Antimicrobial Resistance Genes in ESBL-Producing Escherichia coli Isolates from Animals in Greece
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Antimicrobial Resistance of the ESBL-Producing E. coli
2.2. Genotype of the ESBL-Producing E. coli
2.3. Mobile Genetic Elements
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Isolation, Identification, and Antimicrobial Resistance Phenotype of ESBL-Producing Ε. coli
4.3. Phenotypic Confirmation of ESBL Production
4.4. Molecular Genotyping of the ESBL-Producing E. coli
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bush, K.; Jacoby, G.A.; Medeiros, A.A. A Functional Classification Scheme For-Lactamases and Its Correlation with Molecular Structure. Antimicrob. Agents Chemother. 1995, 39, 1211. [Google Scholar] [CrossRef] [Green Version]
- Ambler, R.P. The Structure of β-Lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1980, 289, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the US; US Department of Health and Human Services: Washington, DC, USA, 2019. [CrossRef] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Kattula, D.; Burkert, F. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Ali, T.; Ali, I.; Khan, N.A.; Han, B.; Gao, J. The Growing Genetic and Functional Diversity of Extended Spectrum Beta-Lactamases. Biomed. Res. Int. 2018, 2018, 9519718. [Google Scholar] [CrossRef]
- Peirano, G.; Pitout, J.D.D. Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: Update on Molecular Epidemiology and Treatment Options. Drugs 2019, 79, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, G.A.; Sutton, L. Properties of Plasmids Responsible for Production of Extended-Spectrum Beta-Lactamases. Antimicrob. Agents Chemother. 1991, 35, 164–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canton, R.; Gonzalez-Alba, J.M.; Galán, J.C. CTX-M Enzymes: Origin and Diffusion. Front. Microbiol. 2012, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doumith, M.; Dhanji, H.; Ellington, M.J.; Hawkey, P.; Woodford, N. Characterization of Plasmids Encoding Extended-Spectrum β-Lactamases and Their Addiction Systems Circulating among Escherichia coli Clinical Isolates in the UK. J. Antimicrob. Chemother. 2012, 67, 878–885. [Google Scholar] [CrossRef] [Green Version]
- Abayneh, M.; Tesfaw, G.; Abdissa, A. Isolation of Extended-Spectrum β-Lactamase-(ESBL-) Producing Escherichia coli and Klebsiella pneumoniae from Patients with Community-Onset Urinary Tract Infections in Jimma University Specialized Hospital, Southwest Ethiopia. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 4846159. [Google Scholar] [CrossRef] [Green Version]
- Bush, K.; Bradford, P.A. Epidemiology of β-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020, 33, e00047-19. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2017/2018; Wiley-Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2020; Volume 18. [Google Scholar]
- Madec, J.Y.; Haenni, M.; Nordmann, P.; Poirel, L. Extended-Spectrum β-Lactamase/AmpC-and Carbapenemase-Producing Enterobacteriaceae in Animals: A Threat for Humans? Clin. Microbiol. Infect. 2017, 23, 826–833. [Google Scholar] [CrossRef] [Green Version]
- Guyomard-Rabenirina, S.; Reynaud, Y.; Pot, M.; Albina, E.; Couvin, D.; Ducat, C.; Gruel, G.; Ferdinand, S.; Legreneur, P.; Le Hello, S.; et al. Antimicrobial Resistance in Wildlife in Guadeloupe (French West Indies): Distribution of a Single BlaCTX–M–1/IncI1/ST3 Plasmid Among Humans and Wild Animals. Front. Microbiol. 2020, 11, 1524. [Google Scholar] [CrossRef]
