Serotyping and Evaluation of Antimicrobial Resistance of Salmonella Strains Detected in Wildlife and Natural Environments in Southern Italy
Abstract
:1. Introduction
2. Results
2.1. Serotyping
2.2. Antibiotic Susceptibility
3. Discussion
4. Material and Methods
4.1. Bacterial Strains
4.2. Serotyping
4.3. Antibiotic Susceptibility Testing
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Graziani, C.; Losasso, C.; Luzzi, I.; Ricci, A.; Scavia, G.; Pasquali, P. Salmonella, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780123850072. [Google Scholar] [CrossRef]
- Mąka, Ł.; Popowska, M. Antimicrobial resistance of Salmonella spp. isolated from food. Rocz. Panstw. Zakl. Hig. 2016, 67, 343–358. [Google Scholar]
- De Iovine, R.O.; Dejuste, C.; Miranda, F.; Filoni, C.; Bueno, M.G.; de Carvalho, V.M. Isolation of escherichia coli and salmonella spp. from free-ranging wild animals. Braz. J. Microbiol. 2015, 46, 1257–1263. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Simpson, K.M.J.; Hill-Cawthorne, G.A.; Ward, M.P.; Mor, S.M. Diversity of Salmonella serotypes from humans, food, domestic animals and wildlife in New South Wales, Australia 05 Environmental Sciences 0502 Environmental Science and Management 07 Agricultural and Veterinary Sciences 0707 Veterinary Sciences. BMC Infect. Dis. 2018, 18, 1–11. [Google Scholar] [CrossRef]
- Zottola, T.; Montagnaro, S.; Magnapera, C.; Sasso, S.; De Martino, L.; Bragagnolo, A.; D’Amici, L.; Condoleo, R.; Pisanelli, G.; Iovane, G.; et al. Prevalence and antimicrobial susceptibility of Salmonella in European wild boar (Sus scrofa); Latium Region -Italy. Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Tegegne, F.M. Epidemiology of Salmonella and its serotypes in human, food animals, foods of animal origin, animal feed and environment. J. Food Nutr. Heatlh 2019, 2, 7–14. [Google Scholar]
- Gortázar, C.; Ferroglio, E.; Höfle, U.; Frölich, K.; Vicente, J. Diseases shared between wildlife and livestock: A European perspective. Eur. J. Wildl. Res. 2007, 53, 241–256. [Google Scholar] [CrossRef]
- Khan, S.A.; Imtiaz, M.A.; Sayeed, M.A.; Shaikat, A.H.; Hassan, M.M. Antimicrobial resistance pattern in domestic animal—Wildlife-environmental niche via the food chain to humans with a Bangladesh perspective; A systematic review. BMC Vet. Res. 2020, 16, 1–13. [Google Scholar] [CrossRef]
- Muehlenbein, M.P. Disease and Human/Animal Interactions. Annu. Rev. Anthropol. 2016, 45, 395–416. [Google Scholar] [CrossRef]
- Caniça, M.; Manageiro, V.; Abriouel, H.; Moran-Gilad, J.; Franz, C.M.A.P. Antibiotic resistance in foodborne bacteria. Trends Food Sci. Technol. 2019, 84, 41–44. [Google Scholar] [CrossRef]
- Dias, D.; Torres, R.T.; Kronvall, G.; Fonseca, C.; Mendo, S.; Caetano, T. Assessment of antibiotic resistance of Escherichia coli isolates and screening of Salmonella spp. in wild ungulates from Portugal. Res. Microbiol. 2015, 166, 584–593. [Google Scholar] [CrossRef]
- Food, E.; Authority, S. The European Union One Health 2018 Zoonoses Report. EFSA J. 2019, 17. [Google Scholar] [CrossRef] [Green Version]
