Antimicrobial Resistance Patterns and Antibiotic Use during Hospital Conversion in the COVID-19 Pandemic
Abstract
:1. Introduction
2. Material and Methods
2.1. Laboratory Procedures
2.2. Bacterial Isolate Identification
2.3. Susceptibility Testing
2.4. Statistical Analysis
3. Results
3.1. Hospital-Acquired Infections
3.2. Outcome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klein, E.Y.; Monteforte, B.; Gupta, A.; Jiang, W.; May, L.; Hsieh, Y.; Dugas, A. The frequency of influenza and bacterial coinfection: A systematic review and meta-analysis. Influenza Other Respi. Viruses 2016, 10, 394–403. [Google Scholar]
- Huttner, B.D.; Catho, G.; Pano-Pardo, J.R.; Pulcini, C.; Schouten, J. COVID-19: Don’t neglect antimicrobial stewardship principles! Clin. Microbiol. Infect. 2020, 26, 808–810. [Google Scholar] [CrossRef]
- Gonzales, R.; Bartlett, J.G.; Besser, R.E.; Cooper, R.J.; Hickner, J.M.; Hoffman, J.R.; Sande, M.A. Principles of appropriate antibiotic use for treatment of acute respiratory tract infections in adults: Background, specific aims, and methods. Ann. Emerg. Med. 2001, 37, 690–697. [Google Scholar] [CrossRef]
- Metlay, J.P.; Camargo, C.A.; MacKenzie, T.; McCulloch, C.; Maselli, J.; Levin, S.K.; Kersey, A.; Gonzales, R. Cluster-Randomized Trial to Improve Antibiotic Use for Adults With Acute Respiratory Infections Treated in Emergency Departments. Ann. Emerg. Med. 2007, 50, 221–230. [Google Scholar] [CrossRef]
- Abelenda-Alonso, G.; Padullés, A.; Rombauts, A.; Gudiol, C.; Pujol, M.; Alvarez-Pouso, C.; Jodar, R.; Carratalà, J. Antibiotic prescription during the COVID-19 pandemic: A biphasic pattern. Infect. Control. Hosp. Epidemiol. 2020, 41, 1371–1372. [Google Scholar] [CrossRef]
- Nestler, M.; Godbout, E.; Lee, K.; Kim, J.; Noda, A.J.; Taylor, P.; Pryor, R.; Markley, J.D.; Doll, M.; Bearman, G.; et al. Impact of COVID-19 on pneumonia-focused antibiotic use at an academic medical center. Infect. Control. Hosp. Epidemiol. 2020, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Rawson, T.M.; Moore, L.S.P.; Castro-Sanchez, E.; Charani, E.; Davies, F.; Satta, G.; Ellington, M.J.; Holmes, A.H. COVID-19 and the potential long-term impact on antimicrobial resistance. J. Antimicrob. Chemother. 2020, 75, 1681–1684. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, D.; Graber, C.J. Antimicrobial Stewardship in a Pandemic: Picking Up the Pieces. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Martin, E.; Philbin, M.; Hughes, G.; Bergin, C.; Talento, A.F. Antimicrobial stewardship challenges and innovative initiatives in the acute hospital setting during the COVID-19 pandemic. J. Antimicrob. Chemother. 2021, 76, 272–275. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020. [Google Scholar] [CrossRef] [PubMed]
- CDC; NCEZID; DHQP. National Healthcare Safety Network (NHSN) Patient Safety Component Manual. Available online: https://www.cdc.gov/ncezid/dhqp/index.html (accessed on 12 November 2020).
- The RECOVERY Collaborative Group; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with Covid-19—Preliminary Report. N. Engl. J. Med. 2020, 1–11. [Google Scholar] [CrossRef]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 -nCoV by RT-PCR. Eur. Surveill. 2020, 25, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacoby, G.A. AmpC Β-Lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [Green Version]
- Ghafourian, S.; Sadeghifard, N.; Soheili, S.; Sekawi, Z. Extended Spectrum Beta-lactamases: Definition, Classification and Epidemiology. Curr. Issues Mol. Biol. 2015. [Google Scholar] [CrossRef] [Green Version]
- Carbapenemase Producing Carbapenem-Resistant Enterobacteriaceae (CP-CRE) 2018 Case Definition. Available online: https://wwwn.cdc.gov/nndss/conditions/carbapenemase-producing-carbapenem-resistant-enterobacteriaceae/case-definition/2018/ (accessed on 30 November 2020).
