Feline Otitis Externa Caused by Methicillin-Resistant Staphylococcus aureus with Mixed Hemolytic Phenotype and Overview of Possible Genetic Backgrounds
Abstract
1. Introduction
2. Results
2.1. Case Report
2.2. Bacteriological Examination and Antimicrobial Susceptibility Testing (AST)
2.3. Molecular Characterization and Whole-Genome Sequencing
3. Discussion
4. Materials and Methods
4.1. Bacteriological Examination
4.2. Antimicrobial Susceptibility Testing
4.3. Molecular Characterization
4.4. Whole-Genome Sequencing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walther, B.; Wieler, L.H.; Friedrich, A.W.; Kohn, B.; Brunnberg, L.; Lübke-Becker, A. Staphylococcus aureus and MRSA colo-nization rates among personnel and dogs in a small animal hospital: Association with nosocomial infections. Berl. Munch. Ti-erarztl. Wochenschr. 2009, 122, 178–185. [Google Scholar]
- Vincze, S.; Stamm, I.; Kopp, P.A.; Hermes, J.; Adlhoch, C.; Semmler, T.; Wieler, L.H.; Lübke-Becker, A.; Walther, B. Alarming proportions of methicillin-resistant Staphylococcus aureus (MRSA) in wound samples from companion animals, Germany 2010–2012. PLoS ONE 2014, 9, e85656. [Google Scholar] [CrossRef] [PubMed]
- Loncaric, I.; Lepuschitz, S.; Ruppitsch, W.; Trstan, A.; Andreadis, T.; Bouchlis, N.; Marbach, H.; Schauer, B.; Szostak, M.P.; Feßler, A.T.; et al. Increased genetic diversity of methicillin-resistant Staphylococcus aureus (MRSA) isolated from companion animals. Vet. Microbiol. 2019, 235, 118–126. [Google Scholar] [CrossRef]
- Penna, B.; Silva, M.B.; Soares, A.E.R.; Vasconcelos, A.T.R.; Ramundo, M.S.; Ferreira, F.A.; Silva-Carvalho, M.C.; de Sousa, V.S.; Rabello, R.F.; Bandeira, P.T.; et al. Comparative genomics of MRSA strains from human and canine origins reveals similar virulence gene repertoire. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.P.; Anderson, K.L.; Correa, M.T.; Lyman, R.; Ruffin, F.; Reller, L.B.; Fowler, V.G. Transmission of MRSA between companion animals and infected human patients presenting to outpatient medical care facilities. PLoS ONE 2011, 6, e26978. [Google Scholar] [CrossRef]
- Morris, D.O.; Lautenbach, E.; Zaoutis, T.; Leckerman, K.; Edelstein, P.H.; Rankin, S.C. Potential for pet animals to harbour methicillin-resistant Staphylococcus aureus when residing with human MRSA patients. Zoonoses Public Health 2012, 59, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M. Methicillin-resistant Staphylococcus aureus and animals: Zoonosis or humanosis? J. Antimicrob. Chemother. 2008, 62, 1181–1187. [Google Scholar] [CrossRef]
- Asanin, J.; Misic, D.; Aksentijevic, K.; Tambur, Z.; Rakonjac, B.; Kovacevic, I.; Spergser, J.; Loncaric, I. Genetic profiling and comparison of human and animal methicillin-resistant Staphylococcus aureus (MRSA) isolates from Serbia. Antibiotics 2019, 8, 26. [Google Scholar] [CrossRef]
- Hogan, P.G.; Mork, R.L.; Boyle, M.G.; Muenks, C.E.; Morelli, J.J.; Thompson, R.M.; Sullivan, M.L.; Gehlert, S.J.; Merlo, J.R.; McKenzie, M.G.; et al. Interplay of personal, pet, and environmental colonization in households affected by community-associated methicillin-resistant Staphylococcus aureus. J. Infect. 2019, 78, 200–207. [Google Scholar] [CrossRef]
