Antimicrobial Prophylaxis and Modifications of the Gut Microbiota in Children with Cancer
Abstract
:1. Introduction
2. Overview of Antibiotic Usage in Children with Cancer
2.1. Infectious Complications in Children with Cancer
2.2. Etiology of Bacterial Infections
3. Antibiotic Prophylaxis
3.1. Beta-Lactam Antibiotics
3.2. Fluoroquinolones (FQLs)
3.3. Trimethoprim-Sulfamethoxazole (TMP-SMX)
4. Dysbiosis and Cancer in Children
4.1. Gut Microbiome Alterations in Children with Acute Leukemia
4.2. Microbiota and the Patient’s Outcome: Infections, Adverse Effects, and Response to Treatment
4.3. The Gut Microbiota Plays a Key Role as Trigger for Gut Graft Versus Host Disease in the Context of Hematopoietic Stem Cell Transplantation (HCT)
4.4. Efficacy of Probiotics in Children with Cancer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kliegman, R.; Stanton, B.; St. Geme, J.W.; Schor, N.F.; Behrman, R.E.; Nelson, W.E. Nelson Textbook of Pediatrics; Elsevier: Philadelphia, PA, USA, 2016. [Google Scholar]
- Rajagopala, S.V.; Singh, H.; Yu, Y.; Zabokrtsky, K.B.; Torralba, M.G.; Moncera, K.J.; Frank, B.; Pieper, R.; Sender, L.; Nelson, K.E. Persistent gut microbial dysbiosis in children with acute lymphoblastic leukemia (ALL) during chemotherapy. Microbial. Ecol. 2020, 79, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Rajagopala, S.V.; Yooseph, S.; Harkins, D.M.; Moncera, K.J.; Zabokrtsky, K.B.; Torralba, M.G.; Tovchigrechko, A.; Highlander, S.K.; Pieper, R.; Sender, L.; et al. Gastrointestinal microbial populations can distinguish pediatric and adolescent acute lymphoblastic Leukemia (ALL) at the time of disease diagnosis. BMC Genom. 2016, 17, 635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulis, M.L.; Blonquist, T.M.; Stevenson, K.E.; Hunt, S.K.; Kay-Green, S.; Athale, U.H.; Clavell, L.A.; Cole, P.D.; Kelly, K.M.; Laverdiere, C.; et al. Effectiveness of antibacterial prophylaxis during induction chemotherapy in children with acute lymphoblastic leukemia. Pediatr. Blood Cancer 2018, 65, e26952. [Google Scholar] [CrossRef] [PubMed]
- Cecinati, V.; Principi, N.; Brescia, L.; Esposito, S. Antibiotic prophylaxis in children with cancer or who have undergone hematopoietic cell transplantation. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Vento, S.; Cainelli, F. Infections in patients with cancer undergoing chemotherapy: Aetiology, prevention, and treatment. Lancet Oncol. 2003, 4, 595–604. [Google Scholar] [CrossRef]
- Castagnola, E.; Fontana, V.; Caviglia, I.; Caruso, S.; Faraci, M.; Fioredda, F.; Garrè, M.L.; Moroni, C.; Conte, M.; Losurdo, G.; et al. A prospective study on the epidemiology of febrile episodes during chemotherapy-induced neutropenia in children with cancer or after hemopoietic stem cell transplantation. Clin. Infect. Dis. 2007, 45, 1296–1304. [Google Scholar] [CrossRef] [PubMed]
- Gil, L.; Styczynski, J.; Komarnicki, M. Infectious complication in 314 patients after high-dose therapy and autologous hematopoietic stem cell transplantation: Risk factors analysis and outcome. Infection 2007, 35, 421–427. [Google Scholar] [CrossRef]
- Phillips, R.; Hancock, B.; Graham, J.; Bromham, N.; Jin, H.; Berendse, S. Prevention and management of neutropenic sepsis in patients with cancer: Summary of NICE guidance. BMJ 2012, 345, e5368. [Google Scholar] [CrossRef] [Green Version]
- Moon, S.; Williams, S.; Cullen, M. Role of prophylactic antibiotics in the prevention of infections after chemotherapy: A literature review. Support Cancer Ther. 2006, 3, 207–216. [Google Scholar] [CrossRef]
- Freifeld, A.G.; Bow, E.J.; Sepkowitz, K.A.; Boeckh, M.J.; Ito, J.I.; Mullen, C.A.; Raad, I.I.; Rolston, K.V.; Young, J.A.; Wingard, J.R. Infectious disease society of America. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of America. Clin. Infect. Dis. 2011, 52, e56–e93. [Google Scholar] [CrossRef] [Green Version]
- Lehrnbecher, T.; Fisher, B.T.; Phillips, B.; Alexander, S.; Ammann, R.A.; Beauchemin, M.; Carlesse, F.; Castagnola, E.; Davis, B.L.; Dupuis, L.L.; et al. Guideline for antibacterial prophylaxis administration in pediatric cancer and hematopoietic stem cell transplantation. Clin. Infect. Dis. 2020, 71, 226–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gafter-Gvili, A.; Fraser, A.; Paul, M.; Leibovici, L. Meta-analysis: Antibiotic prophylaxis reduces mortality in neutropenic patients. Ann. Int. Med. 2005, 142, 979–995. [Google Scholar] [CrossRef] [PubMed]
