Choosing New Therapies for Gonorrhoea: We Need to Consider the Impact on the Pan-Neisseria Genome. A Viewpoint
Abstract
:1. Introduction
2. Contemporary Monospecies Approach
3. Pan-Neisseria Approach
4. Differences Stemming from Monospecies and Pan-Neisseria Approaches
5. Application of the Pan-Neisseria Approach to Novel Treatments
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AMR | antimicrobial resistance |
AZM | azithromycin |
CRO | ceftriaxone |
GASP | Global Gonococcal Antimicrobial Surveillance Programme |
NG | N. gonorrhoeae |
ZF | zoliflodacin |
References
- Harris, S.R.; Cole, M.J.; Spiteri, G.; Sánchez-Busó, L.; Golparian, D.; Jacobsson, S.; Goater, R.; Abudahab, K.; Yeats, C.A.; Bercot, B.; et al. Public health surveillance of multidrug-resistant clones of Neisseria gonorrhoeae in Europe: A genomic survey. Lancet Infect. Dis. 2018, 18, 758–768. [Google Scholar] [CrossRef]
- Kenyon, C.; Buyze, J.; Wi, T. Antimicrobial Consumption and Susceptibility of Neisseria gonorrhoeae: A Global Ecological Analysis. Front. Med. 2018, 5. [Google Scholar] [CrossRef] [PubMed]
- Lahra, M.M.; Enriquez, R. Australian Gonococcal Surveillance Programme Annual Report, 2016. Commun. Dis. Intell. 2018, 42. [Google Scholar] [CrossRef]
- Yin, Y.-P.; Han, Y.; Dai, X.-Q.; Zheng, H.-P.; Chen, S.-C.; Zhu, B.-Y.; Yong, G.; Zhong, N.; Hu, L.-H.; Cao, W.-L.; et al. Susceptibility of Neisseria gonorrhoeae to azithromycin and ceftriaxone in China: A retrospective study of national surveillance data from 2013 to 2016. PLoS Med. 2018, 15, e1002499. [Google Scholar] [CrossRef] [Green Version]
- Wi, T.; Lahra, M.M.; Ndowa, F.; Bala, M.; Dillon, J.-A.R.; Ramon-Pardo, P.; Eremin, S.R.; Bolan, G.; Unemo, M. Antimicrobial resistance in Neisseria gonorrhoeae: Global surveillance and a call for international collaborative action. PLoS Med. 2017, 14, e1002344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unemo, M.; Ross, J.; Serwin, A.; Gomberg, M.; Cusini, M.; Jensen, J. Background review for the ‘2020 European guideline for the diagnosis and treatment of gonorrhoea in adults’. Int. J. STD AIDS 2021, 32, 108–126. [Google Scholar] [CrossRef]
- Carpenter, C.M.; Bahn, J.M.; Ackerman, H.; Stokinger, H.E. Adaptability of Gonocoecus to Four Bacteriostatic Agents, Sodium Sulfathiazole, Rivanol Lactate, Promin, and Penicillin. Exp. Biol. Med. 1945, 60, 168–171. [Google Scholar] [CrossRef]
- St. Cyr, S.; Barbee, L.; Workowski, K.A.; Bachmann, L.H.; Pham, C.; Schlanger, K.; Torrone, E.; Weinstock, H.; Kersh, E.N.; Thorpe, P. Update to CDC’s Treatment Guidelines for Gonococcal Infection, 2020. MMWR. Morb. Mortal. Wkly. Rep. 2020, 69, 1911–1916. [Google Scholar]
- Kenyon, C.R.; Schwartz, I.S. Effects of Sexual Network Connectivity and Antimicrobial Drug Use on Antimicrobial Resistance inNeisseria gonorrhoeae. Emerg. Infect. Dis. 2018, 24, 1195–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dye, C.; Williams, B.G. The Population Dynamics and Control of Tuberculosis. Science 2010, 328, 856–861. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.; Streicher, E.M.; Louw, G.E.; Warren, R.M.; van Helden, P.D.; Victor, T.C. Drug resistance in Mycobacterium tuberculosis. Curr. Issues Mol. Biol. 2006, 8, 97–111. [Google Scholar] [PubMed]