- Poeta, P.; Radhouani, H.; Pinto, L.; Martinho, A.; Rego, V.; Rodrigues, R.; Gonçalves, A.; Rodrigues, J.; Estepa, V.; Torres, C.; et al. Wild Boars as Reservoirs of Extended-Spectrum Beta-Lactamase (ESBL) Producing Escherichia coli of Different Phylogenetic Groups. J. Basic Microbiol. 2009, 49, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Brahmi, S.; Touati, A.; Dunyach-Remy, C.; Sotto, A.; Pantel, A.; Lavigne, J.-P. High Prevalence of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Wild Fish from the Mediterranean Sea in Algeria. Microbial. Drug Resist. 2018, 24, 290–298. [Google Scholar] [CrossRef]
- Darwich, L.; Vidal, A.; Seminati, C.; Albamonte, A.; Casado, A.; López, F.; Molina-López, R.A.; Migura-Garcia, L. High Prevalence and Diversity of Extended-Spectrum β-Lactamase and Emergence of OXA-48 Producing Enterobacterales in Wildlife in Catalonia. PLoS ONE 2019, 14, e0210686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephan, R.; Hächler, H. Discovery of Extended-Spectrum Beta-Lactamase Producing Escherichia coli among Hunted Deer, Chamois and Ibex. Schweizer Archiv für Tierheilkunde 2012, 154, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, Z.B.; Zeng, Z.L.; Yang, X.W.; Huang, Y.; Liu, J.H. The Role of Wildlife (Wild Birds) in the Global Transmission of Antimicrobial Resistance Genes. Zool. Res. 2017, 38, 55–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. Call of the Wild: Antibiotic Resistance Genes in Natural Environments. Nat. Rev. Microbiol. 2010, 8, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Fashae, K.; Engelmann, I.; Monecke, S.; Braun, S.D.; Ehricht, R. Molecular Characterisation of Extended-Spectrum ß-Lactamase Producing Escherichia coli in Wild Birds and Cattle, Ibadan, Nigeria. BMC Vet. Res. 2021, 17, 33. [Google Scholar] [CrossRef] [PubMed]
- Hasan, B.; Olsen, B.; Alam, A.; Akter, L.; Melhus, Å. Dissemination of the Multidrug-Resistant Extended-Spectrum β-Lactamase-Producing Escherichia coli O25b-ST131 Clone and the Role of House Crow (Corvus splendens) Foraging on Hospital Waste in Bangladesh. Clin. Microbiol. Infect. 2015, 21, 1000.e1–1000.e4. [Google Scholar] [CrossRef] [Green Version]
- Oteo, J.; Mencía, A.; Bautista, V.; Pastor, N.; Lara, N.; González-González, F.; García-Peña, F.J.; Campos, J. Colonization with Enterobacteriaceae-Producing ESBLs, AmpCs, and OXA-48 in Wild Avian Species, Spain 2015–2016. Microb. Drug Resist. 2018, 24, 932–938. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Antimicrobial Consumption in the EU and EEA: Annual Epidemiological Report 2019; European Centre for Disease Prevention and Control: Solna, Sweden, 2019. [Google Scholar]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—AER for 2019; European Centre for Disease Prevention and Control: Solna, Sweden, 2019. [Google Scholar]
- Karakonstantis, S.; Kalemaki, D. Antimicrobial Overuse and Misuse in the Community in Greece and Link to Antimicrobial Resistance Using Methicillin-Resistant S. aureus as an Example. J. Infect. Public Health 2019, 12, 460–464. [Google Scholar] [CrossRef]
- Mavroidi, A.; Liakopoulos, A.; Gounaris, A.; Goudesidou, M.; Gaitana, K.; Miriagou, V.; Petinaki, E. Successful Control of a Neonatal Outbreak Caused Mainly by ST20 Multidrug-Resistant SHV-5-Producing Klebsiella pneumoniae, Greece. BMC Pediatr. 2014, 14, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Papagiannitsis, C.C.; Tryfinopoulou, K.; Giakkoupi, P.; Pappa, O.; Polemis, M.; Tzelepi, E.; Tzouvelekis, L.S.; Vatopoulos, A.C.; Malamou-Lada, E.; Orfanidou, M.; et al. Diversity of Acquired β-Lactamases amongst Klebsiella pneumoniae in Greek Hospitals. Int. J. Antimicrob. Agents 2012, 39, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Neonakis, I.K.; Scoulica, E.V.; Dimitriou, S.K.; Gikas, A.I.; Tselentis, Y.J. Molecular Epidemiology of Extended-Spectrum β-Lactamases Produced by Clinical Isolates in a University Hospital in Greece: Detection of SHV-5 in Pseudomonas aeruginosa and Prevalence of SHV-12. Microb. Drug Resist. 