- Castagnola, E.; Boni, L.; Giacchino, M.; Cesaro, S.; De Sio, L.; Garaventa, A.; Zanazzo, G.; Biddau, P.; Rossi, M.R.; Schettini, F.; et al. Infectious diseases study group of the Italian association of pediatric hematology and oncology. A multicenter, randomized, double blind placebo-controlled trial of amoxicillin/clavulanate for the prophylaxis of fever and infection in neutropenic children with cancer. Pediatr. Infect. Dis. J. 2003, 22, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Sezgin, G.; Acipayam, C.; Ozkan, A.; Bayram, I.; Tanyeli, A. Meropenem versus piperacillin-tazobactam as empiric therapy for febrile neutropenia in pediatric oncology patients. Asian Pacific. J. Canc. Prevent 2014, 15, 4549–4553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichikawa, M.; Suzuki, D.; Ohshima, J.; Cho, Y.; Kaneda, M.; Iguchi, A.; Ariga, T. Piperacillin/tazobactam versus cefozopran for the empirical treatment of pediatric cancer patients with febrile neutropenia. Pediatr. Blood Canc. 2011, 57, 1159–1162. [Google Scholar] [CrossRef]
- Feng, X.; Ruan, Y.; He, Y.; Zhang, Y.; Wu, X.; Liu, H.; Liu, X.; He, L.; Li, C. Prophylactic first-line antibiotics reduce infectious fever and shorten hospital stay during chemotherapy-induced agranulocytosis in childhood acute myeloid leukemia. Acta Haematol. 2014, 132, 112–117. [Google Scholar] [CrossRef]
- Sano, H.; Kobayashi, R.; Suzuki, D.; Kishimoto, K.; Yasuda, K.; Kobayashi, K. Comparison between piperacillin/tazobactam and cefepime monotherapies as an empirical therapy for febrile neutropenia in children with hematological and malignant disorders: A prospective, randomized study. Pediatr. Blood Cancer 2015, 62, 356–358. [Google Scholar] [CrossRef]
- Gustinetti, G.; Mikulska, M. Bloodstream infections in neutropenic cancer patients: A practical update. Virulence 2016, 7, 280–297. [Google Scholar] [CrossRef]
- Bucaneve, G.; Micozzi, A.; Menichetti, F.; Martino, P.; Dionisi, M.S.; Martinelli, G.; Allione, B.; D’Antonio, D.; Buelli, M.; Nosari, A.M.; et al. Gruppo Italiano malattie ematologiche dell’adulto (gimema) infection program. Levofloxacin to prevent bacterial infection in patients with cancer and neutropenia. N. Engl. J. Med. 2005, 353, 977–987. [Google Scholar] [CrossRef] [Green Version]
- Cullen, M.; Steven, N.; Billingham, L.; Gaunt, C.; Hastings, M.; Simmonds, P.; Stuart, N.; Rea, D.; Bower, M.; Fernando, I.; et al. Simple investigation in neutropenic individuals of the frequency of infection after chemotherapy +/− antibiotic in a number of tumours (SIGNIFICANT) trial group. Antibacterial prophylaxis after chemotherapy for solid tumors and lymphomas. N. Engl. J. Med. 2005, 353, 988–998. [Google Scholar] [CrossRef] [Green Version]
- Cruciani, M.; Concia, E.; Navarra, A.; Perversi, L.; Bonetti, F.; Aricò, M.; Nespoli, L. Prophylactic co-trimoxazole versus norfloxacin in neutropenic children--perspective randomized study. Infection 1989, 17, 65–69. [Google Scholar] [CrossRef]
- Alexander, S.; Fisher, B.T.; Gaur, A.H.; Dvorak, C.C.; Villa Luna, D.; Dang, H.; Chen, L.; Green, M.; Nieder, M.L.; Fisher, B.; et al. Children’s Oncology Group. Effect of levofloxacin prophylaxis on bacteremia in children with acute leukemia or undergoing hematopoietic stem cell transplantation: A randomized clinical TRIAL. JAMA 2018, 320, 995–1004. [Google Scholar] [CrossRef] [Green Version]
- Laoprasopwattana, K.; Khwanna, T.; Suwankeeree, P.; Sujjanunt, T.; Tunyapanit, W.; Chelae, S. Ciprofloxacin reduces occurrence of fever in children with acute leukemia who develop neutropenia during chemotherapy. Pediatr. Infect. Dis. J. 2013, 32, e94–e98. [Google Scholar] [CrossRef]
- Widjajanto, P.H.; Sumadiono, S.; Cloos, J.; Purwanto, I.; Sutaryo, S.; Veerman, A.J. Randomized double blind trial of ciprofloxacin prophylaxis during induction treatment in childhood acute lymphoblastic leukemia in the WK-ALL protocol in Indonesia. J. Blood Med. 2013, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yousef, A.A.; Fryer, C.J.; Chedid, F.D.; Abbas, A.A.; Felimban, S.K.; Khattab, T.M. A pilot study of prophylactic ciprofloxacin during delayed intensification in children with acute lymphoblastic leukemia. Pediatr. Blood Canc. 2004, 43, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Choeyprasert, W.; Hongeng, S.; Anurathapan, U.; Pakakasama, S. Bacteremia during neutropenic episodes in children undergoing hematopoietic stem cell transplantation with ciprofloxacin and penicillin prophylaxis. Int. J. Hematol. 2017, 105, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Al Omar, S.; Anabtawi, N.; Al Qasem, W.; Rihani, R. Bacterial infections in children with acute myeloid leukemia receiving ciprofloxacin prophylaxis. J. Pediatr. Hematol. Oncol. 2017, 39, e131–e135. [Google Scholar] [CrossRef] [PubMed]