- Scott, G.; Thomson, R.; Malone-Lee, J.; Ridgway, G. Cross-infection between animals and man: Possible feline transmission of Staphylococcus aureus infection in humans? J. Hosp. Infect. 1988, 12, 29–34. [Google Scholar] [CrossRef]
- Vitale, C.B.; Gross, T.; Weese, J.S. Methicillin-resistant Staphylococcus aureus in cat and owner. Emerg. Infect. Dis. 2006, 12, 1998–2000. [Google Scholar] [CrossRef] [PubMed]
- Wipf, J.; Perreten, V. Methicillin-resistant Staphylococcus aureus isolated from dogs and cats in Switzerland. Schweiz. Arch. Tierheilkd. 2016, 158, 443–450. [Google Scholar] [CrossRef]
- Evandenesch, F.; Elina, G.; Ehenry, T. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: A redundant arsenal of membrane-damaging virulence factors? Front. Cell. Infect. Microbiol. 2012, 2, 12. [Google Scholar] [CrossRef]
- Pontieri, E. The staphylococcal hemolysins. In Pet-to Man Travelling Staphylococci. A World in Progress, 1st ed.; Savini, V., Ed.; Academic Press/Elsevier Inc.: London, UK, 2018; Chapter 8; pp. 103–116. [Google Scholar] [CrossRef]
- Novick, R.; Ross, H.; Projan, S.; Kornblum, J.; Kreiswirth, B.; Moghazeh, S. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J. 1993, 12, 3967–3975. [Google Scholar] [CrossRef] [PubMed]
- Novick, R.P.; Geisinger, E. Quorum sensing in staphylococci. Annu. Rev. Genet. 2008, 42, 541–564. [Google Scholar] [CrossRef]
- Saìd-Salim, B.; Dunman, P.M.; McAleese, F.M.; Macapagal, D.; Murphy, E.; McNamara, P.J.; Arvidson, S.; Foster, T.J.; Projan, S.J.; Kreiswirth, B.N. Global regulation of Staphylococcus aureus genes by Rot. J. Bacteriol. 2003, 185, 610–619. [Google Scholar] [CrossRef]
- Traber, K.E.; Lee, E.; Benson, S.; Corrigan, R.; Cantera, M.; Shopsin, B.; Novick, R.P. agr function in clinical Staphylococcus aureus isolates. Microbiol. 2008, 154, 2265–2274. [Google Scholar] [CrossRef] [PubMed]
- Painter, K.L.; Krishna, A.; Wigneshweraraj, S.; Edwards, A.M. What role does the quorum-sensing accessory gene regulator system play during Staphylococcus aureus bacteremia? Trends Microbiol. 2014, 22, 676–685. [Google Scholar] [CrossRef]
- Shopsin, B.; Drlica-Wagner, A.; Mathema, B.; Adhikari, R.P.; Kreiswirth, B.N.; Novick, R.P. Prevalence of agr dysfunction among colonizing Staphylococcus aureus strains. J. Infect. Dis. 2008, 198, 1171–1174. [Google Scholar] [CrossRef]
- Huber, C.; Stamm, I.; Ziebuhr, W.; Marincola, G.; Bischoff, M.; Strommenger, B.; Jaschkowitz, G.; Marciniak, T.; Cuny, C.; Witte, W.; et al. Silence as a way of niche adaptation: mecC-MRSA with variations in the accessory gene regulator (agr) functionality express kaleidoscopic phenotypes. Sci. Rep. 2020, 10, 1–19. [Google Scholar] [CrossRef]
- Cheung, A.L.; Zhang, G. Global regulation of virulence determinants in Staphylococcus aureus by the SarA protein family. Front. Biosci 2002, 7, 1825–1842. [Google Scholar] [CrossRef]
- Recsei, P.; Kreiswirth, B.; O’Reilly, M.; Schlievert, P.; Gruss, A.; Novick, R.P. Regulation of exoprotein gene expression in Staphylococcus aureus by agr. Mol. Genet. Genom. 1986, 202, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Mallonee, D.H.; A Glatz, B.; A Pattee, P. Chromosomal mapping of a gene affecting enterotoxin A production in Staphylococcus aureus. Appl. Environ. Microbiol. 1982, 43, 397–402. [Google Scholar] [CrossRef]
- Giraudo, A.T.; Calzolari, A.; Cataldi, A.A.; Bogni, C.; Nagel, R. The sae locus of Staphylococcus aureus encodes a two-component regulatory system. FEMS Microbiol. Lett. 1999, 177, 15–22. [Google Scholar] [CrossRef]