2003, 9, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Liakopoulos, A.; Betts, J.; La Ragione, R.; van Essen-Zandbergen, A.; Ceccarelli, D.; Petinaki, E.; Koutinas, C.K.; Mevius, D.J. Occurrence and Characterization of Extended-Spectrum Cephalosporin-Resistant Enterobacteriaceae in Healthy Household Dogs in Greece. J. Med. Microbiol. 2018, 67, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Filioussis, G.; Kachrimanidou, M.; Christodoulopoulos, G.; Kyritsi, M.; Hadjichristodoulou, C.; Adamopoulou, M.; Tzivara, A.; Kritas, S.K.; Grinberg, A. Short Communication: Bovine Mastitis Caused by a Multidrug-Resistant, Mcr-1-Positive (Colistin-Resistant), Extended-Spectrum β-Lactamase–Producing Escherichia coli Clone on a Greek Dairy Farm. J. Dairy Sci. 2020, 103, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Politi, L.; Tassios, P.T.; Lambiri, M.; Kansouzidou, A.; Pasiotou, M.; Vatopoulos, A.C.; Mellou, K.; Legakis, N.J.; Tzouvelekis, L.S. Repeated Occurrence of Diverse Extended-Spectrum β-Lactamases in Minor Serotypes of Food-Borne Salmonella enterica Subsp. Enterica. J. Clin. Microbiol. 2005, 43, 3453–3456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazmierczak, K.M.; de Jonge, B.L.M.; Stone, G.G.; Sahm, D.F. Longitudinal Analysis of ESBL and Carbapenemase Carriage among Enterobacterales and Pseudomonas aeruginosa Isolates Collected in Europe as Part of the International Network for Optimal Resistance Monitoring (INFORM) Global Surveillance Programme, 2013–17. J. Antimicrob. Chemother. 2020, 75, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Pournaras, S.; Ikonomidis, A.; Kristo, I.; Tsakris, A.; Maniatis, A.N. CTX-M Enzymes Are the Most Common Extended-Spectrum β-Lactamases among Escherichia coli in a Tertiary Greek Hospital. J. Antimicrob. Chemother. 2004, 54, 574–575. [Google Scholar] [CrossRef] [PubMed]
- Mavroidi, A.; Miriagou, V.; Liakopoulos, A.; Tzelepi, V.; Stefos, A.; Dalekos, G.N.; Petinaki, E. Ciprofloxacin-Resistant Escherichia Coli in Central Greece: Mechanisms of Resistance and Molecular Identification. BMC Infect. Dis. 2012, 12, 371. [Google Scholar] [CrossRef] [Green Version]
- Pournaras, S.; Poulou, A.; Voulgari, E.; Vrioni, G.; Kristo, I.; Tsakris, A. Detection of the New Metallo-β-Lactamase VIM-19 along with KPC-2, CMY-2 and CTX-M-15 in Klebsiella pneumoniae. J. Antimicrob. Chemother. 2010, 65, 1604–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavroidi, A.; Tzelepi, E.; Miriagou, V.; Gianneli, D.; Legakis, N.J.; Tzouvelekis, L.S. CTX-M-3 β-Lactamase-Producing Escherichia coli from Greece. Microb. Drug Resist. 2002, 8, 35–37. [Google Scholar] [CrossRef] [PubMed]
- Umair, M.; Mohsin, M.; Ali, Q.; Qamar, M.U.; Raza, S.; Ali, A.; Guenther, S.; Schierack, P. Prevalence and Genetic Relatedness of Extended Spectrum-β-Lactamase-Producing Escherichia coli Among Humans, Cattle, and Poultry in Pakistan. Microb. Drug Resist. 2019, 25, 1374–1381. [Google Scholar] [CrossRef]