- Goorin, A.M.; Hershey, B.J.; Levin, M.J.; Siber, G.R.; Gelber, R.D.; Flynn, K.; Lew, M.; Beckett, K.; Blanding, P.; Sallan, S.E. Use of trimethoprim-sulfamethoxazole to prevent bacterial infections in children with acute lymphoblastic leukemia. Pediatr. Infect. Dis. 1985, 4, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Kovatch, A.L.; Wald, E.R.; Albo, V.C.; Prin, W.; Orlando, S.J.; Wollman, M.R.; Phebus, C.K.; Shapiro, E.D. Oral trimethoprim/sulfamethoxazole for prevention of bacterial infection during the induction phase of cancer chemotherapy in children. Pediatrics 1985, 76, 754–760. [Google Scholar] [PubMed]
- Gualtieri, R.J.; Donowitz, G.R.; Kaiser, D.L.; Hess, C.E.; Sande, M.A. Double-blind randomized study of prophylactic trimethoprim/sulfamethoxazole in granulocytopenic patients with hematologic malignancies. Am. J. Med. 1983, 74, 934–940. [Google Scholar] [CrossRef]
- Schrøder, H.; Agger, K.E.; Rosthøj, S.; Carlsen, N.T.; Schmiegelow, K. Antibacterial prophylaxis with trimethoprim-sulfamethoxazole during induction treatment for acute lymphoblastic leukemia. Danish. Med. Bull. 2001, 48, 275–277. [Google Scholar] [PubMed]
- Chastagner, P.; Michel, D.; Contet, A.; Lozniewski, A.; Hadou, T.; Schmitt, C.; Phulpin, A.; Fouyssac, F.; Mansuy, L. Effectiveness of antibacterial prophylaxis in children with acute leukemia: A report from a single institution over a 20-year period. Arch. Pediatr. 2018, 25, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Inaba, H.; Gaur, A.H.; Cao, X.; Flynn, P.M.; Pounds, S.B.; Avutu, V.; Marszal, L.N.; Howard, S.C.; Pui, C.H.; Ribeiro, R.C.; et al. Feasibility, efficacy, and adverse effects of outpatient antibacterial prophylaxis in children with acute myeloid leukemia. Cancer 2014, 120, 1985–1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proctor, L.M.; Creasy, H.H.; Fettweis, J.M.; Lloyd-Price, J.; Mahurkar, A.; Zhou, W.; Buck, G.A.; Snyder, M.P.; Strauss, J.F.; Weinstock, G.M.; et al. Integrative HMP (iHMP) research network consortium. The integrative human microbiome project. Nature 2019, 569, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Franzosa, E.A.; Huang, K.; Meadow, J.F.; Gevers, D.; Lemon, K.P.; Bohannan, B.J.; Huttenhower, C. Identifying personal microbiomes using metagenomic codes. Proc. Natl. Acad. Sci. USA 2015, 112, E2930–E2938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrd, A.L.; Segre, J.A. Elucidating microbial codes to distinguish individuals. Proc. Natl. Acad. Sci. USA 2015, 112, 6778–6779. [Google Scholar] [CrossRef] [Green Version]
- Koenig, J.E.; Spor, A.; Scalfone, N.; Fricker, A.D.; Stombaugh, J.; Knight, R.; Angenent, L.T.; Ley, R.E. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. 1), 4578–4585. [Google Scholar] [CrossRef] [Green Version]
- Pasolli, E.; Asnicar, F.; Manara, S.; Zolfo, M.; Karcher, N.; Armanini, F.; Beghini, F.; Manghi, P.; Tett, A.; Ghensi, P.; et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 2019, 176, 649–662. [Google Scholar] [CrossRef] [Green Version]
- Faith, J.J.; Guruge, J.L.; Charbonneau, M.; Subramanian, S.; Seedorf, H.; Goodman, A.L.; Clemente, J.C.; Knight, R.; Heath, A.C.; Leibel, R.L.; et al. The long-term stability of the human gut microbiota. Science 2013, 341, 1237439. [Google Scholar] [CrossRef] [Green Version]
- Dethlefsen, L.; Huse, S.; Sogin, M.L.; Relman, D.A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008, 6, e280. [Google Scholar] [CrossRef]
- Jernberg, C.; Löfmark, S.; Edlund, C.; Jansson, J.K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007, 1, 56–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Prabhakar, M.; Wang, S.; Liao, S.X.; Peng, X.; He, Y.; Chen, Y.R.; Shen, H.F.; Su, J.; Chen, Y.; et al. Different dynamic patterns of β-lactams, quinolones, glycopeptides and macrolides on mouse gut microbial diversity. PLoS ONE 2015, 10, e0126712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakobsson, H.E.; Rodríguez-Piñeiro, A.M.; Schütte, A.; Ermund, A.; Boysen, P.; Bemark, M.; Sommer, F.; Bäckhed, F.; Hansson, G.C.; Johansson, M.E. The composition of the gut microbiota shapes the colon mucus barrier. EMBO 2015, 16, 164–177. [Google Scholar] [CrossRef]