- Food, E.; Authority, S. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18. [Google Scholar] [CrossRef] [Green Version]
- Giacopello, C.; Foti, M.; Mascetti, A.; Grosso, F.; Ricciardi, D.; Fisichella, V.; Lo Piccolo, F. Antibiotico resistenza in ceppi di Enterobacteriaceae isolati da avifauna europea ricoverata presso un centro di recupero per la fauna selvatica. Vet. Ital. 2016, 52, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Lamon, S.; Piras, F.; Meloni, D.; Agus, V.; Porcheddu, G.; Pes, M.; Cambula, M.G.; Fois, F.; Consolati, G.; Mureddu, A. Enumeration of Escherichia coli and determination of Salmonella spp. and verotoxi- genic Escherichia coli in shellfish (Mytilus galloprovin-cialis and Ruditapes decussat-us) harvested in Sardinia, Italy. Ital. J. Food Saf. 2020, 9. [Google Scholar] [CrossRef]
- Peruzy, M.F.; Murru, N.; Yu, Z.; Kerkhof, P.; Neola, B.; Joossens, M.; Proroga, Y.T.R.; Houf, K. Assessment of microbial communities on freshly killed wild boar meat by MALDI-TOF MS and 16S rRNA amplicon sequencing. Int. J. Food Microbiol. 2019, 301, 51–60. [Google Scholar] [CrossRef]
- Nowakiewicz, A.; Zieba, P.; Ziółkowska, G.; Gnat, S.; Muszyńska, M.; Tomczuk, K.; Dziedzic, B.M.; Ulbrych, Ł.; Trościańczyk, A. Free-living species of carnivorous mammals in Poland: Red fox, beech marten, and raccoon as a potential reservoir of Salmonella, Yersinia, Listeria spp. and coagulase-positive Staphylococcus. PLoS ONE 2016, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Millán, J.; Aduriz, G.; Moreno, B.; Juste, R.A.; Barral, M. Salmonella isolates from wild birds and mammals in the Basque Country (Spain). OIE Rev. Sci. Technol. 2004, 23, 905–911. [Google Scholar] [CrossRef]
- Lamas, A.; Miranda, J.M.; Regal, P.; Vázquez, B.; Franco, C.M.; Cepeda, A. A comprehensive review of non-enterica subspecies of Salmonella enterica. Microbiol. Res. 2018, 206, 60–73. [Google Scholar] [CrossRef]
- Giner-Lamia, J.; Vinuesa, P.; Betancor, L.; Silva, C.; Bisio, J.; Soleto, L.; Chabalgoity, J.A.; Puente, J.L.; Soncini, F.C.; García-Vescovi, E.; et al. Genome analysis of Salmonella enterica subsp. diarizonae isolates from invasive human infections reveals enrichment of virulence-related functions in lineage ST1256. BMC Genom. 2019, 20, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Capuano, F.; Mancusi, A.; Capparelli, R.; Esposito, S.; Proroga, Y.T. Characterization of drug resistance and virulotypes of Salmonella strains isolated from food and humans. Foodborne Pathog. Dis. 2013, 10, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Silveira, L.; Pinto, M.; Isidro, J.; Pista, Â.; Themudo, P.; Vieira, L.; Machado, J.; Gomes, J.P. Multidrug-Resistant Salmonella enterica Serovar Rissen Clusters Detected in Azores Archipelago, Portugal. Int. J. Genom. 2019, 2019. [Google Scholar] [CrossRef]
- Thi, H.N.; Pham, T.; Turchi, B.; Fratini, F.; Ebani, V.V.; Cerri, D.; Bertelloni, F. Characterization of Salmonella spp. Isolates from Swine: Virulence and Antimicrobial Resistance. Animals 2020, 10, 2418. [Google Scholar]