- Hesp, A.; Ter Braak, C.; van der Goot, J.; Veldman, K.; van Schaik, G.; Mevius, D. Antimicrobial Resistance Clusters in Commensal Escherichia coli from Livestock. Zoonoses Public Health 2021, 68, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Gundran, R.S.; Cardenio, P.A.; Salvador, R.T.; Sison, F.B.; Benigno, C.C.; Kreausukon, K.; Pichpol, D.; Punyapornwithaya, V. Prevalence, Antibiogram, and Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pig Farms in Luzon, Philippines. Microb. Drug Resist. 2020, 26, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Zurfluh, K.; Albini, S.; Mattmann, P.; Kindle, P.; Nüesch-Inderbinen, M.; Stephan, R.; Vogler, B.R. Antimicrobial Resistant and Extended-spectrum Β-lactamase Producing Escherichia coli in Common Wild Bird Species in Switzerland. MicrobiologyOpen 2019, 8, e845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.S.; Nayeem, M.M.H.; Sobur, M.A.; Ievy, S.; Islam, M.A.; Rahman, S.; Kafi, M.A.; Ashour, H.M.; Rahman, M.T. Virulence Determinants and Multidrug Resistance of Escherichia coli Isolated from Migratory Birds. Antibiotics 2021, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Bevan, E.R.; Jones, A.M.; Hawkey, P.M. Global Epidemiology of CTX-M β-Lactamases: Temporal and Geographical Shifts in Genotype. J. Antimicrob. Chemother. 2017, 72, 2145–2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantón, R.; Novais, A.; Valverde, A.; Machado, E.; Peixe, L.; Baquero, F.; Coque, T.M. Prevalence and Spread of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 2008, 14, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Seiffert, S.N.; Hilty, M.; Perreten, V.; Endimiani, A. Extended-Spectrum Cephalosporin-Resistant Gram-Negative Organisms in Livestock: An Emerging Problem for Human Health? Drug Resist. Updates 2013, 16, 22–45. [Google Scholar] [CrossRef] [PubMed]
- Falgenhauer, L.; Schwengers, O.; Schmiedel, J.; Baars, C.; Lambrecht, O.; Heß, S.; Berendonk, T.U.; Falgenhauer, J.; Chakraborty, T.; Imirzalioglu, C. Multidrug-Resistant and Clinically Relevant Gram-Negative Bacteria Are Present in German Surface Waters. Front. Microbiol. 2019, 10, 2779. [Google Scholar] [CrossRef]
- Woerther, P.-L.; Burdet, C.; Chachaty, E.; Andremont, A. Trends in Human Fecal Carriage of Extended-Spectrum β-Lactamases in the Community: Toward the Globalization of CTX-M. Clin. Microbiol. Rev. 2013, 26, 744–758. [Google Scholar] [CrossRef] [Green Version]
- Naseer, U.; Natås, O.B.; Haldorsen, B.C.; Bue, B.; Grundt, H.; Walsh, T.R.; Sundsfjord, A. Nosocomial Outbreak of CTX-M-15-Producing E. coli in Norway. APMIS 2007, 115, 120–126. [Google Scholar] [CrossRef]
- Mena, A.; Plasencia, V.; García, L.; Hidalgo, O.; Ayestarán, J.I.; Alberti, S.; Borrell, N.; Pérez, J.L.; Oliver, A. Characterization of a Large Outbreak by CTX-M-1-Producing Klebsiella Pneumoniae and Mechanisms Leading to In Vivo Carbapenem Resistance Development. J. Clin. Microbiol. 2006, 44, 2831–2837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papagiannitsis, C.C.; Študentová, V.; Jakubů, V.; Španělová, P.; Urbášková, P.; Žemličková, H.; Hrabák, J. High Prevalence of ST131 Among CTX-M-Producing Escherichia coli from Community-Acquired Infections, in the Czech Republic. Microb. Drug Resist. 2015, 21, 74–84. [Google Scholar] [CrossRef]
- Miyakis, S.; Pefanis, A.; Tsakris, A. The Challenges of Antimicrobial Drug Resistance in Greece. Clin. Infect. Dis. 2011, 53, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Meyer, E.; Gastmeier, P.; Kola, A.; Schwab, F. Pet Animals and Foreign Travel Are Risk Factors for Colonisation with Extended-Spectrum β-Lactamase-Producing Escherichia coli. Infection 2012, 40, 685–687. [Google Scholar] [CrossRef] [PubMed]