- Owens, R.C., Jr.; Donskey, C.J.; Gaynes, R.P.; Loo, V.G.; Muto, C.A. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin. Infect. Dis. 2008, 46 (Suppl. 1), S19–S31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costello, E.K.; Stagaman, K.; Dethlefsen, L.; Bohannan, B.J.; Relman, D.A. The application of ecological theory toward an understanding of the human microbiome. Science 2012, 336, 1255–1262. [Google Scholar] [CrossRef] [Green Version]
- Frank, D.N.; Robertson, C.E.; Hamm, C.M.; Kpadeh, Z.; Zhang, T.; Chen, H.; Zhu, W.; Sartor, R.B.; Boedeker, E.C.; Harpaz, N.; et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm. Bowel. Dis. 2011, 17, 179–184. [Google Scholar] [CrossRef]
- Esposito, S.; Polinori, I.; Rigante, D. The gut Microbiota-host partnership as a potential driver of Kawasaki syndrome. Front Pediatr. 2019, 7, 124. [Google Scholar] [CrossRef] [Green Version]
- Abrahamsson, T.R.; Jakobsson, H.E.; Andersson, A.F.; Björkstén, B.; Engstrand, L.; Jenmalm, M.C. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin. Experim. Allergy 2014, 44, 842–850. [Google Scholar] [CrossRef] [Green Version]
- Vuong, H.E.; Hsiao, E.Y. Emerging roles for the gut microbiome in autism spectrum disorder. Biol. Psychiatr. 2017, 81, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Pulikkan, J.; Mazumder, A.; Grace, T. Role of the gut microbiome in autism spectrum disorders. Adv. Experim. Med. Biol. 2019, 1118, 253–269. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, J.M. The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience 2016, 324, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Garrett, W.S. Cancer and the microbiota. Science 2015, 348, 80–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dąbrowska, K.; Witkiewicz, W. Correlations of host genetics and gut microbiome composition. Front Microbiol. 2016, 7, 1357. [Google Scholar] [CrossRef] [Green Version]
- Calitri, C.; Ruberto, E.; Castagnola, E. Antibiotic prophylaxis in neutropenic children with acute leukemia: Do the presently available data really support this practice? Eur. J. Haematol. 2018, 101, 721–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, G.; Governale, L.; McMahon, A.W.; Trinidad, J.P.; Staffa, J.; Murphy, D. Trends of outpatient prescription drug utilization in US children, 2002–2010. Pediatrics 2012, 130, 23–31. [Google Scholar] [CrossRef] [Green Version]
- De Luca, M.; Donà, D.; Montagnani, C.; Lo Vecchio, A.; Romanengo, M.; Tagliabue, C.; Centenari, C.; D’Argenio, P.; Lundin, R.; Giaquinto, C.; et al. Antibiotic prescriptions and prophylaxis in Italian children. Is it time to change? Data from the ARPEC project. PLoS ONE 2016, 11, e0154662. [Google Scholar] [CrossRef] [Green Version]
- Steliarova-Foucher, E.; Colombet, M.; Ries, L.; Moreno, F.; Dolya, A.; Bray, F.; Hesseling, P.; Shin, H.Y.; Stiller, C.A. IICC-3 contributors. International incidence of childhood cancer, 2001-10: A population-based registry study. Lancet Oncol. 2017, 18, 719–731. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, W.; Liu, H.; Duan, J.; Zhang, Y.; Liu, M.; Li, H.; Hou, Z.; Wu, K.K. Effect of high-dose methotrexate chemotherapy on intestinal Bifidobacteria, Lactobacillus and E. coli in children with acute lymphoblastic leukemia. Exp. Biol. Med. 2012, 237, 305–311. [Google Scholar] [CrossRef]
- van Vliet, M.J.; Tissing, W.J.; Dun, C.A.; Meessen, N.E.; Kamps, W.A.; de Bont, E.S.; Harmsen, H.J. Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin. Infect. Dis. 2009, 49, 262–270. [Google Scholar] [CrossRef] [Green Version]
- Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.I.; Godneva, A.; Kalka, I.N.; Bar, N.; et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018, 555, 210–215. [Google Scholar] [CrossRef]