- Worthington, R.J.; Melander, C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol. 2013, 31, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipsitch, M.; Samore, M.H. Antimicrobial Use and Antimicrobial Resistance: A Population Perspective. Emerg. Infect. Dis. 2002, 8, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.V.; Pham, L.Q.; Nguyen, H.T.; Nguyen, M.X.B.; Nguyen, T.V.; May, F.; Le, G.M.; Klausner, J.D. Decreased Cephalosporin Susceptibility of Oropharyngeal Neisseria Species in Antibiotic-using Men Who Have Sex With Men in Hanoi, Vietnam. Clin. Infect. Dis. 2020, 70, 1169–1175. [Google Scholar] [CrossRef]
- Laumen, J.G.E.; Van Dijck, C.; Abdellati, S.; Manoharan-Basil, S.S.; De Baetselier, I.; Martiny, D.; Crucitti, T.; Kenyon, C. Markedly Reduced Azithromycin and Ceftriaxone Susceptibility in Commensal Neisseria Species in Clinical Samples From Belgian Men Who Have Sex With Men. Clin. Infect. Dis. 2021, 72, 363–364. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, C.; Zhang, X.; Chen, M. Meningococcal Quinolone Resistance Originated from Several Commensal Neisseria Species. Antimicrob. Agents Chemother. 2019, 64. [Google Scholar] [CrossRef]
- Ito, M.; Deguchi, T.; Mizutani, K.-S.; Yasuda, M.; Yokoi, S.; Ito, S.-I.; Takahashi, Y.; Ishihara, S.; Kawamura, Y.; Ezaki, T. Emergence and Spread of Neisseria gonorrhoeae Clinical Isolates Harboring Mosaic-Like Structure of Penicillin-Binding Protein 2 in Central Japan. Antimicrob. Agents Chemother. 2005, 49, 137–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadsworth, C.B.; Arnold, B.J.; Sater, M.R.A.; Grad, Y.H. Azithromycin Resistance through Interspecific Acquisition of an Epistasis-Dependent Efflux Pump Component and Transcriptional Regulator inNeisseria gonorrhoeae. mBio 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banhart, S.; Selb, R.; Oehlmann, S.; Bender, J.; Buder, S.; Jansen, K.; Heuer, D. The mosaic mtr locus as major genetic determinant of azithromycin resistance of Neisseria gonorrhoeae, Germany, 2018. J. Infect. Dis. 2021. [Google Scholar] [CrossRef] [PubMed]
- Yahara, K.; Nakayama, S.-I.; Shimuta, K.; Lee, K.-I.; Morita, M.; Kawahata, T.; Kuroki, T.; Watanabe, Y.; Ohya, H.; Yasuda, M.; et al. Genomic surveillance of Neisseria gonorrhoeae to investigate the distribution and evolution of antimicrobial-resistance determinants and lineages. Microb. Genom. 2018, 4, e000205. [Google Scholar] [CrossRef]
- Mechergui, A.; Achour, W.; Ben Hassen, A. Antibiotic resistance among commensal Neisseria species. Rev. Med Microbiol. 2014, 25, 93–99. [Google Scholar] [CrossRef]
- Furuya, R.; Tanaka, M.; Onoye, Y.; Kanayama, A.; Saika, T.; Iyoda, T.; Tatewaki, M.; Matsuzaki, K.; Kobayashi, I. Antimicrobial resistance in clinical isolates of Neisseria subflava from the oral cavities of a Japanese population. J. Infect. Chemother. 2007, 13, 302–304. [Google Scholar] [CrossRef]
- Sato-Suzuki, Y.; Washio, J.; Wicaksono, D.P.; Sato, T.; Fukumoto, S.; Takahashi, N. Nitrite-producing oral microbiome in adults and children. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Aas, J.A.; Paster, B.J.; Stokes, L.N.; Olsen, I.; Dewhirst, F.E. Defining the Normal Bacterial Flora of the Oral Cavity. J. Clin. Microbiol. 2005, 43, 5721–5732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willis, J.R.; Gabaldón, T. The Human Oral Microbiome in Health and Disease: From Sequences to Ecosystems. Microorganisms 2020, 8, 308. [Google Scholar] [CrossRef] [Green Version]