- Papanicolaou, G.A.; Medeiros, A.A.; Jacoby, G.A. Novel Plasmid-Mediated beta-Lactamase (MIR-1) Conferring Resistance to Oxyimino-and Alpha-Methoxy beta-Lactams in Clinical Isolates of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 1990, 34, 2200–2209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, B.A.; Amyes, S.G.B. OXA β-Lactamases. Clin. Microbiol. Rev. 2014, 27, 241–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Périchon, B.; Goussard, S.; Walewski, V.; Krizova, L.; Cerqueira, G.; Murphy, C.; Feldgarden, M.; Wortman, J.; Clermont, D.; Nemec, A.; et al. Identification of 50 Class D β-Lactamases and 65 Acinetobacter-Derived Cephalosporinases in Acinetobacter spp. Antimicrob. Agents Chemother. 2014, 58, 936–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Duijkeren, E.; Schwarz, C.; Bouchard, D.; Catry, B.; Pomba, C.; Baptiste, K.E.; Moreno, M.A.; Rantala, M.; Ružauskas, M.; Sanders, P.; et al. The Use of Aminoglycosides in Animals within the EU: Development of Resistance in Animals and Possible Impact on Human and Animal Health: A Review. J. Antimicrob. Chemother. 2019, 74, 2480–2496. [Google Scholar] [CrossRef] [PubMed]
- Founou, L.L.; Founou, R.C.; Allam, M.; Ismail, A.; Djoko, C.F.; Essack, S.Y. Genome Sequencing of Extended-Spectrum β-Lactamase (ESBL)-Producing Klebsiella pneumoniae Isolated from Pigs and Abattoir Workers in Cameroon. Front. Microbiol. 2018, 9, 188. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Aung, K.T.; Leekitcharoenphon, P.; Tay, M.Y.F.; Seow, K.L.G.; Zhong, Y.; Ng, L.C.; Aarestrup, F.M.; Schlundt, J. Prevalence and Genomic Analysis of ESBL-Producing Escherichia coli in Retail Raw Meats in Singapore. J. Antimicrob. Chemother. 2020, 76, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Tomaso, H.; Monecke, S.; El-Hofy, F.; Abdeltawab, A.; Hotzel, H.; Neubauer, H. Characterization of Enterococci-and ESBL-Producing Escherichia coli Isolated from Milk of Bovides with Mastitis in Egypt. Pathogens 2021, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- Braun, S.D.; Ahmed, M.F.E.; El-Adawy, H.; Hotzel, H.; Engelmann, I.; Weiß, D.; Monecke, S.; Ehricht, R. Surveillance of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Dairy Cattle Farms in the Nile Delta, Egypt. Front. Microbiol. 2016, 7, 1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adator, E.H.; Walker, M.; Narvaez-Bravo, C.; Zaheer, R.; Goji, N.; Cook, S.R.; Tymensen, L.; Hannon, S.J.; Church, D.; Booker, C.W.; et al. Whole Genome Sequencing Differentiates Presumptive Extended Spectrum beta-Lactamase Producing Escherichia coli along Segments of the One Health Continuum. Microorganisms 2020, 8, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Y.; Guo, S.; Seow, K.L.G.; Ming, G.O.H.; Schlundt, J. Characterization of Extended-Spectrum beta-Lactamase-Producing Escherichia coli Isolates from Jurong Lake, Singapore with Whole-Genome-Sequencing. Int. J. Environ. Res. Public Health 2021, 18, 937. [Google Scholar] [CrossRef]
- Vasilaki, O.; Ntokou, E.; Ikonomidis, A.; Sofianou, D.; Frantzidou, F.; Alexiou-Daniel, S.; Maniatis, A.N.; Pournaras, S. Emergence of the Plasmid-Mediated Quinolone Resistance Gene QnrS1 in Escherichia coli Isolates in Greece. Antimicrob. Agents Chemother. 2008, 52, 2996–2997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Önen, S.P.; Aslantaş, Ö.; Yılmaz, E.Ş.; Kürekci, C. Prevalence of β-Lactamase Producing Escherichia coli from Retail Meat in Turkey. J. Food Sci. 2015, 80, M2023–M2029. [Google Scholar] [CrossRef] [PubMed]
- Veldman, K.; van Tulden, P.; Kant, A.; Testerink, J.; Mevius, D. Characteristics of Cefotaxime-Resistant Escherichia coli from Wild Birds in The Netherlands. Appl. Environ. Microbiol. 2013, 79, 7556–7561. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liu, H.; Wang, L.; Peng, Q.; Li, Y.; Zhou, H.; Li, Q. Molecular Characterization of Extended-Spectrum β-Lactamase-Producing Multidrug Resistant Escherichia coli from Swine in Northwest China. Front. Microbiol. 2018, 9, 1756. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.-T.; Yang, Q.-E.; Li, L.; Sun, J.; Liao, X.-P.; Fang, L.-X.; Yang, S.-S.; Deng, H.; Liu, Y.-H. Dissemination and Characterization of Plasmids Carrying OqxAB-Bla CTX-M Genes in Escherichia coli Isolates from Food-Producing Animals. PLoS ONE 2013, 8, e73947. [Google Scholar] [CrossRef] [Green Version]
