Feline Otitis Externa Caused by Methicillin-Resistant Staphylococcus aureus with Mixed Hemolytic Phenotype and Overview of Possible Genetic Backgrounds
Abstract
:1. Introduction
2. Results
2.1. Case Report
2.2. Bacteriological Examination and Antimicrobial Susceptibility Testing (AST)
2.3. Molecular Characterization and Whole-Genome Sequencing
3. Discussion
4. Materials and Methods
4.1. Bacteriological Examination
4.2. Antimicrobial Susceptibility Testing
4.3. Molecular Characterization
4.4. Whole-Genome Sequencing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walther, B.; Wieler, L.H.; Friedrich, A.W.; Kohn, B.; Brunnberg, L.; Lübke-Becker, A. Staphylococcus aureus and MRSA colo-nization rates among personnel and dogs in a small animal hospital: Association with nosocomial infections. Berl. Munch. Ti-erarztl. Wochenschr. 2009, 122, 178–185. [Google Scholar]
- Vincze, S.; Stamm, I.; Kopp, P.A.; Hermes, J.; Adlhoch, C.; Semmler, T.; Wieler, L.H.; Lübke-Becker, A.; Walther, B. Alarming proportions of methicillin-resistant Staphylococcus aureus (MRSA) in wound samples from companion animals, Germany 2010–2012. PLoS ONE 2014, 9, e85656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loncaric, I.; Lepuschitz, S.; Ruppitsch, W.; Trstan, A.; Andreadis, T.; Bouchlis, N.; Marbach, H.; Schauer, B.; Szostak, M.P.; Feßler, A.T.; et al. Increased genetic diversity of methicillin-resistant Staphylococcus aureus (MRSA) isolated from companion animals. Vet. Microbiol. 2019, 235, 118–126. [Google Scholar] [CrossRef]
- Penna, B.; Silva, M.B.; Soares, A.E.R.; Vasconcelos, A.T.R.; Ramundo, M.S.; Ferreira, F.A.; Silva-Carvalho, M.C.; de Sousa, V.S.; Rabello, R.F.; Bandeira, P.T.; et al. Comparative genomics of MRSA strains from human and canine origins reveals similar virulence gene repertoire. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.P.; Anderson, K.L.; Correa, M.T.; Lyman, R.; Ruffin, F.; Reller, L.B.; Fowler, V.G. Transmission of MRSA between companion animals and infected human patients presenting to outpatient medical care facilities. PLoS ONE 2011, 6, e26978. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.O.; Lautenbach, E.; Zaoutis, T.; Leckerman, K.; Edelstein, P.H.; Rankin, S.C. Potential for pet animals to harbour methicillin-resistant Staphylococcus aureus when residing with human MRSA patients. Zoonoses Public Health 2012, 59, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M. Methicillin-resistant Staphylococcus aureus and animals: Zoonosis or humanosis? J. Antimicrob. Chemother. 2008, 62, 1181–1187. [Google Scholar] [CrossRef] [Green Version]
- Asanin, J.; Misic, D.; Aksentijevic, K.; Tambur, Z.; Rakonjac, B.; Kovacevic, I.; Spergser, J.; Loncaric, I. Genetic profiling and comparison of human and animal methicillin-resistant Staphylococcus aureus (MRSA) isolates from Serbia. Antibiotics 2019, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Hogan, P.G.; Mork, R.L.; Boyle, M.G.; Muenks, C.E.; Morelli, J.J.; Thompson, R.M.; Sullivan, M.L.; Gehlert, S.J.; Merlo, J.R.; McKenzie, M.G.; et al. Interplay of personal, pet, and environmental colonization in households affected by community-associated methicillin-resistant Staphylococcus aureus. J. Infect. 2019, 78, 200–207. [Google Scholar] [CrossRef]