- Yolken, R.; Prandovszky, E.; Severance, E.G.; Hatfield, G.; Dickerson, F. The oropharyngeal microbiome is altered in individuals with schizophrenia and mania. Schizophr. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Barbadoro, P.; Ponzio, E.; Coccia, E.; Prospero, E.; Santarelli, A.; Rappelli, G.G.; D’Errico, M.M. Association between hypertension, oral microbiome and salivary nitric oxide: A case-control study. Nitric Oxide 2021, 106, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Kraal, L.; Abubucker, S.; Kota, K.; Fischbach, M.A.; Mitreva, M. The Prevalence of Species and Strains in the Human Microbiome: A Resource for Experimental Efforts. PLoS ONE 2014, 9, e97279. [Google Scholar] [CrossRef] [Green Version]
- de Block, T.; Laumen, J.G.E.; Van Dijck, C.; Abdellati, S.; De Baetselier, I.; Manoharan-Basil, S.S.; Van den Bossche, D.; Kenyon, C. Wgs of commensal neisseria reveals acquisition of a new ribosomal protection protein (Msrd) as a possible explanation for high level azithromycin resistance in Belgium. Pathogens 2021, 10, 384. [Google Scholar] [CrossRef]
- Tedijanto, C.; Olesen, S.W.; Grad, Y.H.; Lipsitch, M. Estimating the proportion of bystander selection for antibiotic resistance among potentially pathogenic bacterial flora. Proc. Natl. Acad. Sci. USA 2018, 115, E11988–E11995. [Google Scholar] [CrossRef] [Green Version]
- Van Dijck, C.; Laumen, J.G.E.; Manoharan-Basil, S.S.; Kenyon, C. Commensal Neisseria Are Shared between Sexual Partners: Implications for Gonococcal and Meningococcal Antimicrobial Resistance. Pathogens 2020, 9, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kort, R.; Caspers, M.; Van De Graaf, A.; Van Egmond, W.; Keijser, B.; Roeselers, G. Shaping the oral microbiota through intimate kissing. Microbiome 2014, 2, 41. [Google Scholar] [CrossRef] [Green Version]
- Kenyon, C.; De Baetselier, I.; Wouters, K. Screening for STIs in PrEP cohorts results in high levels of antimicrobial consumption. Int. J. STD AIDS 2020, 31, 1215–1218. [Google Scholar] [CrossRef]
- Kenyon, C. We need to consider collateral damage to resistomes when we decide how frequently to screen for chlamydia/gonorrhoea in PrEP cohorts. AIDS 2019, 33, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, C.; Manoharan-Basil, S.S.; Van Dijck, C. Is There a Resistance Threshold for Macrolide Consumption? Positive Evidence from an Ecological Analysis of Resistance Data from Streptococcus pneumoniae, Treponema pallidum, and Mycoplasma genitalium. Microb. Drug Resist. 2021. [Google Scholar] [CrossRef] [PubMed]
- Abdelatti, S.; Gonzales, N.; De Block, T.; Manoharan-Basil, S.; Laumen, J.; De Baetselier, I.; Kenyon, C. Intraspecies transformation of msrD gene conferring high-level macrolide resistance in Neisseria subflava. In Proceedings of the ECCMID, 9–12 July 2021. [Google Scholar]
- Malhotra-Kumar, S.; Lammens, C.; Coenen, S.; Van Herck, K.; Goossens, H. Effect of azithromycin and clarithromycin therapy on pharyngeal carriage of macrolide-resistant streptococci in healthy volunteers: A randomised, double-blind, placebo-controlled study. Lancet 2007, 369, 482–490. [Google Scholar] [CrossRef]
- Doan, T.; Worden, L.; Hinterwirth, A.; Arzika, A.M.; Maliki, R.; Abdou, A.; Zhong, L.; Chen, C.; Cook, C.; LeBas, E.; et al. Macrolide and Nonmacrolide Resistance with Mass Azithromycin Distribution. N. Engl. J. Med. 2020, 383, 1941–1950. [Google Scholar] [CrossRef]
