intermittent infusion for treatment of hospitalized patients with complicated intra-abdominal infection. Antimicrob. Agents Chemother. 2006, 50, 3556–3561. [Google Scholar] [CrossRef] [PubMed]
- Lipš, M.; Siller, M.; Strojil, J.; Urbánek, K.; Balík, M.; Suchánková, H. Pharmacokinetics of imipenem in critically ill patients during empirical treatment of nosocomial pneumonia: A comparison of 0.5-h and 3-h infusions. Int. J. Antimicrob. Agents 2014, 44, 358–362. [Google Scholar] [CrossRef]
- Zelenitsky, S.; Nash, J.; Weber, Z.; Iacovides, H.; Ariano, R. Targeted benefits of prolonged-infusion piperacillin-tazobactam in an in vitro infection model of Pseudomonas aeruginosa. J. Chemother. 2016, 28, 390–394. [Google Scholar] [CrossRef]
- Roberts, J.A.; Abdul-Aziz, M.H.; Davis, J.S.; Dulhunty, J.M.; Cotta, M.O.; Myburgh, J.; Bellomo, R.; Lipman, J. Continuous versus intermittent β-lactam infusion in severe sepsis. A meta-analysis of individual patient data from randomized trials. Am. J. Respir. Crit. Care Med. 2016, 194, 681–691. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Voulgaris, G.L.; Maliaros, A.; Samonis, G.; Fakagas, M.E. Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis: A systematic review and meta-analysis of randomised trials. Lancet Infect. Dis. 2018, 18, 108–120. [Google Scholar] [CrossRef]
- Chen, H.; Yu, L.; Yu, Z. Prolonged infusion with β-lactam antibiotics for treatment of infection caused by non-susceptible bacteria: A study protocol for a systemic review and meta-analysis. BMJ Open 2019, 9, e027509. [Google Scholar] [CrossRef] [Green Version]
- Kondo, Y.; Ota, K.; Imura, H.; Hara, N.; Shime, N. Prolonged versus intermittent β-lactam antibiotics intravenous infusion strategy in sepsis or septic shock patients: A systematic review with meta-analysis and trial sequential analysis of randomized trials. J. Intensive Care 2020, 8, 77. [Google Scholar] [CrossRef]
- Hatala, R.; Dinh, T.; Cook, D.J. Once-daily aminoglycoside dosing in immunocompetent adults: A meta-analysis. Ann. Intern. Med. 1996, 124, 717–725. [Google Scholar] [CrossRef]
- Greenberg, J.A.; Hohmann, S.F.; Hall, J.B.; Kress, J.P.; David, M.Z. Validation of a method to identify immunocompromised patients with severe sepsis in administrative databases. Ann. Am. Thorac. Soc. 2016, 13, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Coccolini, F.; Improta, M.; Sartelli, M.; Rasa, K.; Sawyer, R.; Coimbra, R.; Chiarugi, M.; Litvin, A.; Hardcastle, T.; Forfori, F.; et al. Acute abdomen in the immunocompromised patient: WSES, SIS-E, WSIS, AAST, and GAIS guidelines. World J. Emerg. Surg. 2021, 16, 40. [Google Scholar] [CrossRef]
Empiric Antibiotic Regimens; Normal Renal Function |
---|
One of the following intravenous antibiotics: Amoxicillin/clavulanate 2.2 g q8h 1 Ceftriaxone 2 g every q24h + metronidazole 500 mg q8h Cefotaxime 2 g every 8 h + metronidazole 500 mg q8h Piperacillin/tazobactam 4 g/0.5 g q6h 2 |
In patients with beta-lactam allergy, a fluoroquinolone-based regimen: Ciprofloxacin 400 mg every q8/12h + metronidazole 500 mg q8h |
In patients with beta-lactam allergy, an aminoglycoside regimen: Amikacin 15–20 mg/kg q24h + metronidazole 500 q8h |
In patients at high risk of infection with community-acquired ESBL-producing Enterobacterales, one of the following antibiotics: Tigecycline 100 mg LD, then 50 mg every q12h (carbapenem-sparing strategy) Ertapenem 1 g q24h |
Empiric Antibiotic Regimens; Normal Renal Function |