- Agency, E.M. Answer to the request from the European Commission for updating the scientific advice on the impact on public health and animal health of the use of antibiotics in animals-Categorisation of antimicrobials Answer to the request from the European Commissi. Eur. Med. Agency 2019, 44, 1–67. [Google Scholar]
- Pezzella, C.; Ricci, A.; DiGiannatale, E.; Luzzi, I.; Carattoli, A. Tetracycline and Streptomycin Resistance Genes, Transposons, and Plasmids in Salmonella enterica Isolates from Animals in Italy. Antimicrob. Agents Chemother. 2004, 48, 903–908. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Chon, J.W.; Lim, J.S.; Song, B.R.; Seo, K.H.; Heo, E.J.; Park, H.J.; Wee, S.H.; Oh, D.H.; Moon, J.S. Traceback Investigation for Salmonella Contamination at Egg Processing Plants in South Korea: Prevalence, Antibiotic Resistance, and Epidemiological Tracing by Rep-PCR Fingerprinting. J. Food Sci. 2015, 80, M759–M764. [Google Scholar] [CrossRef] [PubMed]
- Proroga, Y.T.R.; Capuano, F.; Capparelli, R.; Bilei, S.; Bernardo, M.; Cocco, M.P.; Campagnuolo, R.; Pasquale, V. Characterization of non-typhoidal Salmonella enterica strains of human origin in central and southern Italy Medicine of the Lazio and Tuscany. Ital. J. Food Saf. 2018, 7. [Google Scholar] [CrossRef]
- Proroga, Y.T.R.; Capuano, F.; Carullo, M.R.; Tela, I.L.; Capparelli, R.; Barco, L.; Pasquale, V. Occurrenceand antimicrobial resistance of Salmonella strains from food of animal origin in southern Italy. Folia Microbiol. 2016, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Peruzy, M.F.; Capuano, F.; Proroga, Y.T.R.; Cristiano, D.; Carullo, M.R.; Murru, N. Antimicrobial susceptibility testing for salmonella serovars isolated from food samples: Five-year monitoring (2015–2019). Antibiotics 2020, 9, 365. [Google Scholar] [CrossRef] [PubMed]
- Bonardi, S.; Bolzoni, L.; Zanoni, R.G.; Morganti, M.; Corradi, M.; Gilioli, S.; Pongolini, S. Limited Exchange of Salmonella Among Domestic Pigs and Wild Boars in Italy. Ecohealth 2019, 16, 420–428. [Google Scholar] [CrossRef]
- Smaldone, G.; Marrone, R.; Cappiello, S.; Martin, G.A.; Oliva, G.; Cortesi, M.L.; Anastasio, A. Occurrence of antibiotic resistance in bacteria isolated from seawater organisms caught in Campania Region: Preliminary study. BMC Vet. Res. 2014, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Graczyk, T.K.; Conn, D.B. Molecular markers and sentinel organisms for environmental monitoring. Parasite 2008, 15, 458–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aung, K.T.; Chen, H.J.; Chau, M.L.; Yap, G.; Lim, X.F.; Humaidi, M.; Chua, C.; Yeo, G.; Yap, H.M.; Oh, J.Q.; et al. Salmonella in retail food and wild birds in singapore—Prevalence, antimicrobial resistance, and sequence types. Int. J. Environ. Res. Public Health 2019, 16, 4235. [Google Scholar] [CrossRef] [Green Version]