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin. Microbiol. Rev. 2019, 32, 1–52. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, V.M.; Gandhi, T.; Petty, L.A.; Patel, P.K.; Prescott, H.C.; Malani, A.N.; Ratz, D.; McLaughlin, E.; Chopra, V.; A Flanders, S. Empiric Antibacterial Therapy and Community-Onset Bacterial Co-Infection In Patients Hospitalized with COVID-19: A Multi-Hospital Cohort Study. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef]
- World Health Organization. Clinical Management of COVID-19: Interim Guidance; World Health Organization: Geneva, Switzerland, 2020; Volume 7, pp. 1–16. [Google Scholar]
- Nowak, M.D.; Sordillo, E.M.; Gitman, M.R.; Paniz Mondolfi, A.E. Coinfection in SARS-CoV-2 infected patients: Where are influenza virus and rhinovirus/enterovirus? J. Med. Virol. 2020, 92, 1699–1700. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Yang, Y.; Cai, P.; Cao, J.; Cai, X.; Zhang, Y. Etiology and antimicrobial resistance of secondary bacterial infections in patients hospitalized with COVID-19 in Wuhan, China: A retrospective analysis. Antimicrob. Resist Infect. Control 2020, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020. [Google Scholar] [CrossRef]
- Sieswerda, E.; de Boer, M.G.J.; Bonten, M.M.J.; Boersma, W.G.; Jonkers, R.E.; Aleva, R.M.; Kullberg, B.; Schouten, J.A.; van de Garde, E.M.W.; Verheij, T.J.; et al. Recommendations for antibacterial therapy in adults with COVID-19—An evidence based guideline. Clin. Microbiol. Infect. 2020. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Giordano, C.; Leonildi, A.; Menichini, M.; Vecchione, A.; Pistello, M.; Guarracino, F.; Ghiadoni, L.; Forfori, F.; et al. Predictors of hospital-acquired bacterial and fungal superinfections in COVID-19: A prospective observational study. J. Antimicrob. Chemother. 2020, 1–7. [Google Scholar] [CrossRef]
- Self, W.H.; Semler, M.W.; Leither, L.M.; Casey, J.D.; Angus, D.C.; Brower, R.G.; Chang, S.Y.; Collins, S.P.; Eppensteiner, J.C.; Filbin, M.R.; et al. Effect of Hydroxychloroquine on Clinical Status at 14 Days in Hospitalized Patients with COVID-19: A Randomized Clinical Trial. JAMA J. Am. Med. Assoc. 2020, 37232, 2165–2176. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, A.B.; Zampieri, F.G.; Rosa, R.G.; Azevedo, L.C.; Veiga, V.C.; Avezum, A.; Damiani, L.P.; Marcadenti, A.; Kawano-Dourado, L.; Lisboa, T.; et al. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. N. Engl. J. Med. 2020, 383, 2041–2052. [Google Scholar] [CrossRef] [PubMed]