- Kennedy, A.D.; Otto, M.; Braughton, K.R.; Whitney, A.R.; Chen, L.; Mathema, B.; Mediavilla, J.R.; Byrne, K.A.; Parkins, L.D.; Tenover, F.C.; et al. Epidemic community-associated methicillin-resistant Staphylococcus aureus: Recent clonal expansion and diversification. Proc. Natl. Acad. Sci. USA 2008, 105, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Sause, W.E.; Copin, R.; O’Malley, A.; Chan, R.; Morrow, B.J.; Buckley, P.T.; Fernandez, J.; Lynch, A.S.; Shopsin, B.; Torres, V.J. Staphylococcus aureus strain Newman D2C contains mutations in major regulatory pathways that cripple its pathogenesis. J. Bacteriol. 2017, 199, e00476-17. [Google Scholar] [CrossRef] [PubMed]
- McClure, J.-A.M.; Lakhundi, S.; Kashif, A.; Conly, J.M.; Zhang, K. Genomic comparison of highly virulent, moderately virulent, and avirulent strains from a genetically closely-related MRSA ST239 sub-lineage provides insights into pathogenesis. Front. Microbiol. 2018, 9, 1531. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, J.R.; Holden, M.T. Genomics of natural populations of Staphylococcus aureus. Annu. Rev. Microbiol. 2016, 70, 459–478. [Google Scholar] [CrossRef] [PubMed]
- Shanks, R.M.Q.; Meehl, M.A.; Brothers, K.M.; Martinez, R.M.; Donegan, N.P.; Graber, M.L.; Cheung, A.L.; O’Toole, G.A. Genetic Evidence for an alternative citrate-dependent biofilm formation pathway in Staphylococcus aureus that is dependent on fibronectin binding proteins and the GraRS two-component regulatory system. Infect. Immun. 2008, 76, 2469–2477. [Google Scholar] [CrossRef]
- Stutz, K.; Stephan, R.; Tasara, T. SpA, ClfA, and FnbA genetic variations lead to Staphaurex test-negative phenotypes in bovine mastitis Staphylococcus aureus isolates. J. Clin. Microbiol. 2010, 49, 638–646. [Google Scholar] [CrossRef]
- Gallagher, L.A.; Shears, R.K.; Fingleton, C.; Alvarez, L.; Waters, E.M.; Clarke, J.; Bricio-Moreno, L.; Campbell, C.; Yadav, A.K.; Razvi, F.; et al. Impaired alanine transport or exposure to D-cycloserine increases the susceptibility of MRSA to β-lactam antibiotics. J. Infect. Dis. 2020, 221, 1000–1016. [Google Scholar] [CrossRef]
- Gor, V.; Hoshi, M.; Takemura, A.J.; Higashide, M.; Romero, V.M.; Ohniwa, R.L.; Morikawa, K. Virulence reversion in Staphylococcus aureus. Proceedings 2021, 66, 24. [Google Scholar] [CrossRef]
- Lee, S.O.; Lee, S.; Lee, J.E.; Song, K.-H.; Kang, C.K.; Wi, Y.M.; San-Juan, R.; López-Cortés, L.E.; Lacoma, A.; Prat, C.; et al. Dysfunctional accessory gene regulator (agr) as a prognostic factor in invasive Staphylococcus aureus infection: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Paulander, W.; Varming, A.N.; Bæk, K.T.; Haaber, J.; Frees, D.; Ingmer, H. Antibiotic-mediated selection of quorum-sensing-negative Staphylococcus aureus. mBio 2012, 3, e00459-12. [Google Scholar] [CrossRef] [PubMed]
- Xia, G.; Wolz, C. Phages of Staphylococcus aureus and their impact on host evolution. Infect. Genet. Evol. 2014, 21, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Goerke, C.; Wirtz, C.; Fluckiger, U.; Wolz, C. Extensive phage dynamics in Staphylococcus aureus contributes to adaptation to the human host during infection. Mol. Microbiol. 2006, 61, 1673–1685. [Google Scholar] [CrossRef] [PubMed]