- Levene, I.; Castagnola, E.; Haeusler, G.M. Antibiotic-resistant gram-negative blood stream infections in children with cancer: A review of epidemiology, risk factors, and outcome. Pediatr. Infect. Dis. J. 2018, 37, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Groll, A.H.; Castagnola, E.; Cesaro, S.; Dalle, J.H.; Engelhard, D.; Hope, W.; Roilides, E.; Styczynski, J.; Warris, A.; Lehrnbecher, T. Fourth European conference on infections in Leukaemia, infectious diseases working party of the European group for blood marrow transplantation (EBMT-IDWP), infectious diseases group of the European organisation for research and treatment of cancer (EORTC-IDG), international immunocompromised host society (ICHS), & European Leukaemia net (ELN) fourth European Conference on infections in Leukaemia (ECIL-4): Guidelines for diagnosis, prevention, and treatment of invasive fungal diseases in paediatric patients with cancer or allogeneic haemopoietic stem-cell transplantation. Lancet Oncol. 2014, 15, e327–e340. [Google Scholar] [CrossRef] [PubMed]
- Cecinati, V.; Brescia, L.; Tagliaferri, L.; Giordano, P.; Esposito, S. Catheter-related infections in pediatric patients with cancer. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2869–2877. [Google Scholar] [CrossRef] [PubMed]
- Galloway-Peña, J.R.; Smith, D.P.; Sahasrabhojane, P.; Ajami, N.J.; Wadsworth, W.D.; Daver, N.G.; Chemaly, R.F.; Marsh, L.; Ghantoji, S.S.; Pemmaraju, N.; et al. The role of the gastrointestinal microbiome in infectious complications during induction chemotherapy for acute myeloid leukemia. Cancer 2016, 122, 2186–2196. [Google Scholar] [CrossRef] [Green Version]
- Miedema, K.G.; Winter, R.H.; Ammann, R.A.; Droz, S.; Spanjaard, L.; de Bont, E.S.; Kamps, W.A.; van de Wetering, M.D.; Tissing, W.J. Bacteria causing bacteremia in pediatric cancer patients presenting with febrile neutropenia--species distribution and susceptibility patterns. Support. Care Cancer 2013, 21, 2417–2426. [Google Scholar] [CrossRef]
- Castagnola, E.; Haupt, R.; Micozzi, A.; Caviglia, I.; Testi, A.M.; Giona, F.; Parodi, S.; Girmenia, C. Differences in the proportions of fluoroquinolone-resistant Gram-negative bacteria isolated from bacteraemic children with cancer in two Italian centres. Clin. Microbiol. Infect. 2005, 11, 505–507. [Google Scholar] [CrossRef] [Green Version]
- Ariffin, H.; Navaratnam, P.; Mohamed, M.; Arasu, A.; Abdullah, W.A.; Lee, C.L.; Peng, L.H. Ceftazidime-resistant Klebsiella pneumoniae bloodstream infection in children with febrile neutropenia. Int. J. Infect. Dis. 2000, 4, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Gaynor, E.P.; Sullivan, P.B. Nutritional status and nutritional management in children with cancer. Arch. Dis. Child. 2015, 100, 1169–1172. [Google Scholar] [CrossRef]
- Robinson, P.D.; Oberoi, S.; Tomlinson, D.; Duong, N.; Davis, H.; Cataudella, D.; Culos-Reed, N.; Gibson, F.; Götte, M.; Hinds, P.; et al. Management of fatigue in children and adolescents with cancer and in paediatric recipients of haemopoietic stem-cell transplants: A clinical practice guideline. Lancet Child Adolesc. Health 2018, 2, 371–378. [Google Scholar] [CrossRef]
- Andreyev, J.; Ross, P.; Donnellan, C.; Lennan, E.; Leonard, P.; Waters, C.; Wedlake, L.; Bridgewater, J.; Glynne-Jones, R.; Allum, W.; et al. Guidance on the management of diarrhoea during cancer chemotherapy. Lancet Oncol. 2014, 15, e447–e460. [Google Scholar] [CrossRef]
- Thomsen, M.; Vitetta, L. Adjunctive treatments for the prevention of chemotherapy- and radiotherapy-induced mucositis. Integr. Cancer Ther. 2018, 17, 1027–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manichanh, C.; Varela, E.; Martinez, C.; Antolin, M.; Llopis, M.; Doré, J.; Giralt, J.; Guarner, F.; Malagelada, J.R. The gut microbiota predispose to the pathophysiology of acute postradiotherapy diarrhea. Am. J. Gastroenterol. 2008, 103, 1754–1761. [Google Scholar] [CrossRef] [PubMed]
- Stringer, A.M.; Al-Dasooqi, N.; Bowen, J.M.; Tan, T.H.; Radzuan, M.; Logan, R.M.; Mayo, B.; Keefe, D.M.; Gibson, R.J. Biomarkers of chemotherapy-induced diarrhoea: A clinical study of intestinal microbiome alterations, inflammation and circulating matrix metalloproteinases. Support Care Canc. 2013, 21, 1843–1852. [Google Scholar] [CrossRef] [PubMed]
- Touchefeu, Y.; Montassier, E.; Nieman, K.; Gastinne, T.; Potel, G.; Bruley des Varannes, S.; Le Vacon, F.; de La Cochetière, M.F. Systematic review: The role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis - current evidence and potential clinical applications. Aliment. Pharmacol. Ther. 2014, 40, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Iida, N.; Dzutsev, A.; Stewart, C.A.; Smith, L.; Bouladoux, N.; Weingarten, R.A.; Molina, D.A.; Salcedo, R.; Back, T.; Cramer, S.; et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013, 342, 967–970. [Google Scholar] [CrossRef] [PubMed]
