Migratory Wild Birds as a Potential Disseminator of Antimicrobial-Resistant Bacteria around Al-Asfar Lake, Eastern Saudi Arabia
Abstract
:1. Introduction
2. Results
2.1. Bacterial Isolates
2.2. Antimicrobial Susceptibility Test
2.3. Virulence and Antimicrobial Resistance Genes
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Birds and Sampling
4.3. Bacterial Isolation and Identification
4.4. Antimicrobial Susceptibility Test
4.5. Virulence and AMR Genes
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Ma, Z.-B.; Zeng, Z.-L.; Yang, X.-W.; Huang, Y.; Liu, J.-H. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zool. Res. 2017, 38, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthold, P. Bird Migration: A General Survey; Oxford University Press on Demand: Oxford, UK, 2001. [Google Scholar]
- Guenther, S.; Aschenbrenner, K.; Stamm, I.; Bethe, A.; Semmler, T.; Stubbe, A.; Stubbe, M.; Batsajkhan, N.; Glupczynski, Y.; Wieler, L.H. Comparable high rates of extended-spectrum-beta-lactamase-producing Escherichia coli in birds of prey from Germany and Mongolia. PLoS ONE 2012, 7, e53039. [Google Scholar]
- Nielsen, E.M.; Skov, M.N.; Madsen, J.J.; Lodal, J.; Jespersen, J.B.; Baggesen, D.L. Verocytotoxin-producing Escherichia coli in wild birds and rodents in close proximity to farms. Appl. Environ. Microbiol. 2004, 70, 6944–6947. [Google Scholar] [CrossRef] [Green Version]
- Reed, K.D.; Meece, J.K.; Henkel, J.S.; Shukla, S.K. Birds, migration and emerging zoonoses: West Nile virus, Lyme disease, influenza A and enteropathogens. Clin. Med. Res. 2003, 1, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Brittingham, M.C.; Temple, S.A.; Duncan, R.M. A survey of the prevalence of selected bacteria in wild birds. J. Wildl. Dis. 1988, 24, 299–307. [Google Scholar] [CrossRef]
- Waldenström, J.; Broman, T.; Carlsson, I.; Hasselquist, D.; Achterberg, R.P.; Wagenaar, J.A.; Olsen, B. Prevalence of Campylobacter jejuni, Campylobacter lari, and Campylobacter coli in different ecological guilds and taxa of migrating birds. Appl. Environ. Microbiol. 2002, 68, 5911–5917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benskin, C.M.H.; Wilson, K.; Jones, K.; Hartley, I.R. Bacterial pathogens in wild birds: A review of the frequency and effects of infection. Biol. Rev. 2009, 84, 349–373. [Google Scholar] [CrossRef]
- Tsiodras, S.; Kelesidis, T.; Kelesidis, I.; Bauchinger, U.; Falagas, M.E. Human infections associated with wild birds. J. Infect. 2008, 56, 83–98. [Google Scholar] [CrossRef]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Huang, Y.; Rao, D.; Zhang, Y.; Yang, K. Evidence for environmental dissemination of antibiotic resistance mediated by wild birds. Front. Microbiol. 2018, 9, 745. [Google Scholar] [CrossRef]