- Scott, G.; Thomson, R.; Malone-Lee, J.; Ridgway, G. Cross-infection between animals and man: Possible feline transmission of Staphylococcus aureus infection in humans? J. Hosp. Infect. 1988, 12, 29–34. [Google Scholar] [CrossRef]
- Vitale, C.B.; Gross, T.; Weese, J.S. Methicillin-resistant Staphylococcus aureus in cat and owner. Emerg. Infect. Dis. 2006, 12, 1998–2000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wipf, J.; Perreten, V. Methicillin-resistant Staphylococcus aureus isolated from dogs and cats in Switzerland. Schweiz. Arch. Tierheilkd. 2016, 158, 443–450. [Google Scholar] [CrossRef]
- Evandenesch, F.; Elina, G.; Ehenry, T. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: A redundant arsenal of membrane-damaging virulence factors? Front. Cell. Infect. Microbiol. 2012, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Pontieri, E. The staphylococcal hemolysins. In Pet-to Man Travelling Staphylococci. A World in Progress, 1st ed.; Savini, V., Ed.; Academic Press/Elsevier Inc.: London, UK, 2018; Chapter 8; pp. 103–116. [Google Scholar] [CrossRef]
- Novick, R.; Ross, H.; Projan, S.; Kornblum, J.; Kreiswirth, B.; Moghazeh, S. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J. 1993, 12, 3967–3975. [Google Scholar] [CrossRef] [PubMed]
- Novick, R.P.; Geisinger, E. Quorum sensing in staphylococci. Annu. Rev. Genet. 2008, 42, 541–564. [Google Scholar] [CrossRef]
- Saìd-Salim, B.; Dunman, P.M.; McAleese, F.M.; Macapagal, D.; Murphy, E.; McNamara, P.J.; Arvidson, S.; Foster, T.J.; Projan, S.J.; Kreiswirth, B.N. Global regulation of Staphylococcus aureus genes by Rot. J. Bacteriol. 2003, 185, 610–619. [Google Scholar] [CrossRef] [Green Version]
- Traber, K.E.; Lee, E.; Benson, S.; Corrigan, R.; Cantera, M.; Shopsin, B.; Novick, R.P. agr function in clinical Staphylococcus aureus isolates. Microbiol. 2008, 154, 2265–2274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Painter, K.L.; Krishna, A.; Wigneshweraraj, S.; Edwards, A.M. What role does the quorum-sensing accessory gene regulator system play during Staphylococcus aureus bacteremia? Trends Microbiol. 2014, 22, 676–685. [Google Scholar] [CrossRef]
- Shopsin, B.; Drlica-Wagner, A.; Mathema, B.; Adhikari, R.P.; Kreiswirth, B.N.; Novick, R.P. Prevalence of agr dysfunction among colonizing Staphylococcus aureus strains. J. Infect. Dis. 2008, 198, 1171–1174. [Google Scholar] [CrossRef] [Green Version]
- Huber, C.; Stamm, I.; Ziebuhr, W.; Marincola, G.; Bischoff, M.; Strommenger, B.; Jaschkowitz, G.; Marciniak, T.; Cuny, C.; Witte, W.; et al. Silence as a way of niche adaptation: mecC-MRSA with variations in the accessory gene regulator (agr) functionality express kaleidoscopic phenotypes. Sci. Rep. 2020, 10, 1–19. [Google Scholar] [CrossRef]
- Cheung, A.L.; Zhang, G. Global regulation of virulence determinants in Staphylococcus aureus by the SarA protein family. Front. Biosci 2002, 7, 1825–1842. [Google Scholar] [CrossRef] [Green Version]
- Recsei, P.; Kreiswirth, B.; O’Reilly, M.; Schlievert, P.; Gruss, A.; Novick, R.P. Regulation of exoprotein gene expression in Staphylococcus aureus by agr. Mol. Genet. Genom. 1986, 202, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Mallonee, D.H.; A Glatz, B.; A Pattee, P. Chromosomal mapping of a gene affecting enterotoxin A production in Staphylococcus aureus. Appl. Environ. Microbiol. 