- Gui, Q.F.; Lu, H.F.; Zhang, C.X.; Xu, Z.R.; Yang, Y.H. Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Gen. Mol. Res. 2015, 14, 5642–5651. [Google Scholar] [CrossRef]
- Huang, S.; Li, J.Y.; Wu, J.; Meng, L.; Shou, C.C. Mycoplasma infections and different human carcinomas. World J. Gastroenterol. 2001, 7, 266–269. [Google Scholar] [CrossRef]
- Vande Voorde, J.; Balzarini, J.; Liekens, S. Mycoplasmas and cancer: Focus on nucleoside metabolism. EXCLI J. 2014, 13, 300–322. [Google Scholar]
- Vande Voorde, J.; Sabuncuoğlu, S.; Noppen, S.; Hofer, A.; Ranjbarian, F.; Fieuws, S.; Balzarini, J.; Liekens, S. Nucleoside-catabolizing enzymes in mycoplasma-infected tumor cell cultures compromise the cytostatic activity of the anticancer drug gemcitabine. J. Biol. Chem. 2014, 289, 13054–13065. [Google Scholar] [CrossRef] [Green Version]
- Lehouritis, P.; Cummins, J.; Stanton, M.; Murphy, C.T.; McCarthy, F.O.; Reid, G.; Urbaniak, C.; Byrne, W.L.; Tangney, M. Local bacteria affect the efficacy of chemotherapeutic drugs. Sci. Rep. 2015, 5, 14554. [Google Scholar] [CrossRef] [Green Version]
- Viaud, S.; Saccheri, F.; Mignot, G.; Yamazaki, T.; Daillère, R.; Hannani, D.; Enot, D.P.; Pfirschke, C.; Engblom, C.; Pittet, M.J.; et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013, 342, 971–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, M.; Hennenberg, E.M.; Eyking, A.; Rünzi, M.; Gerken, G.; Scott, P.; Parkhill, J.; Walker, A.W.; Cario, E. TLR signaling modulates side effects of anticancer therapy in the small intestine. J. Immunol. 2015, 194, 1983–1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.; Xia, X.; Wang, P.; Chen, S.; Yu, C.; Huang, R.; Zhang, R.; Wang, Y.; Lu, L.; Yuan, F.; et al. Induction and amelioration of methotrexate-Induced gastrointestinal toxicity are related to immune response and gut microbiota. eBioMed 2018, 33, 122–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Bekkum, D.W.; Roodenburg, J.; Heidt, P.J.; van der Waaij, D. Mitigation of secondary disease of allogeneic mouse radiation chimeras by modification of the intestinal microflora. J. Nat. Cancer Inst. 1974, 52, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Holler, E.; Butzhammer, P.; Schmid, K.; Hundsrucker, C.; Koestler, J.; Peter, K.; Zhu, W.; Sporrer, D.; Hehlgans, T.; Kreutz, M.; et al. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: Loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol. Blood Marrow Transpl. 2014, 20, 640–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidaka, D.; Hayase, E.; Shiratori, S.; Hasegawa, Y.; Ishio, T.; Tateno, T.; Okada, K.; Goto, H.; Sugita, J.; Onozawa, M.; et al. The association between the incidence of intestinal graft-vs-host disease and antibiotic use after allogeneic hematopoietic stem cell transplantation. Clin. Transpl. 2018, 32, e13361. [Google Scholar] [CrossRef] [PubMed]
- Shono, Y. Rinsho ketsueki. Jpn. J. Clin. Hematol. 2017, 58, 835–842. [Google Scholar] [CrossRef]
- Shono, Y.; van den Brink, M. Gut microbiota injury in allogeneic haematopoietic stem cell transplantation. Nat. Rev. Cancer 2018, 18, 283–295. [Google Scholar] [CrossRef]
- Jenq, R.R.; Taur, Y.; Devlin, S.M.; Ponce, D.M.; Goldberg, J.D.; Ahr, K.F.; Littmann, E.R.; Ling, L.; Gobourne, A.C.; Miller, L.C.; et al. Intestinal blautia is associated with reduced death from graft-versus-host disease. Biol. Blood Marrow Transpl. 2015, 21, 1373–1383. [Google Scholar] [CrossRef] [Green Version]
- Biagi, E.; Zama, D.; Nastasi, C.; Consolandi, C.; Fiori, J.; Rampelli, S.; Turroni, S.; Centanni, M.; Severgnini, M.; Peano, C.; et al. Gut microbiota trajectory in pediatric patients undergoing hematopoietic SCT. Bone Marrow Transpl. 2015, 50, 992–998. [Google Scholar] [CrossRef] [Green Version]
- Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; de Roos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Trompette, A.; Gollwitzer, E.S.; Yadava, K.; Sichelstiel, A.K.; Sprenger, N.; Ngom-Bru, C.; Blanchard, C.; Junt, T.; Nicod, L.P.; Harris, N.L.; et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014, 20, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Zama, D.; Rampelli, S.; Turroni, S.; Brigidi, P.; Consolandi, C.; Severgnini, M.; Picotti, E.; Gasperini, P.; Merli, P.; et al. Early gut microbiota signature of a GvHD in children given allogeneic hematopoietic cell transplantation for hematological disorders. BMC Med. Genom. 2019, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, F.; Soverini, M.; Zama, D.; Consolandi, C.; Severgnini, M.; Prete, A.; Pession, A.; Barone, M.; Turroni, S.; Biagi, E.; et al. Gut resistome plasticity in pediatric patients undergoing hematopoietic stem cell transplantation. Sci. Rep. 2019, 9, 5649. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rianda, D.; Agustina, R.; Setiawan, E.A.; Manikam, N. Effect of probiotic supplementation on cognitive function in children and adolescents: A systematic review of randomised trials. Beneficial. Microb. 2019, 10, 873–882. [Google Scholar] [CrossRef]