- Blanco, G.; López-Hernández, I.; Morinha, F.; López-Cerero, L. Intensive farming as a source of bacterial resistance to antimicrobial agents in sedentary and migratory vultures: Implications for local and transboundary spread. Sci. Total Environ. 2020, 739, 140356. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Skurnik, D.; Ruimy, R.; Andremont, A.; Amorin, C.; Rouquet, P.; Picard, B.; Denamur, E. Effect of human vicinity on antimicrobial resistance and integrons in animal faecal Escherichia coli. J. Antimicrob. Chemother. 2006, 57, 1215–1219. [Google Scholar] [CrossRef]
- Knapp, C.W.; Dolfing, J.; Ehlert, P.A.; Graham, D.W. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ. Sci. Technol. 2010, 44, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Dong, X.; Sun, R.; Wu, J.; Tian, L.; Rao, D.; Zhang, L.; Yang, K. Migratory birds-one major source of environmental antibiotic resistance around Qinghai Lake, China. Sci. Total Environ. 2020, 739, 139758. [Google Scholar] [CrossRef]
- Hussein, A.H.; El Mahmoudi, A.S.; Al Naeem, A.A. Assessment of the Heavy Metals in Al Asfar Lake, Al-Hassa, Saudi Arabia. Water Environ. Res. 2016, 88, 142–151. [Google Scholar]
- Cole, D.; Drum, D.; Stalknecht, D.E.; White, D.G.; Lee, M.D.; Ayers, S.; Sobsey, M.; Maurer, J.J. Free-living Canada geese and antimicrobial resistance. Emerg. Infect. Dis. 2005, 11, 935–938. [Google Scholar] [CrossRef] [PubMed]
- Kozak, G.K.; Boerlin, P.; Janecko, N.; Reid-Smith, R.J.; Jardine, C. Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Appl. Environ. Microbiol. 2009, 75, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Atterby, C.; Ramey, A.M.; Hall, G.G.; Järhult, J.; Börjesson, S.; Bonnedahl, J. Increased prevalence of antibiotic-resistant E. coli in gulls sampled in Southcentral Alaska is associated with urban environments. Infect. Ecol. Epidemiol. 2016, 6, 32334. [Google Scholar]
- Wang, W.; Zheng, S.; Sharshov, K.; Sun, H.; Yang, F.; Wang, X.; Li, L.; Xiao, Z. Metagenomic profiling of gut microbial communities in both wild and artificially reared Bar-headed goose (Anser indicus). Microbiol. Open 2017, 6, e00429. [Google Scholar] [CrossRef] [PubMed]
- Ramey, A.M.; Hernandez, J.; Tyrlöv, V.; Uher-Koch, B.D.; Schmutz, J.A.; Atterby, C.; Järhult, J.D.; Bonnedahl, J. Antibiotic-resistant Escherichia coli in migratory birds inhabiting remote Alaska. EcoHealth 2018, 15, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Marcelino, V.R.; Wille, M.; Hurt, A.C.; González-Acuña, D.; Klaassen, M.; Schlub, T.E.; Eden, J.-S.; Shi, M.; Iredell, J.R.; Sorrell, T.C. Meta-transcriptomics reveals a diverse antibiotic resistance gene pool in avian microbiomes. BMC Biol. 2019, 17, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abo-Amer, A.E.; Shobrak, M.Y. Antibiotic resistance and molecular characterization of Enterobacter cancerogenus isolated from wild birds in Taif province, Saudi Arabia. Thai J. Vet. Med. 2015, 45, 101. [Google Scholar]
- Albeshr, M.F.; Alrefaei, A.F. Isolation and characterization of novel Trichomonas gallinae ribotypes infecting Domestic and Wild birds in Riyadh, Saudi Arabia. Avian Dis. 2020, 64, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, N.S. Escherichia coli in Saudi Arabia: An Overview of Antibiotic-Resistant Strains. Biosci. Biotechnol. Res. Asia 2020, 17, 443–457. [Google Scholar] [CrossRef]