- Nirupama, K.R.; Or, V.K.; Pruthvishree, B.S.; Sinha, D.K.; Murugan, M.S.; Krishnaswamy, N.; Singh, B.R. Molecular Characterisation of BlaOXA-48 Carbapenemase-, Extended-Spectrum β-Lactamase-and Shiga Toxin-Producing Escherichia coli Isolated from Farm Piglets in India. J. Glob. Antimicrob. Resist. 2018, 13, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Karczmarczyk, M.; Martins, M.; Quinn, T.; Leonard, N.; Fanning, S. Mechanisms of Fluoroquinolone Resistance in Escherichia coli Isolates from Food-Producing Animals. Appl. Environ. Microbiol. 2011, 77, 7113–7120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, S.; Elbediwi, M.; Gu, G.; Yue, M. Genomic Characterization of New Variant of Hydrogen Sulfide (H2S)-Producing Escherichia coli with Multidrug Resistance Properties Carrying the Mcr-1 Gene in China. Antibiotics 2020, 9, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guenther, S.; Aschenbrenner, K.; Stamm, I.; Bethe, A.; Semmler, T.; Stubbe, A.; Stubbe, M.; Batsajkhan, N.; Glupczynski, Y.; Wieler, L.H.; et al. Comparable High Rates of Extended-Spectrum-beta-Lactamase-Producing Escherichia coli in Birds of Prey from Germany and Mongolia. PLoS ONE 2012, 7, e53039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohsin, M.; Raza, S.; Schaufler, K.; Roschanski, N.; Sarwar, F.; Semmler, T.; Schierack, P.; Guenther, S. High Prevalence of CTX-M-15-Type ESBL-Producing E. coli from Migratory Avian Species in Pakistan. Front. Microbiol. 2017, 8, 2476. [Google Scholar] [CrossRef]
- Rebbah, N.; Messai, Y.; Châtre, P.; Haenni, M.; Madec, J.Y.; Bakour, R. Diversity of CTX-M Extended-Spectrum β-Lactamases in Escherichia coli Isolates from Retail Raw Ground Beef: First Report of CTX-M-24 and CTX-M-32 in Algeria. Microb. Drug Resist. 2018, 24, 896–908. [Google Scholar] [CrossRef]
- Pungpian, C.; Sinwat, N.; Angkititrakul, S.; Prathan, R.; Chuanchuen, R. Presence and Transfer of Antimicrobial Resistance Determinants in Escherichia coli in Pigs, Pork, and Humans in Thailand and Lao PDR Border Provinces. Microb. Drug Resist. 2020, mdr.2019.0438. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Wang, W.; Qi, J.; Wang, D.; Xu, L.; Liu, Y.; Zhang, Y.; Guo, K. Diverse Gene Cassette Arrays Prevail in Commensal Escherichia coli from Intensive Farming Swine in Four Provinces of China. Front. Microbiol. 2020, 11, 565349. [Google Scholar] [CrossRef]
- Machado, E.; Cantón, R.; Baquero, F.; Galán, J.-C.; Rollán, A.; Peixe, L.; Coque, T.M. Integron Content of Extended-Spectrum-β-Lactamase-Producing Escherichia coli Strains over 12 Years in a Single Hospital in Madrid, Spain. Antimicrob. Agents Chemother. 2005, 49, 1823–1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leverstein-van Hall, M.A.; M. Blok, H.E.; T. Donders, A.R.; Paauw, A.; Fluit, A.C.; Verhoef, J. Multidrug Resistance among Enterobacteriaceae Is Strongly Associated with the Presence of Integrons and Is Independent of Species or Isolate Origin. J. Infect. Dis. 2003, 187, 251–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordmann, P.; Poirel, L. Emergence of Plasmid-Mediated Resistance to Quinolones in Enterobacteriaceae. J. Antimicrob. Chemother. 2005, 56, 463–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belaynehe, K.M.; Shin, S.W.; Yoo, H.S. Interrelationship between Tetracycline Resistance Determinants, Phylogenetic Group Affiliation and Carriage of Class 1 Integrons in Commensal Escherichia coli Isolates from Cattle Farms. BMC Vet. Res. 2018, 14, 340. [Google Scholar] [CrossRef]