1982, 43, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Giraudo, A.T.; Calzolari, A.; Cataldi, A.A.; Bogni, C.; Nagel, R. The sae locus of Staphylococcus aureus encodes a two-component regulatory system. FEMS Microbiol. Lett. 1999, 177, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, A.D.; Otto, M.; Braughton, K.R.; Whitney, A.R.; Chen, L.; Mathema, B.; Mediavilla, J.R.; Byrne, K.A.; Parkins, L.D.; Tenover, F.C.; et al. Epidemic community-associated methicillin-resistant Staphylococcus aureus: Recent clonal expansion and diversification. Proc. Natl. Acad. Sci. USA 2008, 105, 1327–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sause, W.E.; Copin, R.; O’Malley, A.; Chan, R.; Morrow, B.J.; Buckley, P.T.; Fernandez, J.; Lynch, A.S.; Shopsin, B.; Torres, V.J. Staphylococcus aureus strain Newman D2C contains mutations in major regulatory pathways that cripple its pathogenesis. J. Bacteriol. 2017, 199, e00476-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClure, J.-A.M.; Lakhundi, S.; Kashif, A.; Conly, J.M.; Zhang, K. Genomic comparison of highly virulent, moderately virulent, and avirulent strains from a genetically closely-related MRSA ST239 sub-lineage provides insights into pathogenesis. Front. Microbiol. 2018, 9, 1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzgerald, J.R.; Holden, M.T. Genomics of natural populations of Staphylococcus aureus. Annu. Rev. Microbiol. 2016, 70, 459–478. [Google Scholar] [CrossRef] [PubMed]
- Shanks, R.M.Q.; Meehl, M.A.; Brothers, K.M.; Martinez, R.M.; Donegan, N.P.; Graber, M.L.; Cheung, A.L.; O’Toole, G.A. Genetic Evidence for an alternative citrate-dependent biofilm formation pathway in Staphylococcus aureus that is dependent on fibronectin binding proteins and the GraRS two-component regulatory system. Infect. Immun. 2008, 76, 2469–2477. [Google Scholar] [CrossRef] [Green Version]
- Stutz, K.; Stephan, R.; Tasara, T. SpA, ClfA, and FnbA genetic variations lead to Staphaurex test-negative phenotypes in bovine mastitis Staphylococcus aureus isolates. J. Clin. Microbiol. 2010, 49, 638–646. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, L.A.; Shears, R.K.; Fingleton, C.; Alvarez, L.; Waters, E.M.; Clarke, J.; Bricio-Moreno, L.; Campbell, C.; Yadav, A.K.; Razvi, F.; et al. Impaired alanine transport or exposure to D-cycloserine increases the susceptibility of MRSA to β-lactam antibiotics. J. Infect. Dis. 2020, 221, 1000–1016. [Google Scholar] [CrossRef]
- Gor, V.; Hoshi, M.; Takemura, A.J.; Higashide, M.; Romero, V.M.; Ohniwa, R.L.; Morikawa, K. Virulence reversion in Staphylococcus aureus. Proceedings 2021, 66, 24. [Google Scholar] [CrossRef]
- Lee, S.O.; Lee, S.; Lee, J.E.; Song, K.-H.; Kang, C.K.; Wi, Y.M.; San-Juan, R.; López-Cortés, L.E.; Lacoma, A.; Prat, C.; et al. Dysfunctional accessory gene regulator (agr) as a prognostic factor in invasive Staphylococcus aureus infection: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Paulander, W.; Varming, A.N.; Bæk, K.T.; Haaber, J.; Frees, D.; Ingmer, H. Antibiotic-mediated selection of quorum-sensing-negative Staphylococcus aureus. mBio 2012, 3, e00459-12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, G.; Wolz, C. Phages of Staphylococcus aureus and their impact on host evolution. Infect. Genet. Evol. 2014, 21, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Goerke, C.; Wirtz, C.; Fluckiger, U.; Wolz, C. Extensive phage dynamics in Staphylococcus aureus contributes to adaptation to the human host during infection. Mol. Microbiol. 2006, 61, 1673–1685. [Google Scholar] [CrossRef] [PubMed]