- Duquette, R.A.; Nuttall, T.J. Methicillin-resistant Staphylococcus aureus in dogs and cats: An emerging problem? J. Small Anim. Pract. 2004, 45, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.; Dick, H.; Willey, B.; McGeer, A.; Kreiswirth, B.; Innis, B.; Low, D. Suspected transmission of methicillin-resistant Staphylococcus aureus between domestic pets and humans in veterinary clinics and in the household. Vet. Microbiol. 2006, 115, 148–155. [Google Scholar] [CrossRef] [PubMed]
- van Duijkeren, E.; Moleman, M.; van Oldruitenborgh-Oosterbaan, M.S.; Multem, J.; Troelstra, A.; Fluit, A.; van Wamel, W.; Houwers, D.; de Neeling, A.; Wagenaar, J. Methicillin-resistant Staphylococcus aureus in horses and horse personnel: An investigation of several outbreaks. Vet. Microbiol. 2010, 141, 96–102. [Google Scholar] [CrossRef]
- Choo, E.J. Community-associated methicillin-resistant Staphylococcus aureus in nosocomial infections. Infect. Chemother. 2017, 49, 158–159. [Google Scholar] [CrossRef] [PubMed]
- Kouyos, R.; Klein, E.; Grenfell, B. Hospital-community interactions foster coexistence between methicillin-resistant strains of Staphylococcus aureus. PLOS Pathog. 2013, 9, e1003134. [Google Scholar] [CrossRef]
- Otto, M. MRSA virulence and spread. Cell. Microbiol. 2012, 14, 1513–1521. [Google Scholar] [CrossRef]
- Loeffler, A.; McCarthy, A.; Lloyd, D.H.; Musilová, E.; Pfeiffer, D.U.; Lindsay, J.A. Whole-genome comparison of meticillin-resistant Staphylococcus aureus CC22 SCCmecIV from people and their in-contact pets. Vet. Dermatol. 2013, 24, 538-e128. [Google Scholar] [CrossRef] [PubMed]
- Strommenger, B.; Kehrenberg, C.; Kettlitz, C.; Cuny, C.; Verspohl, J.; Witte, W.; Schwarz, S. Molecular characterization of methicillin-resistant Staphylococcus aureus strains from pet animals and their relationship to human isolates. J. Antimicrob. Chemother. 2005, 57, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Vincze, S.; Brandenburg, A.G.; Espelage, W.; Stamm, I.; Wieler, L.H.; Kopp, P.A.; Lübke-Becker, A.; Walther, B. Risk factors for MRSA infection in companion animals: Results from a case–control study within Germany. Int. J. Med. Microbiol. 2014, 304, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.M.; Weinert, L.A.; Holden, M.T.G.; Welch, J.J.; Wilson, K.; Morgan, F.J.E.; Harris, S.R.; Loeffler, A.; Boag, A.K.; Peacock, S.J.; et al. A shared population of epidemic methicillin-resistant Staphylococcus aureus 15 circulates in humans and companion animals. mBio 2014, 5, e00985-13. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute—CLSI. Performance Standards for Antimicrobial Susceptibility Testing, CLSI Supplement M100; CLSI: Wayne, PA, USA, 2010. [Google Scholar]
- Community Reference Laboratory for Antimicrobial Resistance—CRL—AR. Multiplex PCR for the Detection of the mecA Gene and the Identification of Staphylococcus aureus; National Food Institute, Technical University of Denmark: Copenhagen, Denmark, 2009. [Google Scholar]
- Stegger, M.; Andersen, P.; Kearns, A.; Pichon, B.; Holmes, M.; Edwards, G.; Laurent, F.; Teale, C.; Skov, R.; Larsen, A. Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecALGA251. Clin. Microbiol. Infect. 2012, 18, 395–400. [Google Scholar] [CrossRef]