- Bonnedahl, J.; Järhult, J.D. Antibiotic resistance in wild birds. Upsala J. Med. Sci. 2014, 119, 113–116. [Google Scholar] [CrossRef] [Green Version]
- Zurfluh, K.; Albini, S.; Mattmann, P.; Kindle, P.; Nüesch-Inderbinen, M.; Stephan, R.; Vogler, B.R. Antimicrobial resistant and extended-spectrum β-lactamase producing Escherichia coli in common wild bird species in Switzerland. Microbiol. Open 2019, 8, e845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shobrak, M.Y.; Abo-Amer, A.E. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris. Braz. J. Microbiol. 2014, 45, 1199–1209. [Google Scholar] [CrossRef] [Green Version]
- Ong, K.H.; Khor, W.C.; Quek, J.Y.; Low, Z.X.; Arivalan, S.; Humaidi, M.; Chua, C.; Seow, K.L.; Guo, S.; Tay, M.Y. Occurrence and antimicrobial resistance traits of Escherichia coli from wild birds and rodents in Singapore. Int. J. Environ. Res. Public Health 2020, 17, 5606. [Google Scholar] [CrossRef] [PubMed]
- Aung, K.T.; Chen, H.J.; Chau, M.L.; Yap, G.; Lim, X.F.; Humaidi, M.; Chua, C.; Yeo, G.; Yap, H.M.; Oh, J.Q. Salmonella in retail food and wild birds in Singapore—Prevalence, antimicrobial resistance, and sequence types. Int. J. Environ. Res. Public Health 2019, 16, 4235. [Google Scholar] [CrossRef] [Green Version]
- Martín-Maldonado, B.; Vega, S.; Mencía-Gutiérrez, A.; Lorenzo-Rebenaque, L.; de Frutos, C.; González, F.; Revuelta, L.; Marin, C. Urban birds: An important source of antimicrobial resistant Salmonella strains in Central Spain. Comp. Immunol. Microbiol. Infect. Dis. 2020, 72, 101519. [Google Scholar] [CrossRef]
- Tizard, I. Salmonellosis in wild birds. Semin. Avian Exot. Pet Med. 2004, 13, 50–66. [Google Scholar] [CrossRef]
- Abulreesh, H.H.; Goulder, R.; Scott, G.W. Wild birds and human pathogens in the context of ringing and migration. Ringing Migr. 2007, 23, 193–200. [Google Scholar] [CrossRef]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.-N. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef]
- Hassan, S.A.; Shobrak, M.Y. Detection of genes mediating beta-lactamase production in isolates of enterobacteria recovered from wild pets in Saudi Arabia. Vet. World 2015, 8, 1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collignon, P.C.; Conly, J.M.; Andremont, A.; McEwen, S.A.; Aidara-Kane, A.; World Health Organization Advisory Group, Bogotá Meeting on Integrated Surveillance of Antimicrobial Resistance (WHO-AGISAR); Agerso, Y.; Andremont, A.; Collignon, P.; Conly, J.; et al. World Health Organization ranking of antimicrobials according to their importance in human medicine: A critical step for developing risk management strategies to control antimicrobial resistance from food animal production. Clin. Infect. Dis. 2016, 63, 1087–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, D.; Poeta, P.; Sáenz, Y.; Vinué, L.; Rojo-Bezares, B.; Jouini, A.; Zarazaga, M.; Rodrigues, J.; Torres, C. Detection of Escherichia coli harbouring extended-spectrum β-lactamases of the CTX-M, TEM and SHV classes in faecal samples of wild animals in Portugal. J. Antimicrob. Chemother. 2006, 58, 1311–1312. [Google Scholar] [CrossRef]