- Duquette, R.A.; Nuttall, T.J. Methicillin-resistant Staphylococcus aureus in dogs and cats: An emerging problem? J. Small Anim. Pract. 2004, 45, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.; Dick, H.; Willey, B.; McGeer, A.; Kreiswirth, B.; Innis, B.; Low, D. Suspected transmission of methicillin-resistant Staphylococcus aureus between domestic pets and humans in veterinary clinics and in the household. Vet. Microbiol. 2006, 115, 148–155. [Google Scholar] [CrossRef] [PubMed]
- van Duijkeren, E.; Moleman, M.; van Oldruitenborgh-Oosterbaan, M.S.; Multem, J.; Troelstra, A.; Fluit, A.; van Wamel, W.; Houwers, D.; de Neeling, A.; Wagenaar, J. Methicillin-resistant Staphylococcus aureus in horses and horse personnel: An investigation of several outbreaks. Vet. Microbiol. 2010, 141, 96–102. [Google Scholar] [CrossRef]
- Choo, E.J. Community-associated methicillin-resistant Staphylococcus aureus in nosocomial infections. Infect. Chemother. 2017, 49, 158–159. [Google Scholar] [CrossRef] [PubMed]
- Kouyos, R.; Klein, E.; Grenfell, B. Hospital-community interactions foster coexistence between methicillin-resistant strains of Staphylococcus aureus. PLOS Pathog. 2013, 9, e1003134. [Google Scholar] [CrossRef] [Green Version]
- Otto, M. MRSA virulence and spread. Cell. Microbiol. 2012, 14, 1513–1521. [Google Scholar] [CrossRef] [Green Version]
- Loeffler, A.; McCarthy, A.; Lloyd, D.H.; Musilová, E.; Pfeiffer, D.U.; Lindsay, J.A. Whole-genome comparison of meticillin-resistant Staphylococcus aureus CC22 SCCmecIV from people and their in-contact pets. Vet. Dermatol. 2013, 24, 538-e128. [Google Scholar] [CrossRef] [PubMed]
- Strommenger, B.; Kehrenberg, C.; Kettlitz, C.; Cuny, C.; Verspohl, J.; Witte, W.; Schwarz, S. Molecular characterization of methicillin-resistant Staphylococcus aureus strains from pet animals and their relationship to human isolates. J. Antimicrob. Chemother. 2005, 57, 461–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincze, S.; Brandenburg, A.G.; Espelage, W.; Stamm, I.; Wieler, L.H.; Kopp, P.A.; Lübke-Becker, A.; Walther, B. Risk factors for MRSA infection in companion animals: Results from a case–control study within Germany. Int. J. Med. Microbiol. 2014, 304, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.M.; Weinert, L.A.; Holden, M.T.G.; Welch, J.J.; Wilson, K.; Morgan, F.J.E.; Harris, S.R.; Loeffler, A.; Boag, A.K.; Peacock, S.J.; et al. A shared population of epidemic methicillin-resistant Staphylococcus aureus 15 circulates in humans and companion animals. mBio 2014, 5, e00985-13. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute—CLSI. Performance Standards for Antimicrobial Susceptibility Testing, CLSI Supplement M100; CLSI: Wayne, PA, USA, 2010. [Google Scholar]
- Community Reference Laboratory for Antimicrobial Resistance—CRL—AR. Multiplex PCR for the Detection of the mecA Gene and the Identification of Staphylococcus aureus; National Food Institute, Technical University of Denmark: Copenhagen, Denmark, 2009. [Google Scholar]