- Jakobsson, H.E.; Jernberg, C.; Andersson, A.F.; Sjölund-Karlsson, M.; Jansson, J.K.; Engstrand, L. Short-Term Antibiotic Treatment Has Differing Long-Term Impacts on the Human Throat and Gut Microbiome. PLoS ONE 2010, 5, e9836. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.Y.S.; Horner, P.; Unemo, M.; Hocking, J.S. Pharmacokinetic considerations regarding the treatment of bacterial sexually transmitted infections with azithromycin: A review. J. Antimicrob. Chemother. 2019, 74, 1157–1166. [Google Scholar] [CrossRef]
- Lanjouw, E.; Ouburg, S.; De Vries, H.; Stary, A.; Radcliffe, K.; Unemo, M. 2015 European guideline on the management of Chlamydia trachomatis infections. Int. J. STD AIDS 2015, 27, 333–348. [Google Scholar] [CrossRef]
- Woodhead, M. Community-acquired pneumonia guidelines—An international comparison: A view from Europe. Chest 1998, 113, 183S–187S. [Google Scholar] [CrossRef]
- Jensen, J.; Cusini, M.; Gomberg, M.; Moi, H. 2016 European guideline on Mycoplasma genitalium infections. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 1650–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, A.; Cleary, D.W.; Laver, J.R.; Gorringe, A.; Deasy, A.M.; Dale, A.P.; Morris, P.D.; Didelot, X.; Maiden, M.C.J.; Read, R.C. Microevolution of Neisseria lactamica during nasopharyngeal colonisation induced by controlled human infection. Nat. Commun. 2018, 9, 4753. [Google Scholar] [CrossRef]
- Osnes, M.N.; van Dorp, L.; Brynildsrud, O.B.; Alfsnes, K.; Schneiders, T.; Templeton, K.E.; Yahara, K.; Balloux, F.; Caugant, D.A.; Eldholm, V. Antibiotic Treatment Regimes as a Driver of the Global Population Dynamics of a Major Gonorrhea Lineage. Mol. Biol. Evol. 2021, 38, 1249–1261. [Google Scholar] [CrossRef]
- Kenyon, C.; Laumen, J.; Van Dijck, C.; De Baetselier, I.; Abdelatti, S.; Manoharan-Basil, S.S.; Unemo, M. Gonorrhoea treatment combined with population-level general cephalosporin and quinolone consumption may select for Neisseria gonorrhoeae antimicrobial resistance at the levels of NG-MAST genogroup: An ecological study in Europe. J. Glob. Antimicrob. Resist. 2020, 23, 377–384. [Google Scholar] [CrossRef]
- Unemo, M.; Ahlstrand, J.; Sánchez-Busó, L.; Day, M.; Aanensen, D.; Golparian, D.; Jacobsson, S.; Cole, M.J.; Torreblanca, R.A.; Ásmundsdóttir, L.R.; et al. High susceptibility to zoliflodacin and conserved target (GyrB) for zoliflodacin among 1209 consecutive clinical Neisseria gonorrhoeae isolates from 25 European countries, 2018. J. Antimicrob. Chemother. 2021, 76, 1221–1228. [Google Scholar] [CrossRef]
- Foerster, S.; Drusano, G.; Golparian, D.; Neely, M.; Piddock, L.J.V.; Alirol, E.; Unemo, M. In vitro antimicrobial combination testing of and evolution of resistance to the first-in-class spiropyrimidinetrione zoliflodacin combined with six therapeutically relevant antimicrobials for Neisseria gonorrhoeae. J. Antimicrob. Chemother. 2019, 74, 3521–3529. [Google Scholar] [CrossRef] [PubMed]
- Foerster, S.; Golparian, D.; Jacobsson, S.; Hathaway, L.J.; Low, N.; Shafer, W.M.; Althaus, C.L.; Unemo, M. Genetic Resistance Determinants, In Vitro Time-Kill Curve Analysis and Pharmacodynamic Functions for the Novel Topoisomerase II Inhibitor ETX0914 (AZD0914) in Neisseria gonorrhoeae. Front. Microbiol. 2015, 6, 1377. [Google Scholar] [CrossRef] [PubMed]