- Dolejska, M.; Masarikova, M.; Dobiasova, H.; Jamborova, I.; Karpiskova, R.; Havlicek, M.; Carlile, N.; Priddel, D.; Cizek, A.; Literak, I. High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia. J. Antimicrob. Chemother. 2016, 71, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Alzahrani, A.M.; Gherbawy, Y.A. Antibiotic resistance in Escherichia coli strains isolated from water springs in Al-Ahsa Region. Afr. J. Microbiol. Res. 2011, 5, 123–130. [Google Scholar]
- Martinez, J.; Baquero, F. Mutation frequencies and antibiotic resistance. Antimicrob. Agents Chemother. 2000, 44, 1771–1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiden, M.C. Horizontal genetic exchange, evolution, and spread of antibiotic resistance in bacteria. Clin. Infect. Dis. 1998, 27, S12–S20. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, H.; Kanazaki, M.; Hata, E.; Kubo, M. Prevalence and characteristics of eae-and stx-positive strains of Escherichia coli from wild birds in the immediate environment of Tokyo Bay. Appl. Environ. Microbiol. 2009, 75, 292–295. [Google Scholar] [CrossRef] [Green Version]
- Koochakzadeh, A.; Askari Badouei, M.; Zahraei Salehi, T.; Aghasharif, S.; Soltani, M.; Ehsan, M. Prevalence of Shiga toxin-producing and enteropathogenic Escherichia coli in wild and pet birds in Iran. Braz. J. Poult. Sci. 2015, 17, 445–450. [Google Scholar] [CrossRef]
- Prager, R.; Fruth, A.; Siewert, U.; Strutz, U.; Tschäpe, H. Escherichia coli encoding Shiga toxin 2f as an emerging human pathogen. Int. J. Med. Microbiol. 2009, 299, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Bertelloni, F.; Lunardo, E.; Rocchigiani, G.; Ceccherelli, R.; Ebani, V.V. Occurrence of Escherichia coli virulence genes in feces of wild birds from Central Italy. Asian Pac. J. Trop. Med. 2019, 12, 142. [Google Scholar]
- Pinto, L.; Radhouani, H.; Coelho, C.; da Costa, P.M.; Simões, R.; Brandão, R.M.; Torres, C.; Igrejas, G.; Poeta, P. Genetic detection of extended-spectrum β-lactamase-containing Escherichia coli isolates from birds of prey from Serra da Estrela natural reserve in Portugal. Appl. Environ. Microbiol. 2010, 76, 4118–4120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veldman, K.; van Tulden, P.; Kant, A.; Testerink, J.; Mevius, D. Characteristics of cefotaxime-resistant Escherichia coli from wild birds in the Netherlands. Appl. Environ. Microbiol. 2013, 79, 7556–7561. [Google Scholar] [CrossRef] [Green Version]
- Schaufler, K.; Semmler, T.; Wieler, L.H.; Wöhrmann, M.; Baddam, R.; Ahmed, N.; Müller, K.; Kola, A.; Fruth, A.; Ewers, C. Clonal spread and interspecies transmission of clinically relevant ESBL-producing Escherichia coli of ST410—another successful pandemic clone? Fems Microbiol. Ecol. 2016, 92, fiv155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stedt, J.; Bonnedahl, J.; Hernandez, J.; Waldenström, J.; McMahon, B.J.; Tolf, C.; Olsen, B.; Drobni, M. Carriage of CTX-M type extended spectrum β-lactamases (ESBLs) in gulls across Europe. Acta Vet. Scand. 2015, 57, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolejska, M.; Literak, I. Wildlife is overlooked in the epidemiology of medically important antibiotic-resistant bacteria. Antimicrob. Agents Chemother. 2019, 63, e01167-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, R.; Aspinall, S. Birds of the Middle East; Bloomsbury Publishing: London, UK, 2013. [Google Scholar]