- Bello-Chavolla, Y.; Bahena-López, J.P.; Villa, N.E.A.; Vargas-Vázquez, A.; González-Díaz, A.; Márquez-Salinas, A.; Fermín-Martínez, C.A.; Naveja, J.J.; Aguilar-Salinas, C.A. Predicting mortality due to SARS-CoV-2: A mechanistic score relating obesity and diabetes to COVID-19 outcomes in Mexico Omar. J. Clin. Endocrinol. Metab. 2015, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Brizuela, E.; Villanueva-Reza, M.; González-Lara, M.F.; Tamez-Torres, K.M.; Román-Montes, C.M.; Díaz-Mejía, B.A.; Pérez-García, E.; Olivas-Martínez, A.; Rajme-López, S.; Martinez-Guerra, B.A.; et al. Clinical and Epidemiological Characteristics of Patients Diagnosed With Covid-19 in a Tertiary Care Center in Mexico City: A Prospective Cohort Study. Rev. Invest. Clin. 2020, 72, 165–177. [Google Scholar]
- Domınguez-Cherit, G.; Lapinsky, S.E.; Macias, A.E.; Pinto, R.; Espinosa-Perez, L.; Poblano-Morales, M.; Baltazar-Torres, J.A.; Bautista, E.; Martinez, A.; de la Torre, A.; et al. 2009 Influenza A (H1N1) in Mexico. JAMA 2009, 302, 1880–1887. [Google Scholar]
- Hernández-Cárdenas, C.M.; Serna-Secundino, H.; García-Olazarán, J.G.; Aguilar-Pérez, C.L.; Rocha-Machado, J.; Campos-Calderón, L.F.; Lugo-Goytia, G. Acute Respiratory Distress Syndrome Secondary to Influenza A(H1N1)pdm09: Clinical Characteristics and Mortality Predictors. Rev. Invest. Clin. 2016, 68, 235–244. [Google Scholar]
Characteristic | N = 794 (100%) |
---|---|
Male sex, n (%) | 489 (61.6) |
Age years, median (IQR) | 52 (43–62) |
BMI kg/m2, median (IQR) (n = 755) | 29.7 (26.7–33.2) |
Obesity, n (%) (n = 790) | 364 (46.1) |
Overweight, n (%) (n = 779) | 295 (37.9) |
Type 2 diabetes mellitus, n (%) | 216 (27.2) |
Immunosuppression, n (%) | 45 (5.7) |
Hypertension, n (%) | 253 (31.9) |
HIV infection, n (%) | 10 (1.3) |
Ischemic heart disease, n % (n = 461) | 19 (4.2) |
Chronic kidney disease, n (%) | 24 (3.0) |
Liver failure, n (%) (n = 790) | 5 (0.63) |
Smoking history, n (%) (n = 785) | 117 (14.9) |
Charlson score ≥ 2, n (%) | 328 (41.4) |
Multilobe involvement in CT, n (%) (n = 793) | 785 (99) |
Arterial blood oxygen saturation, median (IQR) (n = 770) | 83 (70–88) |
Days since symptom onset, median (IQR) | 8 (6–10) |
Total white blood cell count ×103/uL, median (IQR) (n = 789) | 8.3 (6.0–11.5) |
Procalcitonin ng/mL, median (IQR) (n = 140) | 0.31 (0.11–0.82) |
C-reactive protein mg/L median (IQR) (n = 766) | 157.1 (90.0–238.8) |
Empiric antibiotic treatment, n (%) | 731 (92) |
Antibiotic treatment, n (%) | 731 (91.9) |
Amoxicillin + atypical coverage | 341 (46.6) |
Ceftriaxone + atypical coverage | 213 (29.1) |
Ceftriaxone or amoxicillin monotherapy | 35 (4.7) |
Atypical coverage monotherapy | 54 (7.4) |
Broad specter Beta-lactam + atypical | 52 (7.1) |
Broad specter Beta-lactam + vancomycin | 18 (2.4) |
Broad specter Beta-lactam monotherapy | 25 (3.4) |
Other | 2 (0.3) |
COVID-19-directed therapy, n (%) | 358 (45.1) |
Hydroxychloroquine/chloroquine, n (%) | 219 (27.6) |
Steroid use, n (%) | 73 (9.2) |
ICU admission, n (%) | 205 (25.8) |
Mechanical ventilation, n (%) | 188 (23.7) |
Days on mechanical ventilation, median (IQR) | 12 (7–17) |
Characteristic | n = 656 |
---|---|
Number of patients with at least one HAI episode | 74 (11.3) |
Ventilator o healthcare-associated pneumonia | 49 (7.5) |