- Zhao, W.-H.; Hu, Z.-Q. Epidemiology and Genetics of CTX-M Extended-Spectrum β-Lactamases in Gram-Negative Bacteria. Crit. Rev. Microbiol. 2013, 39, 79–101. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.-P.; Xia, J.; Yang, L.; Li, L.; Sun, J.; Liu, Y.-H.; Jiang, H.-X. Characterization of CTX-M-14-Producing Escherichia coli from Food-Producing Animals. Front. Microbiol. 2015, 6, 1136. [Google Scholar] [CrossRef] [Green Version]
- Braz, V.S.; Melchior, K.; Moreira, C.G. Escherichia coli as a Multifaceted Pathogenic and Versatile Bacterium. Front. Cell Infect. Microbiol. 2020, 10, 548492. [Google Scholar] [CrossRef]
- Pieri, A.; Aschbacher, R.; Fasani, G.; Mariella, J.; Brusetti, L.; Pagani, E.; Sartelli, M.; Pagani, L. Country Income Is Only One of the Tiles: The Global Journey of Antimicrobial Resistance among Humans, Animals, and Environment. Antibiotics 2020, 9, 473. [Google Scholar] [CrossRef]
- Holtmann, A.R.; Meemken, D.; Müller, A.; Seinige, D.; Büttner, K.; Failing, K.; Kehrenberg, C. Wild Boars Carry Extended-Spectrum β-Lactamase-and AmpC-Producing Escherichia coli. Microorganisms 2021, 9, 367. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Mir, R.A.; Park, S.H.; Kim, D.; Kim, H.Y.; Boughton, R.K.; Morris, J.G., Jr.; Jeong, K.C. Prevalence of Extended-Spectrum β-Lactamases in the Local Farm Environment and Livestock: Challenges to Mitigate Antimicrobial Resistance. Crit. Rev. Microbiol. 2020, 46, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mbanga, J.; Amoako, D.G.; Abia, A.L.K.; Allam, M.; Ismail, A.; Essack, S.Y. Genomic Insights of Multidrug-Resistant Escherichia coli from Wastewater Sources and Their Association with Clinical Pathogens in South Africa. Front. Vet. Sci. 2021, 8, 137. [Google Scholar] [CrossRef] [PubMed]
- Bonnedahl, J.; Järhult, J.D. Antibiotic Resistance in Wild Birds. Upsala J. Med Sci. 2014, 119, 113–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Martinez, L.; Cantón Spain, R.; Stefani, S.; Skov, R.; Glupczynski, Y.; Nordmann, P.; Wootton, M.; Miriagou, V.; Skov Simonsen, G. EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance. J. Infect. 2017, 72, 152–160. [Google Scholar]
- Braun, S.D.; Jamil, B.; Syed, M.A.; Abbasi, S.A.; Weiß, D.; Slickers, P.; Monecke, S.; Engelmann, I.; Ehricht, R. Prevalence of Carbapenemase-Producing Organisms at the Kidney Center of Rawalpindi (Pakistan) and Evaluation of an Advanced Molecular Microarray-Based Carbapenemase Assay. Future Microbiol. 2018, 13, 1225–1246. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Abricate, Github. Available online: https://github.com/tseemann/abricate (accessed on 19 January 2021).
Isolate 1 | Antimicrobial Resistance Phenotype | Antimicrobial Resistance Genotype | ||||||
---|---|---|---|---|---|---|---|---|
β-lactamases genes | Aminoglycoside Resistance Genes | PMQRGenes | Sulfonamide Resistance Genes | Trimethoprim Resistance Genes | Macrolide Resistance Genes | Genes Associated with Mobile Genetic Elements | ||
B1 | AMP, AMC, TCC, CEX, CF, CFP, CEF, CEQ, GEN, NEO, FLU, ENR, MRB, TET, SXT | blaCTX-M1/15, blaTEM | aadA1, aphA | - | sul1 | dfrA1 | - | intI1 |
B2 | AMP, AMC, TCC *, CEX, CF, CFP, CEF, CEQ, GEN, NEO, FLU, TET, SXT | blaCTX-M1/15, blaTEM | aadA1, aphA, strA, strB | - | sul1, sul2 | dfrA1 | mph | intI1 |
B3 | AMP, CEX, CF, CFP, CEF, CEQ, GEN, NEO *, TET, SXT | blaCTX-M1/15, blaTEM | aadA1, aadA2, aphA, strA, strB | - | sul1, sul2 | dfrA1 | - | intI1 |
B4 | AMP, CEX, CF, CFP, CEF, CEQ, GEN, NEO *, FLU, TET, SXT | blaCTX-M1/15, blaTEM, blaMIR | aadA1, aadA2, aphA, strA, strB | - | sul1, sul2, sul3 | dfrA1 | - | intI1 |