- Magnino, S.; Colin, P.; Dei-Cas, E.; Madsen, M.; McLauchlin, J.; Nöckler, K.; Prieto Maradona, M.; Tsigarida, E.; Vanopdenbosch, E.; Van Peteghem, C. Biological risks associated with consumption of reptile products. Int. J. Food Microbiol. 2009, 134, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Tennant, S.M.; Diallo, S.; Levy, H.; Livio, S.; Sow, S.O.; Tapia, M.; Fields, P.I.; Mikoleit, M.; Tamboura, B.; Kotloff, K.L.; et al. Identification by PCR of non-typhoidal Salmonella enterica serovars associated with invasive infections among febrile patients in Mali. PLoS Negl. Trop. Dis. 2010, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Barco, L.; Lettini, A.A.; Ramon, E.; Longo, A.; Saccardin, C.; Pozza, M.C.D.; Ricci, A. A rapid and sensitive method to identify and differentiate Salmonella enterica serotype Typhimurium and Salmonella enterica serotype 4, [5],12:i:-by combining traditional serotyping and multiplex polymerase Chain reaction. Foodborne Pathog. Dis. 2011, 8, 741–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formulae, A.; The, O.F. Antigenic Formulae of the Salmonella Serovars; WHO Collaborating Centre for Reference and Research on Salmonella: Paris, France, 2007. [Google Scholar]
- Proroga, Y.T.R.; Mancusi, A.; Peruzy, M.F.; Carullo, M.R.; Montone, A.M.I.; Fulgione, A.; Capuano, F. Characterization of Salmonella Typhimurium and its monophasic variant 1,4, [5],12:i:-isolated from different sources. Folia Microbiol. 2019, 64, 711–718. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.T.; Carmeli, Y.; Falagas, M.T.; Giske, C.T.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbial. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Source | Salmonella Enterica Subspecies | Total | |||||
---|---|---|---|---|---|---|---|
enterica | diarizonae | salamae | arizonae | houtenae | indica | ||
Amphibians | - | 2 | - | - | - | - | 2 |
Birds | 9 | 1 | - | - | - | - | 10 |
Environment | 16 | 2 | 1 | - | - | - | 19 |
Mammals | 49 | 5 | 6 | 1 | 1 | 1 | 63 |
Shellfish | 58 | - | - | - | - | - | 58 |
Snails | - | 3 | - | - | - | - | 3 |
Reptiles | 3 | 1 | 2 | 1 | 1 | - | 9 |
Total | 135 | 15 | 9 | 2 | 2 | 1 | 164 |
S. enterica Subspecies | Serotype or Antigenic Profile | N° of Isolates | N° of Resistant Isolates * |
---|---|---|---|
enterica | Napoli | 13 | 2 |
enterica | Typhimurium | 11 | 11 |
enterica | Enteritidis | 9 | 3 |
enterica | Rissen | 9 | 7 |
enterica | Derby | 8 | 5 |
enterica | Typhimurium M.V. | 7 | 7 |
enterica | Give | 7 | 4 |
enterica | Fischerhuette | 6 | 4 |
enterica | Kasenyi | 6 | 1 |
enterica | Infantis | 5 | 5 |
enterica | Brandenburg | 4 | 3 |
enterica | Anatum | 3 | 3 |
enterica | Livingstone | 3 | 3 |
enterica | Muenster | 3 | 2 |
enterica | Nottingham | 3 | 1 |
enterica | Ball | 2 | 0 |
enterica | Coeln | 2 | 1 |
enterica | Panama | 2 | 1 |
enterica | Goldcoast | 2 | 1 |
enterica | London | 2 | 1 |
enterica | Manhattan | 2 | 1 |
enterica | Umbilo | 2 | 0 |
enterica | Veneziana | 2 | 0 |
enterica | Bredeney | 1 | 1 |
enterica | Cerro | 1 | 0 |
enterica | Eastbourne | 1 | 0 |
enterica | Havana | 1 | 0 |