- Stegger, M.; Andersen, P.; Kearns, A.; Pichon, B.; Holmes, M.; Edwards, G.; Laurent, F.; Teale, C.; Skov, R.; Larsen, A. Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecALGA251. Clin. Microbiol. Infect. 2012, 18, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Kaya, H.; Hasman, H.; Larsen, J.; Stegger, M.; Johannesen, T.B.; Allesøe, R.L.; Lemvigh, C.K.; Aarestrup, F.M.; Lund, O.; Larsen, A.R. SCCmecFinder, a web-based tool for typing of staphylococcal cassette chromosome mec in Staphylococcus aureus using whole-genome sequence data. mSphere 2018, 3, e00612-17. [Google Scholar] [CrossRef] [Green Version]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
Antimicrobial | Isolate | |||||
---|---|---|---|---|---|---|
Hemolytic MRSA Isolate SA37 | Nonhemolytic MRSA Isolate SA36 | S. pseudintermedius | ||||
MIC (µg/mL) | S/R | MIC (µg/mL) | S/R | MIC (µg/mL) | S/R | |
Ampicillin | 8 | R | 4 | R | ≤0.125 | S |
Cefoxitin | >6 | R | >6 | R | ≤6 | / |
Chloramphenicol | 8 | S | 8 | S | 8 | S |
Ciprofloxacin | ≤1 | S | ≤1 | S | ≤1 | S |
Clindamycin | ≤0.5 | S | ≤0.5 | S | ≤0.5 | S |
Daptomycin | ≤0.5 | S | ≤0.5 | S | ≤0.5 | S |
Erythromycin | ≤0.25 | S | ≤0.25 | S | 0.5 | S |
Gentamycin | ≤2 | S | ≤2 | S | ≤2 | S |
Levofloxacin | ≤0.25 | S | ≤0.25 | S | ≤0.25 | S |
Linezolid | ≤1 | S | ≤1 | S | ≤1 | S |
Moxifloxacin | ≤0.25 | S | ≤0.25 | S | ≤0.25 | S |
Nitrofurantoin | ≤32 | S | ≤32 | S | ≤32 | S |
Oxacillin | >4 | R | >4 | R | ≤0.25 | S |
Penicillin | >8 | R | >8 | R | ≤0.06 | S |
Quinupristin/dalfopristin | ≤0.5 | S | ≤0.5 | S | ≤0.5 | S |
Rifampin | ≤0.5 | S | ≤0.5 | S | ≤0.5 | S |
Streptomycin | ≤1000 | S | ≤1000 | S | ≤1000 | S |
Tetracycline | ≤2 | S | ≤2 | S | ≤2 | S |
Tigecycline | 0.25 | S | 0.125 | S | ≤0.06 | S |
Trimethoprim/sulfamethoxazole | ≤0.5 | S | ≤0.5 | S | ≤0.5 | S |
Vancomycin | 0.5 | S | 0.5 | S | 0.5 | S |
Gene or Genotype (Isolates SA36 and SA37) | |
---|---|
mPCR | 16S rRNA, nuc, mecA |
spa type | t005 |
MLST ST (CC) | ST1327 (CC22) |
SCCmec type | IV |
agr type | I |
Resistance genes | blaZ, mecA (conferring resistance to β-lactams) |
Virulence genes | aur, hlgABC, sak, scn, seg, sei, sem, sen, seo, seu |
Position | CDS/Intergenic | Gene | Nucleotide: Isolate SA36 | Nucleotide: Isolate SA37 |
---|---|---|---|---|
1491402 | Intergenic | G | T | |
1765477 | CDS | cycA | G | T |
2329625 | Intergenic | G | A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avberšek, J.; Papić, B.; Kušar, D.; Erjavec, V.; Seme, K.; Golob, M.; Zdovc, I. Feline Otitis Externa Caused by Methicillin-Resistant Staphylococcus aureus with Mixed Hemolytic Phenotype and Overview of Possible Genetic Backgrounds. Antibiotics 2021, 10, 599. https://doi.org/10.3390/antibiotics10050599
Avberšek J, Papić B, Kušar D, Erjavec V, Seme K, Golob M, Zdovc I. Feline Otitis Externa Caused by Methicillin-Resistant Staphylococcus aureus with Mixed Hemolytic Phenotype and Overview of Possible Genetic Backgrounds. Antibiotics. 2021; 10(5):599. https://doi.org/10.3390/antibiotics10050599
Chicago/Turabian StyleAvberšek, Jana, Bojan Papić, Darja Kušar, Vladimira Erjavec, Katja Seme, Majda Golob, and Irena Zdovc. 2021. "Feline Otitis Externa Caused by Methicillin-Resistant Staphylococcus aureus with Mixed Hemolytic Phenotype and Overview of Possible Genetic Backgrounds" Antibiotics 10, no. 5: 599. https://doi.org/10.3390/antibiotics10050599
APA StyleAvberšek, J., Papić, B., Kušar, D., Erjavec, V., Seme, K., Golob, M., & Zdovc, I. (2021). Feline Otitis Externa Caused by Methicillin-Resistant Staphylococcus aureus with Mixed Hemolytic Phenotype and Overview of Possible Genetic Backgrounds. Antibiotics, 10(5), 599. https://doi.org/10.3390/antibiotics10050599