- Mantegazza, C.; Molinari, P.; D’Auria, E.; Sonnino, M.; Morelli, L.; Zuccotti, G.V. Probiotics and antibiotic-associated diarrhea in children: A review and new evidence on Lactobacillus rhamnosus GG during and after antibiotic treatment. Pharmacol. Res. 2018, 128, 63–72. [Google Scholar] [CrossRef]
- Ananthan, A.; Balasubramanian, H.; Rao, S.; Patole, S. Probiotic supplementation in children with cystic fibrosis-a systematic review. Eur. J. Pediatr. 2016, 175, 1255–1266. [Google Scholar] [CrossRef]
- Huang, R.; Ning, H.; Shen, M.; Li, J.; Zhang, J.; Chen, X. Probiotics for the treatment of atopic dermatitis in children: A systematic review and meta-analysis of randomized controlled trials. Front Cell. Infect. Microbiol. 2017, 7, 392. [Google Scholar] [CrossRef]
- Scott, A.M.; Clark, J.; Julien, B.; Islam, F.; Roos, K.; Grimwood, K.; Little, P.; Del Mar, C.B. Probiotics for preventing acute otitis media in children. Cochrane Database Syst. Rev. 2019, 6, CD012941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimaldi, R.; Gibson, G.R.; Vulevic, J.; Giallourou, N.; Castro-Mejía, J.L.; Hansen, L.H.; Leigh Gibson, E.; Nielsen, D.S.; Costabile, A. A prebiotic intervention study in children with autism spectrum disorders (ASDs). Microbiome 2018, 6, 133. [Google Scholar] [CrossRef] [PubMed]
- Hume, M.P.; Nicolucci, A.C.; Reimer, R.A. Prebiotic supplementation improves appetite control in children with overweight and obesity: A randomized controlled trial. Am. J. Clin. Nutr. 2017, 105, 790–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekert, H.; Jurk, I.H.; Waters, K.D.; Tiedemann, K. Prophylactic co-trimoxazole and lactobacilli preparation in neutropenic patients. Med. Pediatr. Oncol. 1980, 8, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Wada, M.; Nagata, S.; Saito, M.; Shimizu, T.; Yamashiro, Y.; Matsuki, T.; Asahara, T.; Nomoto, K. Effects of the enteral administration of Bifidobacterium breve on patients undergoing chemotherapy for pediatric malignancies. Support Care Cancer 2010, 18, 751–759. [Google Scholar] [CrossRef]
- Vahabnezhad, E.; Mochon, A.B.; Wozniak, L.J.; Ziring, D.A. Lactobacillus bacteremia associated with probiotic use in a pediatric patient with ulcerative colitis. J. Clin. Gastroenterol. 2013, 47, 437–439. [Google Scholar] [CrossRef] [Green Version]
- Ambesh, P.; Stroud, S.; Franzova, E.; Gotesman, J.; Sharma, K.; Wolf, L.; Kamholz, S. Recurrent Lactobacillus bacteremia in a patient with Leukemia. J. Invest. Med. 2017, 5, 2324709617744233. [Google Scholar] [CrossRef] [Green Version]
- Salminen, M.K.; Rautelin, H.; Tynkkynen, S.; Poussa, T.; Saxelin, M.; Valtonen, V.; Järvinen, A. Lactobacillus bacteremia, clinical significance, and patient outcome, with special focus on probiotic L. rhamnosus GG. Clin. Infect. Dis. 2004, 38, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Nakama, K.A.; Dos Santos, R.B.; Serpa, P.; Maciel, T.R.; Haas, S.E. Organoleptic excipients used in pediatric antibiotics. Arch. Pediatr. 2019, 26, 431–436. [Google Scholar] [CrossRef]
- WHO. Antimicrobial Resistance: Global Report on Surveillance 2014; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Kokai-Kun, J.F.; Roberts, T.; Coughlin, O.; Le, C.; Whalen, H.; Stevenson, R.; Wacher, V.J.; Sliman, J. Use of ribaxamase (SYN-004), a β-lactamase, to prevent Clostridium difficile infection in β-lactam-treated patients: A double-blind, phase 2b, randomised placebo-controlled trial. Lancet Infect Dis. 2019, 19, 487–496. [Google Scholar] [CrossRef]
- D’Amico, F.; Biagi, E.; Rampelli, S.; Fiori, J.; Zama, D.; Soverini, M.; Barone, M.; Leardini, D.; Muratore, E.; Prete, A.; et al. Enteral nutrition in pediatric patients undergoing hematopoietic SCT promotes the recovery of gut microbiome homeostasis. Nutrients 2019, 11, 2958. [Google Scholar] [CrossRef] [Green Version]