- Popoff, M.Y.; Bockemühl, J.; Gheesling, L.L. Supplement 2002 (no. 46) to the Kauffmann–White scheme. Res. Microbiol. 2004, 155, 568–570. [Google Scholar] [CrossRef] [PubMed]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematic; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley and Sons: New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wayne, P.A. Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing: Twenty-fourth informational supplement, M100-S24. Clin. Lab. Stand. Inst. (CLSI) 2014, 34, 100–121. [Google Scholar]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.T.; Carmeli, Y.; Falagas, M.T.; Giske, C.T.; Harbarth, S.; Hindler, J.T.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Krumperman, P.H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Brian, M.; Frosolono, M.; Murray, B.; Miranda, A.; Lopez, E.; Gomez, H.; Cleary, T. Polymerase chain reaction for diagnosis of enterohemorrhagic Escherichia coli infection and hemolytic-uremic syndrome. J. Clin. Microbiol. 1992, 30, 1801–1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallien, P. Detection and Subtyping of ShigaToxin-Producing Escherichia coli (STEC). In PCR Detection of Microbial Pathogens; Springer: Berlin/Heidelberg, Germany, 2003; pp. 163–184. [Google Scholar]
- Pitout, J.; Thomson, K.; Hanson, N.D.; Ehrhardt, A.; Moland, E.; Sanders, C. β-Lactamases responsible for resistance to expanded-spectrum cephalosporins in Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis isolates recovered in South Africa. Antimicrob. Agents Chemother. 1998, 42, 1350–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitout, J.D.; Hossain, A.; Hanson, N.D. Phenotypic and molecular detection of CTX-M-β-lactamases produced by Escherichia coli and Klebsiella spp. J. Clin. Microbiol. 2004, 42, 5715–5721. [Google Scholar] [CrossRef] [Green Version]
- Van, T.T.H.; Chin, J.; Chapman, T.; Tran, L.T.; Coloe, P.J. Safety of raw meat and shellfish in Vietnam: An analysis of Escherichia coli isolations for antibiotic resistance and virulence genes. Int. J. Food Microbiol. 2008, 124, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Mammeri, H.; Van De Loo, M.; Poirel, L.; Martinez-Martinez, L.; Nordmann, P. Emergence of plasmid-mediated quinolone resistance in Escherichia coli in Europe. Antimicrob. Agents Chemother. 2005, 49, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Randall, L.; Cooles, S.; Osborn, M.; Piddock, L.; Woodward, M.J. Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. J. Antimicrob. Chemother. 2004, 53, 208–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, K.; Minamide, W.; Wada, K.; Nakamura, E.; Teraoka, H.; Watanabe, S. Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J. Clin. Microbiol. 1991, 29, 2240–2244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Bacteria Species | No. (%) of Bacterial Isolated | Total (n = 210) | |||