Bloodstream infection | 27 (4.1) |
Invasive mold infection | 14 (2.1) |
Candidemia | 6 (0.9) |
Urinary tract infection | 2 (0.3) |
Number of different HAI episodes | 110 (100) |
Ventilator o healthcare-associated pneumonia | 56 (50.9) |
Bloodstream infection | 32 (29.1) |
Invasive mold infection | 14 (12.7) |
Candidemia | 6 (5.5) |
Urinary tract infection | 2 (1.8) |
Microbial isolates in 56 episodes of VAP/HAP | 69 (100) |
Enterobacter complex | 29 (42.0) |
Pseudomonas aeruginosa | 10 (14.5) |
Klebsiella spp | 9 (13.0) |
Escherichia coli | 9 (13.0) |
Stenotrophomonas maltophilia | 6 (8.7) |
Other | 6 (8.7) |
Microbial isolates in 32 episodes of BSI | 35 (100) |
Coagulase negative staphylococci | 14 (40.0) |
Enterobacter complex | 7 (20.0) |
Enterococcus spp | 6 (17.1) |
Pseudomonas aeruginosa | 3 (8.6) |
Other | 5 (14.3) |
Total n = 127 | VAP/HAP n = 69 | BSI n = 35 | |
---|---|---|---|
AmpC producers | 37 (29.1) | 26 (37.7) | 5 (14.3) |
ESBL producers | 7 (5.5) | 6 (8.7) | 1 (2.9) |
MDR P. Aeruginosa | 1 (0.8) | - | 1 (2.9) |
CRE | 4 (3.1) | 3 (4.3) | 0 |
Azole resistant Candida | 5/6 (83.3) | - | 5/6 (83.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Guerra, B.A.; Gonzalez-Lara, M.F.; de-Leon-Cividanes, N.A.; Tamez-Torres, K.M.; Roman-Montes, C.M.; Rajme-Lopez, S.; Villalobos-Zapata, G.I.; Lopez-Garcia, N.I.; Martínez-Gamboa, A.; Sifuentes-Osornio, J.; et al. Antimicrobial Resistance Patterns and Antibiotic Use during Hospital Conversion in the COVID-19 Pandemic. Antibiotics 2021, 10, 182. https://doi.org/10.3390/antibiotics10020182
Martinez-Guerra BA, Gonzalez-Lara MF, de-Leon-Cividanes NA, Tamez-Torres KM, Roman-Montes CM, Rajme-Lopez S, Villalobos-Zapata GI, Lopez-Garcia NI, Martínez-Gamboa A, Sifuentes-Osornio J, et al. Antimicrobial Resistance Patterns and Antibiotic Use during Hospital Conversion in the COVID-19 Pandemic. Antibiotics. 2021; 10(2):182. https://doi.org/10.3390/antibiotics10020182
Chicago/Turabian StyleMartinez-Guerra, Bernardo A., Maria F. Gonzalez-Lara, Nereyda A. de-Leon-Cividanes, Karla M. Tamez-Torres, Carla M. Roman-Montes, Sandra Rajme-Lopez, G. Ivonne Villalobos-Zapata, Norma I. Lopez-Garcia, Areli Martínez-Gamboa, Jose Sifuentes-Osornio, and et al. 2021. "Antimicrobial Resistance Patterns and Antibiotic Use during Hospital Conversion in the COVID-19 Pandemic" Antibiotics 10, no. 2: 182. https://doi.org/10.3390/antibiotics10020182
APA StyleMartinez-Guerra, B. A., Gonzalez-Lara, M. F., de-Leon-Cividanes, N. A., Tamez-Torres, K. M., Roman-Montes, C. M., Rajme-Lopez, S., Villalobos-Zapata, G. I., Lopez-Garcia, N. I., Martínez-Gamboa, A., Sifuentes-Osornio, J., Ortiz-Brizuela, E., Ochoa-Hein, E., Galindo-Fraga, A., Bobadilla-del-Valle, M., & Ponce-de-León, A. (2021). Antimicrobial Resistance Patterns and Antibiotic Use during Hospital Conversion in the COVID-19 Pandemic. Antibiotics, 10(2), 182. https://doi.org/10.3390/antibiotics10020182