- Kaya, H.; Hasman, H.; Larsen, J.; Stegger, M.; Johannesen, T.B.; Allesøe, R.L.; Lemvigh, C.K.; Aarestrup, F.M.; Lund, O.; Larsen, A.R. SCCmecFinder, a web-based tool for typing of staphylococcal cassette chromosome mec in Staphylococcus aureus using whole-genome sequence data. mSphere 2018, 3, e00612-17. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
Antimicrobial | Isolate | |||||
---|---|---|---|---|---|---|
Hemolytic MRSA Isolate SA37 | Nonhemolytic MRSA Isolate SA36 | S. pseudintermedius | ||||
MIC (µg/mL) | S/R | MIC (µg/mL) | S/R | MIC (µg/mL) | S/R | |
Ampicillin | 8 | R | 4 | R | ≤0.125 | S |
Cefoxitin | >6 | R | >6 | R | ≤6 | / |
Chloramphenicol | 8 | S | 8 | S | 8 | S |
Ciprofloxacin | ≤1 | S | ≤1 | S | ≤1 | S |
Clindamycin | ≤0.5 | S | ≤0.5 | S | ≤0.5 | S |
Daptomycin | ≤0.5 | S | ≤0.5 | S | ≤0.5 | S |
Erythromycin | ≤0.25 | S | ≤0.25 | S | 0.5 | S |
Gentamycin | ≤2 | S | ≤2 | S | ≤2 | S |
Levofloxacin | ≤0.25 | S | ≤0.25 | S | ≤0.25 | S |
Linezolid | ≤1 | S | ≤1 | S | ≤1 | S |
Moxifloxacin | ≤0.25 | S | ≤0.25 | S | ≤0.25 | S |
Nitrofurantoin | ≤32 | S | ≤32 | S | ≤32 | S |
Oxacillin | >4 | R | >4 | R | ≤0.25 | S |
Penicillin | >8 | R | >8 | R | ≤0.06 | S |
Quinupristin/dalfopristin | ≤0.5 | S | ≤0.5 | S | ≤0.5 | S |
Rifampin | ≤0.5 | S | ≤0.5 | S | ≤0.5 | S |
Streptomycin | ≤1000 | S | ≤1000 | S | ≤1000 | S |
Tetracycline | ≤2 | S | ≤2 | S | ≤2 | S |
Tigecycline | 0.25 | S | 0.125 | S | ≤0.06 | S |
Trimethoprim/sulfamethoxazole | ≤0.5 | S | ≤0.5 | S | ≤0.5 | S |
Vancomycin | 0.5 | S | 0.5 | S | 0.5 | S |
Gene or Genotype (Isolates SA36 and SA37) | |
---|---|
mPCR | 16S rRNA, nuc, mecA |
spa type | t005 |
MLST ST (CC) | ST1327 (CC22) |
SCCmec type | IV |
agr type | I |
Resistance genes | blaZ, mecA (conferring resistance to β-lactams) |
Virulence genes | aur, hlgABC, sak, scn, seg, sei, sem, sen, seo, seu |
Position | CDS/Intergenic | Gene | Nucleotide: Isolate SA36 | Nucleotide: Isolate SA37 |
---|---|---|---|---|
1491402 | Intergenic | G | T | |
1765477 | CDS | cycA | G | T |
2329625 | Intergenic | G | A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avberšek, J.; Papić, B.; Kušar, D.; Erjavec, V.; Seme, K.; Golob, M.; Zdovc, I. Feline Otitis Externa Caused by Methicillin-Resistant Staphylococcus aureus with Mixed Hemolytic Phenotype and Overview of Possible Genetic Backgrounds. Antibiotics 2021, 10, 599. https://doi.org/10.3390/antibiotics10050599
Avberšek J, Papić B, Kušar D, Erjavec V, Seme K, Golob M, Zdovc I. Feline Otitis Externa Caused by Methicillin-Resistant Staphylococcus aureus with Mixed Hemolytic Phenotype and Overview of Possible Genetic Backgrounds. Antibiotics. 2021; 10(5):599. https://doi.org/10.3390/antibiotics10050599
Chicago/Turabian StyleAvberšek, Jana, Bojan Papić, Darja Kušar, Vladimira Erjavec, Katja Seme, Majda Golob, and Irena Zdovc. 2021. "Feline Otitis Externa Caused by Methicillin-Resistant Staphylococcus aureus with Mixed Hemolytic Phenotype and Overview of Possible Genetic Backgrounds" Antibiotics 10, no. 5: 599. https://doi.org/10.3390/antibiotics10050599
APA StyleAvberšek, J., Papić, B., Kušar, D., Erjavec, V., Seme, K., Golob, M., & Zdovc, I. (2021). Feline Otitis Externa Caused by Methicillin-Resistant Staphylococcus aureus with Mixed Hemolytic Phenotype and Overview of Possible Genetic Backgrounds. Antibiotics, 10(5), 599. https://doi.org/10.3390/antibiotics10050599