---|
One of the following intravenous antibiotics: Piperacillin/tazobactam 6 g/0.75 g LD then 4 g/0.5 g q6h or 16 g/2 g by continuous infusion. |
In patients with documented beta-lactam allergy, an aminoglycoside regimen: Amikacin 15–20 mg/kg q24h + metronidazole 500 mg q8h |
In patients at high risk of infection with community-acquired ESBL-producing Enterobacterales, one of the following antibiotics: Meropenem 1 g q8h (only in patients with septic shock) 1 Doripenem 500 mg q8h (only in patients with septic shock) 1 Imipenem/cilastatin 500 mg q6h (only in patients with septic shock) |
Empiric Antibiotic Regimens; Normal Renal Function |
---|
One of the following intravenous antibiotics: Tigecycline 100 mg LD, then 50 mg every 12 h (not active against P. aeruginosa) Eravacycline 1 mg/kg q12 h (not active against P. aeruginosa) + Piperacillin/tazobactam 4.5 q6h |
In patients with documented beta-lactam allergy: Amikacin 15–20 mg/kg q24h |
In patients with high risk for invasive candidiasis: + Fluconazole 800 mg LD then 400 mg every 24 h |
Empiric Antibiotic Regimens; Normal Renal Function |
---|
One of the following intravenous antibiotics: Meropenem 1 g q8h Doripenem 500 mg q8h Imipenem/cilastatin 500 mg q6h + One of the following intravenous antibiotics: Vancomycin 25–30 mg/kg LD then 15–20 mg/kg/q8 h Teicoplanin 12 mg/kg every 12 h 3 LDs then 12 mg/kg q24 h |
In patients with high risk for invasive candidiasis, add one of the following antifungal agents: Caspofungin 70 mg LD, then 50 mg q24h Anidulafungin 200 mg LD, then 100 q24h Micafungin 100 mg q24h Amphotericin B liposomal 3 mg/kg q24h |
In patients with suspected or proven infection with difficult-to-treat 1 non-metallo-beta-lactamase-producing P. aeruginosa, consider the use of antibiotic combinations with: Ceftolozane/tazobactam (1.5 g q8h), ceftazidime-avibactam (2.5 g q8h), and imipenem/cilastatin-relebactam (1.25 g q6h) |
In patients with suspected or proven infection with carbapenemase-producing K. pneumoniae and MDR (non-metallo-beta-lactamase-producing) P. aeruginosa, consider the use of antibiotic combinations with: Ceftazidime-avibactam (2.5 g q8h), meropenem-vaborbactam (4 g 8qh), and imipenem/cilastatin-relebactam (1.25 g q6h) |
In patients with suspected or proven infection with metallo-beta-lactamase-producing bacteria (i.e., NDM, VIM, IMP), consider the use of antibiotic combinations with: Ceftazidime-avibactam (2.5 g q8h) + aztreonam (2 g q8h) or cefiderocol (2 g q8h) |
In patients with suspected or proven infection with vancomycin-resistant enterococci (VRE)—including patients with previous enterococcal infection or colonisation, immunocompromised patients, patients with long ICU stay, or patients with recent vancomycin exposure—consider the use of antibiotic combinations with: Linezolid (600 q 12h) or daptomycin (10–12 mg/kg q24h) 2 |
Oriented Antibiotic Regimens; Normal Renal Function |
---|
One of the following intravenous antibiotics 1: Ceftazidime/avibactam 2.5 g q8h + tigecycline 100 mg LD, then 50 mg every 12 h Ceftazidime/avibactam 2.5 g q8h + metronidazole 500 mg q8h Meropenem/vaborbactam 4 g 8qh infused in three hours Imipenem/cilastatin/relebactam 1.25 g q6h + One of the following intravenous antibiotics (not for combinations with tigecycline): Vancomycin 25–30 mg/kg LD then 15–20 mg/kg/q8 h Teicoplanin 12 mg/kg every 12 h 3 LDs then 12 mg/kg q24 h |