enterica | Kentucky | 1 | 0 |
enterica | Kottbus | 1 | 1 |
enterica | Litchfield | 1 | 1 |
enterica | Messina | 1 | 0 |
enterica | Montevideo | 1 | 0 |
enterica | Muenchen | 1 | 1 |
enterica | Newport | 1 | 1 |
enterica | Ohio | 1 | 1 |
enterica | Pomona | 1 | 1 |
enterica | Reading | 1 | 0 |
enterica | Saintpaul | 1 | 1 |
enterica | Stanley | 1 | 0 |
enterica | Stanleyville | 1 | 0 |
enterica | Tennessee | 1 | 1 |
enterica | Thompson | 1 | 1 |
enterica | Tinda | 1 | 1 |
enterica | Virchow | 1 | 1 |
enterica | Worthington | 1 | 1 |
diarizonae | 48:-:1,5 | 3 | 3 |
diarizonae | 59:-:en,x,z15 | 2 | 2 |
diarizonae | 65:-:z | 2 | 2 |
diarizonae | O:35:r:z35 | 2 | 2 |
diarizonae | 50:r:1,5 | 1 | 1 |
diarizonae | 60:k:z | 1 | 1 |
diarizonae | 61:i:z53 | 1 | 1 |
diarizonae | 61:k:1,5,7 | 1 | 1 |
diarizonae | 65:z10:e,n,x,z15 | 1 | 0 |
diarizonae | P:38:eh:1,5 | 1 | 1 |
salamae | 41:z:1,5 | 6 | 4 |
salamae | L:21:g,t:- | 1 | 1 |
salamae | S:41:z:1,5 | 1 | 1 |
salamae | S II:13,22:z29:1,5 | 1 | 1 |
houtenae | 38:z4z23:- | 2 | 2 |
arizonae | 48:z4,z23:- | 1 | 0 |
arizonae | 51:z4,z23:- | 1 | 1 |
indica | Y:48:z10:1,5 | 1 | 1 |
Source | β-lactams | Quinolones | Aminoglycosides | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Amp | Cef | Caz | Nal | Cip | Gen | Str | Clo | Cl | Sul | Tet | Suscept. 1 | |
Amphibians | - | - | - | - | - | - | 2 (100.0%) | - | - | - | - | - |
Birds | 1 (10.0%) | 1 (10.0%) | 1 (10.0%) | - | 1 (10.0%) | 1 (10.0%) | 3 (30.0%) | - | - | 2 (20.0%) | 4 (40.0%) | 3 (30.0%) |
Environment | 1 (5.3%) | 1 (5.3%) | - | 2 (10.5%) | 1 (5.3%) | - | 4 (21.0%) | - | - | - | 2 (10.5%) | 12 (63.1%) |
Mammals | 1 (1.6%) | 4 (6.3%) | 1 (1.6%) | 3 (4.8%) | 11 (17.5%) | 2 (3.2%) | 16 (25.4%) | 2 (3.2%) | 1 (1.6%) | 17 (27.0%) | 3 (4.8%) | 28 (44.4%) |
Reptiles | - | - | - | - | 1 (11.1%) | - | 7 (77.8%) | - | 1 (11.1%) | 2 (22.2%) | - | 2 (22.2%) |
Shellfish | 15 (25.9%) | 5 (8.6%) | 1 (1.7%) | 6 (10.3%) | 10 (17.2%) | 1 (1.7%) | 21 (36.2%) | 4 (6.9%) | - | 16 (27.6%) | 20 (34.5%) | 15 (25.9%) |
Snails | 1 (33.3%) | - | - | 1 (33.3%) | - | - | 3 (100.0%) | - | - | 1 (33.3%) | - | - |
Total | 19 (11.6%) | 11 (6.7%) | 3 (1.8%) | 12 (7.3%) | 24 (14.6%) | 4 (2.4%) | 56 (34.1%) | 6 (3.7%) | 2 (1.2%) | 38 (23.2%) | 29 (17.7%) | 60 (36.6%) |
Salmonella Subspecies | R-Type | N° Isolates |
---|---|---|
enterica;diarizonae; salamae; indica | Str | 29 |
enterica; salamae | Sul | 13 |
enterica | Amp; Sul; Tet; Str | 4 |
enterica | Cip | 4 |
enterica | Amp; Sul | 2 |
enterica | Amp; Tet; Str | 2 |
enterica; salamae | Cef; Cip | 2 |
enterica; diarizonae; houtenae | Sul; Str | 2 |
enterica | Sul;Tet | 2 |
enterica | Sul; Tet; Str | 2 |
enterica | Amp; Cef; | 2 |
diarizonae | Amp; Caz | 2 |
enterica | Amp; Clo; Sul; Tet | 2 |
diarizonae | Amp; Str | 2 |
enterica | Amp; Cip; Clo; Sul; Tet | 2 |
enterica | Amp; Cip; Sul; Tet; Str | 2 |
enterica | Amp; Cip; Tet; Str | 1 |
enterica | Cip; Sul; | 1 |
enterica | Cip; Tet; Str | 1 |
enterica | Cip;Tet | 1 |
enterica | Cl | 1 |
arizonae | Cl; Str | 1 |