---|---|---|---|---|---|
Common Pochard (n = 50) | Pied Avocet (n = 30) | Little Grebe (n = 60) | Ruddy Shelduck (n = 70) | ||
E. coli | 20 (40.0) | 8 (30.0) | 27 (45.0) | 35 (50.0) | 90 (42.9) |
Salmonella | |||||
S. typhimurium | 1 (2.0) | 0 (0.0) | 2 (3.3) | 2 (2.9) | 5 (2.4) |
Staphylococcus | 37 (17.6) | ||||
St. aureus | 6 (12.0) | 3 (10.0) | 6 (10.0) | 5 (7.1) | 20 (9.5) |
St. intermedius | 0 (0.0) | 1 (3.3) | 1 (1.7) | 3 (4.3) | 5 (2.4) |
St. xylosus | 4 (8.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 4 (1.9) |
St. capitis | 1 (2.0) | 0 (0.0) | 1 (1.7) | 1 (1.4) | 3 (1.4) |
St. saccharolyticus | 1 (2.0) | 0 (0.0) | 1 (1.7) | 1 (1.4) | 3 (1.4) |
St. saprophyticus | 0 (0.0) | 0 (0.0) | 1 (1.7) | 1 (1.4) | 2 (1.0) |
Antimicrobials | No. of Resistant E. coli Isolates (%) | No. of Resistant Salmonella Isolates (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rank 1 | Class | Agents | n | Common Pochard | Pied Avocet | Little Grebe | Ruddy Shelduck | n | Common Pochard | Pied Avocet | Little Grebe | Ruddy Shelduck |
II | Penicillins | PEN | 37 | 8 (21.6) | 2 (5.4) | 8 (21.6) | 19 (51.4) | 1 | − | − | 1 (100.0) | − |
AMC | 8 | 0 (0.0) | 2 (25.0) | 2 (25.0) | 4 (50.0) | 0 | − | − | − | − | ||
I | Cephalosporins | CTX | 7 | 1 (14.3) | 2 (28.6) | 2 (28.6) | 2 (28.6) | 0 | − | − | − | − |
I | Carbapenem | IPM | 0 | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | − | − | − | − | |
I | Aminoglycoside | KAN | 19 | 4 (21.1) | 2 (10.5) | 4 (21.1) | 9 (47.4) | 1 | − | − | − | 1 (100.0) |
GEN | 11 | 3 (27.3) | 0 (0.0) | 2 (18.2) | 6 (54.5) | 0 | − | − | − | − | ||
II | Tetracycline | DOX | 13 | 3 (23.1) | 1 (7.7) | 5 (38.5) | 4 (30.8) | 1 | − | − | 1 (100.0) | − |
I | Quinolones | CIP | 5 | 0 (0.0) | 0 (0.0) | 1 (20.0) | 4 (80.0) | 0 | − | − | − | − |
II | Sulfonamide | SXT | 23 | 6 (26.1) | 1 (4.3) | 7 (30.4) | 9 (39.1) | 1 | − | − | − | − |
II | Amphenicols | CHL | 11 | 1 (9.1) | 1 (9.1) | 2 (18.2) | 7 (63.6) | 1 | − | − | − | 1 (100.0) |
Antimicrobials | No. of Resistant Staphylococcus Isolates (%) | ||||||
---|---|---|---|---|---|---|---|
Rank 1 | Class | Agents | n | Common Pochard | Pied Avocet | Little Grebe | Ruddy Shelduck |
II | Penicillins | PEN | 20 | 7 (35.0) | 2 (10.0) | 6 (30.0) | 5 (25.0) |
AMC | − | − | − | − | − | ||
OXA | − | − | − | − | − | ||
I | Cephalosporins | FOX | − | − | − | − | − |
I | Glycopeptides | VAN | − | − | − | − | − |
I | Aminoglycoside | GEN | 6 | 3 (50.0) | − | 2 (33.3) | 1 (16.7) |
I | Macrolide | ERY | 3 | 2 (66.7) | − | 1 (33.3) | − |
II | Tetracycline | DOX | 8 | 3 (37.5) | − | 2 (25.0) | 3 (37.5) |
I | Quinolones | CIP | 5 | − | 1 (20.0) | 2 (40.0) | 2 (40.0) |
II | Lincosamides | CLI | 2 | 1 (50.0) | − | 1 (50.0) | − |
II | Sulfonamide | SXT | 7 | 3 (42.9) | 1 (14.3) | − | 3 (42.9) |