- Alm, R.A.; Lahiri, S.D.; Kutschke, A.; Otterson, L.G.; McLaughlin, R.E.; Whiteaker, J.D.; Lewis, L.A.; Su, X.; Huband, M.D.; Gardner, H.; et al. Characterization of the Novel DNA Gyrase Inhibitor AZD0914: Low Resistance Potential and Lack of Cross-Resistance in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 2014, 59, 1478–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, D.A. The role of core groups in the emergence and dissemination of antimicrobial-resistantN gonorrhoeae. Sex. Transm. Infect. 2013, 89, iv47–iv51. [Google Scholar] [CrossRef]
- Baquero, F.; Cocque, T.M.; Canton, R. Allodemics. Lancet Infect. Dis. 2002, 2, 591–592. [Google Scholar] [CrossRef]
- Kenyon, C.; Manoharan-Basil, S.S.; Van Dijck, C. Gonococcal resistance can be viewed productively as part of a syndemic of antimicrobial resistance: An ecological analysis of 30 European countries. Antimicrob. Resist. Infect. Control. 2020, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Krieger, N. Epidemiology and the web of causation: Has anyone seen the spider? Soc. Sci. Med. 1994, 39, 887–903. [Google Scholar] [CrossRef]
- Susser, M.; Susser, E. Choosing a future for epidemiology: II. From black box to Chinese boxes and eco-epidemiology. Am. J. Public Health 1996, 86, 674–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Monospecies Approach | Pan-Neisseria Approach | |
---|---|---|
Conceptual framework | Monospecies conception: NG is a pathogen, and its control requires optimisation of seek and destroy activities. | Ecological conception: Commensal Neisseria are important constituents of a healthy microbiome and can be a source of AMR for NG and N. meningitidis. Excessive seek and destroy activities could induce AMR in commensals, which could be transferred to NG. |
Approach to dual therapy (ceftriaxone + azithromycin) vs. monotherapy (ceftriaxone) for NG | Treatment with dual therapy is favoured, as this is more likely to eradicate NG than monotherapy. | Dual therapy for NG is more likely to have a negative effect on commensals (composition and macrolide resistance) and hence, monotherapy may be preferable. |
AMR Surveillance | Surveillance in samples of NG is sufficient, e.g., Euro GASP, GRASP methodologies | Surveillance should be done in both NG and commensal Neisseria in core groups, e.g., culture/MIC of commensal Neisseria from throat swabs of 30 PrEP clients per centre once a year. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenyon, C.; Laumen, J.; Manoharan-Basil, S. Choosing New Therapies for Gonorrhoea: We Need to Consider the Impact on the Pan-Neisseria Genome. A Viewpoint. Antibiotics 2021, 10, 515. https://doi.org/10.3390/antibiotics10050515
Kenyon C, Laumen J, Manoharan-Basil S. Choosing New Therapies for Gonorrhoea: We Need to Consider the Impact on the Pan-Neisseria Genome. A Viewpoint. Antibiotics. 2021; 10(5):515. https://doi.org/10.3390/antibiotics10050515
Chicago/Turabian StyleKenyon, Chris, Jolein Laumen, and Sheeba Manoharan-Basil. 2021. "Choosing New Therapies for Gonorrhoea: We Need to Consider the Impact on the Pan-Neisseria Genome. A Viewpoint" Antibiotics 10, no. 5: 515. https://doi.org/10.3390/antibiotics10050515
APA StyleKenyon, C., Laumen, J., & Manoharan-Basil, S. (2021). Choosing New Therapies for Gonorrhoea: We Need to Consider the Impact on the Pan-Neisseria Genome. A Viewpoint. Antibiotics, 10(5), 515. https://doi.org/10.3390/antibiotics10050515