enterica | Gen; Tet | 1 |
enterica | Tet | 1 |
enterica | Cef; Cip; Clo; Caz | 1 |
enterica | Cef; Cip; Str | 1 |
salamae | Cef; Cip; Sul | 1 |
enterica | Cef; Cip; Tet; Str | 1 |
salamae | Cip | 1 |
salamae | Cip; Str | 1 |
houtenae | Cip; Sul; Str | 1 |
salamae | Cip;Clo; Sul | 1 |
enterica | Clo;Gen | 1 |
enterica | Clo;Tet | 1 |
enterica | Nal | 1 |
enterica | Nal; Amp; Cef; | 1 |
enterica | Amp; Cef; | 1 |
enterica | Nal; Amp; Cef; Tet; Str | 1 |
enterica | Amp; Cef; Clo; Caz; | 1 |
enterica | Nal; Amp; Cef; Sul; Tet; Str | 1 |
enterica | Nal; Cip | 1 |
enterica | Nal; Cip; Sul;Tet | 1 |
enterica | Nal; Cip;Gen | 1 |
enterica | Nal; Tet | 1 |
enterica | Nal; Tet | 1 |
diarizonae | Nal; Sul; Str | 1 |
enterica; arizonae; diarizonae; salamae; indica; houtenae | susceptible | 60 |
Source | S. enterica Serovar | MDR Profile |
---|---|---|
Shellfish | Brandenburg | Cip-Amp-Str-Sul-Tet |
Shellfish | Brandenburg | Amp-Str-Sul-Tet |
Water | Infantis | Nal-Amp-Cef-Tet |
Mammals | Infantis | Nal-Amp-Caz-Cef-Str-Gen |
Mammals | Infantis | Amp-Str-Sul-Tet |
Mammals | Manhattan | Cip-Cef-Str-Tet |
Shellfish | Rissen | Cip-Amp-Clo-Sul-Tet |
Shellfish | Rissen | Nal-Amp-Cef-Str-Sul-Tet |
Shellfish | Rissen | Amp-Clo-Sul-Tet |
Shellfish | Typhimurium | Cip-Amp-Str-Tet |
Shellfish | Typhimurium | Cip-Caz-Cef-Clo |
Shellfish | Typhimurium M.V. | Amp-Str-Sul-Tet |
Shellfish | Typhimurium M.V. | Amp-Str-Sul-Tet |
Shellfish | Typhimurium M.V. | Amp-Str-Sul-Tet |
Shellfish | Virchow | Nal-Amp-Cef-Str-Tet |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Tela, I.; Peruzy, M.F.; D’Alessio, N.; Di Nocera, F.; Casalinuovo, F.; Carullo, M.R.; Cardinale, D.; Cristiano, D.; Capuano, F. Serotyping and Evaluation of Antimicrobial Resistance of Salmonella Strains Detected in Wildlife and Natural Environments in Southern Italy. Antibiotics 2021, 10, 353. https://doi.org/10.3390/antibiotics10040353
La Tela I, Peruzy MF, D’Alessio N, Di Nocera F, Casalinuovo F, Carullo MR, Cardinale D, Cristiano D, Capuano F. Serotyping and Evaluation of Antimicrobial Resistance of Salmonella Strains Detected in Wildlife and Natural Environments in Southern Italy. Antibiotics. 2021; 10(4):353. https://doi.org/10.3390/antibiotics10040353
Chicago/Turabian StyleLa Tela, Immacolata, Maria Francesca Peruzy, Nicola D’Alessio, Fabio Di Nocera, Francesco Casalinuovo, Maria Rosaria Carullo, Davide Cardinale, Daniela Cristiano, and Federico Capuano. 2021. "Serotyping and Evaluation of Antimicrobial Resistance of Salmonella Strains Detected in Wildlife and Natural Environments in Southern Italy" Antibiotics 10, no. 4: 353. https://doi.org/10.3390/antibiotics10040353
APA StyleLa Tela, I., Peruzy, M. F., D’Alessio, N., Di Nocera, F., Casalinuovo, F., Carullo, M. R., Cardinale, D., Cristiano, D., & Capuano, F. (2021). Serotyping and Evaluation of Antimicrobial Resistance of Salmonella Strains Detected in Wildlife and Natural Environments in Southern Italy. Antibiotics, 10(4), 353. https://doi.org/10.3390/antibiotics10040353