Gene | Primer Sequences | Product Size (bp) | Annealing (°C) | Ref. |
---|---|---|---|---|
stx1 | fw: 5′-AAATCGCCATTCGTTGACTACTTCT-3′ | 370 | 60 | [59] |
rev: 5′-TGCCATTCTGGCAACTCGCGATGCA-3′ | ||||
stx2 | fw: 5′-CAGTCGTCACTCACTGGTTTCATCA-3′ | 283 | 60 | [59] |
rev: 5′-GGATATTCTCCCCACTCTGACACC-3′ | ||||
hlyA | fw: 5′-GGTGCAGCAGAAAAAGTTGTAG-3′ | 1551 | 57 | [60] |
rev: 5′-TCTCGCCTGATAGTGTTTGGTA-3′ | ||||
eaeA | fw: 5′-CCCGAATTCGGCACAAGCATAAGC-3′ | 863 | 52 | [60] |
rev: 5′-TCTCGCCTGATAGTGTTTGGTA-3′ | ||||
blaCTX-M-I | fw: 5′-GACGATGTCACTGGCTGAGC-3′ | 499 | 55 | [62] |
rev: 5′-AGCCGCCGACGCTAATACA- 3′ | ||||
blaCTX-M-II | fw: 5′-GCGACCTGGTTAACTACAATCC-3′ | 351 | 55 | [62] |
rev: 5′-CGGTAGTATTGCCCTTAAGCC -3′ | ||||
blaCTX-M-III | fw: 5′-CGCTTTGCCATGTGCAGCACC -3′ | 307 | 55 | [62] |
rev: 5′-GCTCAGTACGATCGAGCC -3′ | ||||
blaCTX-M-IV | fw: 5′-GCTGGAGAAAAGCAGCGGAG-3′ | 474 | 62 | [62] |
rev: 5′-GTAAGCTGACGCAACGTCTG -3′ | ||||
blaTEM | fw: 5′-GAGTATTCAACATTTTCGT -3′ | 857 | 58 | [63] |
rev: 5′-ACCAATGCTTAATCAGTGA -3′ | ||||
blaSHV | fw: 5′-TCGCCTGTGTATTATCTCCC-3′ | 768 | 52 | [63] |
rev: 5′-CGCAGATAAATCACCACAATG-3′ | ||||
aac(3)-IV | fw: 5′-CTTCAGGATGGCAAGTTGGT-3′ | 286 | 55 | [63] |
rev: 5′-TCATCTCGTTCTCCGCTCAT-3′ | ||||
aadA1 | fw: 5′-TATCCAGCTAAGCGCGAACT-3′ | 447 | 58 | [63] |
rev: 5′-ATTTGCCGACTACCTTGGTC-3′ | ||||
qnrA | fw: 5′-GGGTATGGATATTATTGATAAAG-3′ | 670 | 50 | [64] |
rev: 5′-CTAATCCGGCAGCACTATTTA-3′ | ||||
tet(A) | fw: 5′-GGTTCACTCGAACGACGTCA-3′ | 577 | 57 | [65] |
rev: 5′-CTGTCCGACAAGTTGCATGA-3′ | ||||
mecA | fw: 5′-AAAATCGATGGTAAAGGTTGGC-3′ | 530 | 55 | [66] |
rev: 5′-AG TTCTGCAGTACCGGATTTGC-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsohaby, I.; Samy, A.; Elmoslemany, A.; Alorabi, M.; Alkafafy, M.; Aldoweriej, A.; Al-Marri, T.; Elbehiry, A.; Fayez, M. Migratory Wild Birds as a Potential Disseminator of Antimicrobial-Resistant Bacteria around Al-Asfar Lake, Eastern Saudi Arabia. Antibiotics 2021, 10, 260. https://doi.org/10.3390/antibiotics10030260
Elsohaby I, Samy A, Elmoslemany A, Alorabi M, Alkafafy M, Aldoweriej A, Al-Marri T, Elbehiry A, Fayez M. Migratory Wild Birds as a Potential Disseminator of Antimicrobial-Resistant Bacteria around Al-Asfar Lake, Eastern Saudi Arabia. Antibiotics. 2021; 10(3):260. https://doi.org/10.3390/antibiotics10030260
Chicago/Turabian StyleElsohaby, Ibrahim, Ahmed Samy, Ahmed Elmoslemany, Mohammed Alorabi, Mohamed Alkafafy, Ali Aldoweriej, Theeb Al-Marri, Ayman Elbehiry, and Mahmoud Fayez. 2021. "Migratory Wild Birds as a Potential Disseminator of Antimicrobial-Resistant Bacteria around Al-Asfar Lake, Eastern Saudi Arabia" Antibiotics 10, no. 3: 260. https://doi.org/10.3390/antibiotics10030260
APA StyleElsohaby, I., Samy, A., Elmoslemany, A., Alorabi, M., Alkafafy, M., Aldoweriej, A., Al-Marri, T., Elbehiry, A., & Fayez, M. (2021). Migratory Wild Birds as a Potential Disseminator of Antimicrobial-Resistant Bacteria around Al-Asfar Lake, Eastern Saudi Arabia. Antibiotics, 10(3), 260. https://doi.org/10.3390/antibiotics10030260