In patients at high risk of invasive candidiasis, add one of the following antifungal agents: Caspofungin 70 mg LD, then 50 mg q24h Anidulafungin 200 mg LD, then 100 q24h Micafungin 100 mg q24h Amphotericin B liposomal 3 mg/kg q24h |
Oriented Antibiotic Regimens; Normal Renal Function |
---|
One of the following intravenous antibiotics: Ceftazidime/avibactam 2.5 g q8h + aztreonam 2 g q8h + tigecycline 100 mg LD, then 50 mg every 12 h Ceftazidime/avibactam 2.5 g q8h + aztreonam 2 g q8h + metronidazole 500 mg q8h Cefiderocol 2 g q8h + tigecycline 100 mg LD, then 50 mg every 12 h Cefiderocol 2 g q8h + metronidazole 500 mg q8h |
In patients at high risk of invasive candidiasis, add one of the following antifungal agents: Caspofungin 70 mg LD, then 50 mg q24h Anidulafungin 200 mg LD, then 100 q24h Micafungin 100 mg q24h Amphotericin B Liposomal 3 mg/kg q24h |
Oriented Antibiotic Regimens; Normal Renal Function |
---|
One of the following intravenous antibiotics: Cefiderocol 2 g q8h + tigecycline 100 mg LD, then 50 mg every 12 h Cefiderocol 2 g q8h + metronidazole 500 mg q8h Meropenem 2 g q8h + fosfomycin 4 g q6h + One of the following intravenous antibiotics (not for combinations with tigecycline or fosfomycin): Vancomycin 25–30 mg/kg LD then 15–20 mg/kg/q8 h Teicoplanin 12 mg/kg every 12 h 3 LDs then 12 mg/kg q24 h |
In patients at high risk of invasive candidiasis, add one of the following antifungal agents: Caspofungin 70 mg LD, then 50 mg q24h Anidulafungin 200 mg LD, then 100 q24h Micafungin 100 mg q24h Amphotericin B liposomal 3 mg/kg q24h |
Oriented Antibiotic Regimens; Normal Renal Function |
---|
One of the following intravenous antibiotics: Cefiderocol 2 g q8h + tigecycline 100 mg LD, then 50 mg q12h Cefiderocol 2 g q8h + metronidazole 500 mg q8h Fosfomycin 4 g q6h + ampicillin/sulbactam 6/3 g q8h + One of the following intravenous antibiotics (not for combinations with tigecycline or fosfomycin): Vancomycin 25–30 mg/kg LD then 15–20 mg/kg/q8h Teicoplanin 12 mg/kg every 12 h 3 LDs then 12 mg/kg q24h |
In patients at high risk of invasive candidiasis, add one of the following antifungal agents: Caspofungin 70 mg LD, then 50 mg q24h Anidulafungin 200 mg LD, then 100 q24h Micafungin 100 mg q24h Amphotericin B liposomal 3 mg/kg q24h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sartelli, M.; Cristini, F.; Coccolini, F.; Labricciosa, F.M.; Siquini, W.; Catena, F. A Proposal for a Classification Guiding the Selection of Appropriate Antibiotic Therapy for Intra-Abdominal Infections. Antibiotics 2022, 11, 1394. https://doi.org/10.3390/antibiotics11101394
Sartelli M, Cristini F, Coccolini F, Labricciosa FM, Siquini W, Catena F. A Proposal for a Classification Guiding the Selection of Appropriate Antibiotic Therapy for Intra-Abdominal Infections. Antibiotics. 2022; 11(10):1394. https://doi.org/10.3390/antibiotics11101394
Chicago/Turabian StyleSartelli, Massimo, Francesco Cristini, Federico Coccolini, Francesco Maria Labricciosa, Walter Siquini, and Fausto Catena. 2022. "A Proposal for a Classification Guiding the Selection of Appropriate Antibiotic Therapy for Intra-Abdominal Infections" Antibiotics 11, no. 10: 1394. https://doi.org/10.3390/antibiotics11101394
APA StyleSartelli, M., Cristini, F., Coccolini, F., Labricciosa, F. M., Siquini, W., & Catena, F. (2022). A Proposal for a Classification Guiding the Selection of Appropriate Antibiotic Therapy for Intra-Abdominal Infections. Antibiotics, 11(10), 1394. https://doi.org/10.3390/antibiotics11101394