B5 | AMP, CEX, CF, CFP, CEF, CEQ, NEO, TET | blaCTX-M1/15, blaTEM | aphA, strA, strB | - | sul2 | - | - | tnpISEcp1 |
B6 | AMP, CEX, CF, CFP, CEF, CEQ, GEN, NEO, TET, SXT | blaCTX-M1/15, blaTEM | aadA1, aadA2, aphA, strA, strB | - | sul1, sul2 | dfrA1, dfrA5 | - | intI1 |
B7 | AMP, AMC, CEX, CF, CFP, CEF, CEQ, NEO *, FLU *, ENR *, TET, SXT | blaCTX-M1/15, blaTEM | aphA, strA, strB | qnrS | sul2 | - | - | tnpISEcp1 |
S1 | AMP, CEX, CF, CFP, CEF, CEQ, GEN, NEO *, FLU, ENR, MRB, TET | blaCTX-M1/15, blaTEM | aadA1, aphA, | - | sul2, sul3 | - | - | tnpISEcp1 |
S2 | AMP, CEX, CF, CFP, CEF, CEQ, TET, SXT | blaCTX-M1/15 | aadA1, aadA4 | - | sul1, sul2 | dfrA7, dfrA17, dfrA19 | - | intI1, tnpISEcp1 |
S3-1 | AMP, AMC, TCC *, CEX, CF, CFP, CEF, CEQ, GEN, FLU *, ENR *, TET, SXT | blaCTX-M1/15 | aadA1, aadA4 | qnrB | sul1 | dfrA1, dfrA7, dfrA17, dfrA19 | mph, mrx | intI1 |
S3-2 | AMP, AMC, TCC *, CEX, CF, CEF, CEQ, TET, SXT | blaCTX-M1/15, blaTEM | aadA1, strA, strB | - | sul1, sul2 | dfrA1, dfrA14, dfrA15 | mph, mrx | intI1 |
S3-3 | AMP, AMC, TCC, CEX, CF, CFP, CEF, CEQ, GEN, FLU, ENR *, TET, SXT | blaCTX-M1/15, blaTEM | aadA1, aadA2, aadA4, strA, strB | qnrB, qnrS | sul1, sul2 | dfrA1, dfrA7, dfrA12, dfrA17, dfrA19 | mph, mrx | intI1 |
S4-1 | AMP, CEX, CF, CFP, CEF, CEQ, TET, SXT | blaCTX-M1/15 | aadA1, aadA2 | - | sul1, sul2 | dfrA12 | - | intI1 |
S4-2 | AMP, CEX, CF, CFP, CEF, CEQ, TET, SXT | blaCTX-M1/15, blaTEM | aadA1, aadA2, aadA4 | - | sul1, sul2, sul3 | dfrA1, dfrA7, dfrA12, dfrA15, dfrA17, dfrA19 | - | intI1, tnpISEcp1 |
S5 | AMP, CEX, CF, CFP, CEF, CEQ, NEO *, FLU, ENR, MRB, TET, SXT | blaCTX-M1/15, blaTEM | aphA, strA, strB | - | sul2 | dfrA5 | - | intI1 |
S6 | AMP, AMC, TCC *, CEX, CF, CFP, CEF, CEQ, GEN, NEO *, FLU, ENR, MRB, TET, SXT | blaCTX-M1/15, blaTEM | aadA1, aadA2, aadA4, aphA, strA, strB | - | sul1, sul2,sul3 | dfrA1, dfrA7, dfrA12, dfrA14, dfrA17, dfrA19 | mph, mrx | intI1, tnpISEcp1 |
S7-1 | AMP, CEX, CF, CFP, CEF, CEQ, FLU *, ENR * | blaCTX-M1/15 | aadA2 | qnrS | - | - | mph, mrx | - |
S7-2 | AMP, CEX, CF, CFP, CEF, CEQ, TET | blaCTX-M1/15 | aadA2 | qnrS | - | - | mph, mrx | - |
WB1 | AMP, CEX, CF, CFP, CEF, CEQ, FLU, ENR *, TET, SXT | blaCTX-M-1/15 | aadA4, strA, strB | qnrS | sul1, sul2 | dfrA7, dfrA17, dfrA19 | mph, mrx | intI1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanasakopoulou, Z.; Reinicke, M.; Diezel, C.; Sofia, M.; Chatzopoulos, D.C.; Braun, S.D.; Reissig, A.; Spyrou, V.; Monecke, S.; Ehricht, R.; et al. Antimicrobial Resistance Genes in ESBL-Producing Escherichia coli Isolates from Animals in Greece. Antibiotics 2021, 10, 389. https://doi.org/10.3390/antibiotics10040389
Athanasakopoulou Z, Reinicke M, Diezel C, Sofia M, Chatzopoulos DC, Braun SD, Reissig A, Spyrou V, Monecke S, Ehricht R, et al. Antimicrobial Resistance Genes in ESBL-Producing Escherichia coli Isolates from Animals in Greece. Antibiotics. 2021; 10(4):389. https://doi.org/10.3390/antibiotics10040389
Chicago/Turabian StyleAthanasakopoulou, Zoi, Martin Reinicke, Celia Diezel, Marina Sofia, Dimitris C. Chatzopoulos, Sascha D. Braun, Annett Reissig, Vassiliki Spyrou, Stefan Monecke, Ralf Ehricht, and et al. 2021. "Antimicrobial Resistance Genes in ESBL-Producing Escherichia coli Isolates from Animals in Greece" Antibiotics 10, no. 4: 389. https://doi.org/10.3390/antibiotics10040389
APA StyleAthanasakopoulou, Z., Reinicke, M., Diezel, C., Sofia, M., Chatzopoulos, D. C., Braun, S. D., Reissig, A., Spyrou, V., Monecke, S., Ehricht, R., Tsilipounidaki, K., Giannakopoulos, A., Petinaki, E., & Billinis, C. (2021). Antimicrobial Resistance Genes in ESBL-Producing Escherichia coli Isolates from Animals in Greece. Antibiotics, 10(4), 389. https://doi.org/10.3390/antibiotics10040389