- Murphy, A.J.; White, M.; Elliott, S.A.; Lockwood, L.; Hallahan, A.; Davies, P.S. Body composition of children with cancer during treatment and in survivorship. Am. J. Clin. Nutr. 2015, 102, 891–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemaitilly, W.; Cohen, L.E.; Mostoufi-Moab, S.; Patterson, B.C.; Simmons, J.H.; Meacham, L.R.; van Santen, H.M.; Sklar, C.A. Endocrine late effects in childhood cancer survivors. J. Clin. Oncol. 2018, 36, 2153–2159. [Google Scholar] [CrossRef] [PubMed]
- Jäger, R.; Purpura, M.; Farmer, S.; Cash, H.A.; Keller, D. Probiotic Bacillus coagulans GBI-30, 6086 improves protein absorption and utilization. Probiotics Antimicrob. Proteins 2018, 10, 611–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesika, P.; Sivamaruthi, B.S.; Chaiyasut, C. Do probiotics improve the health status of individuals with diabetes mellitus? A review on outcomes of clinical trials. BioMed Res. Int. 2019, 2019, 1531567. [Google Scholar] [CrossRef]
- Million, M.; Diallo, A.; Raoult, D. Gut microbiota and malnutrition. Microb. Pathog. 2017, 106, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Guidotti, L.; Solari, F.; Bertolini, P.; Gebennini, E.; Ghiaroni, G.; Corsano, P. Reminiscing on acute and chronic events in children with cancer and their parents: An exploratory study. Child Care Health Dev. 2019, 45, 568–576. [Google Scholar] [CrossRef]
- Kaatsch, P. Epidemiology of childhood cancer. Cancer Treat Rev. 2010, 36, 277–285. [Google Scholar] [CrossRef]
Author, Year | Criteria for Prophylaxis | Antibiotics Employed |
---|---|---|
Cecinati, 2013 | Children with cancer and probably long-lasting neutropenia, in accordance to the chemotherapics employed |
|
Chastagner, 2018 | Patients with AML or ALL in order to prevent infections related to mortality |
|
Choeyprasert, 2017 | To all HCT recipients on the day on which conditioning regimens started, until engraftment, and discontinuation was indicated when the patients developed fever, clinically documented infection or suspected infection |
|
Al Omar, 2017 | To each CT course when the ANC was ≤1000 cells/mm3 and continued until AMC was ≥100 cells/mm3 postnadir |
|
Alexander, 2018 | To all patients aged 6 months to 21 years with acute leukemia (any AML or relapsed ALL) or HCT recipients |
|
Author, Year | Finding |
---|---|
Huang [78], 2001 | Certain bacteria reside in the tumor tissue and can directly modulate chemotherapy by producing nucleoside analogue-catabolizing enzymes, which can interfere with antineoplastic drugs. |
Lehouritis [81], 2015 | Escherichia coli nitroreductase activity is able to enhance the cytotoxicity of the drug CB1954. |
Iida [76], 2013 | Shifts in microbiota decrease the production of ROS and oxidative damage, key mechanisms in many anticancer drugs. |
Viaud [82], 2013 | Gram-positive bacterial decontamination with antibiotics reduces the stimulation of the Th1 and Th17 immune responses, thus impairing the efficacy of cyclophosphamide. |
Frank [83], 2015 | Methotrexate can induce gastrointestinal toxicity: in murine models, gut microbiota depletion has been linked to poorer TLR2 activation and therefore lower expression of the multidrug resistance pump ABCB1/MDR1. The TLR2 pathway has been proven to reduce the toxic effects of methotrexate on the gut epithelium. |
Antibiotic | Effects on Intestinal Microbial |
---|---|
Amoxicillin/clavulanate acid |
|
Cephalosporins |
|
Piperacillin |
|
Trimethoprim-Sulfamethoxazole |
|
Fluoroquinolones |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bossù, G.; Di Sario, R.; Argentiero, A.; Esposito, S. Antimicrobial Prophylaxis and Modifications of the Gut Microbiota in Children with Cancer. Antibiotics 2021, 10, 152. https://doi.org/10.3390/antibiotics10020152
Bossù G, Di Sario R, Argentiero A, Esposito S. Antimicrobial Prophylaxis and Modifications of the Gut Microbiota in Children with Cancer. Antibiotics. 2021; 10(2):152. https://doi.org/10.3390/antibiotics10020152
Chicago/Turabian StyleBossù, Gianluca, Riccardo Di Sario, Alberto Argentiero, and Susanna Esposito. 2021. "Antimicrobial Prophylaxis and Modifications of the Gut Microbiota in Children with Cancer" Antibiotics 10, no. 2: 152. https://doi.org/10.3390/antibiotics10020152
APA StyleBossù, G., Di Sario, R., Argentiero, A., & Esposito, S. (2021). Antimicrobial Prophylaxis and Modifications of the Gut Microbiota in Children with Cancer. Antibiotics, 10(2), 152. https://doi.org/10.3390/antibiotics10020152