Pharmacokinetics of Antibiotics in Pediatric Intensive Care: Fostering Variability to Attain Precision Medicine
Abstract
:1. Introduction
2. Developmental Pharmacokinetics, Applied to Antibiotics
3. Critical Illness Related Pharmacokinetic Alterations in Children and Infants
4. Subpopulations of Critically Ill Children and Neonates at Increased Risk of Pharmacokinetic Alterations
4.1. Augmented Renal Clearance
4.2. Extracorporeal Organ Support Systems
4.2.1. Extracorporeal Membrane Oxygenation
4.2.2. Cardiopulmonary Bypass
4.2.3. Continuous Renal Replacement Therapy
Reference | Antibiotic | Study Aspects | Age and Weight Range | Median (Range) or Mean ± SD eGFR (mL/min/1.73 m2) | Results and Clinical Implications |
---|---|---|---|---|---|
Giachetto et al. 2011 [52] | Vancomycin | Prospective study in mixed PICU patients with normal SCr (n = 22) | 1 m–16 y Body weight not reported | Not reported | Standard dosing regimen 40–60 mg/kg/day in 4 doses infused over 1h leads to subtherapeutic exposure. Dosing recommendation: loading dose of 18–24 mg/kg needed in patients with fluid overload. |
Silva et al. 2012 [56] | Vancomycin | Prospective popPK study in hemato-oncologic PICU patients (n = 31) | 2 m–13 y 5–62 kg | 136 ± 44.8 (mL/min) | Standard dosing regimen 40–60 mg/kg/day leads to subtherapeutic exposure |
Gomez et al. 2013 [111] | Vancomycin | Prospective study in burns patients with sepsis and normal renal function (n = 13) | 1–11 y 12–45 kg | 221 (162–506) (mL/min) | Standard dosing regimen 40–45 mg/kg/day in 3–4 doses leads to subtherapeutic exposure Dosing recommendation: 90–100 mg/kg/day as initial dose in burns patients with sepsis and normal renal function |
Hirai et al. 2016 [112] | Vancomycin | Retrospective popPK study in mixed PICU patients with eGFR > 90 mL/min/1.73 m2 (n = 109) | 1–14.7 y 4.4–62.5 kg | 160 (90–323) | Standard dosing regimen 40–60 mg/kg/day in 2–4 doses infused over 1h leads to subtherapeutic exposure in patients with febrile neutropenia Dosing recommendation: 60 mg/kg/day as initial dose in patients with febrile neutropenia (which were found to be at risk of ARC). |
Avedissian et al. 2017 [64] | Vancomycin | Retrospective popPK study in mixed PICU patients with normal SCr (n = 250) | 3.2–14 y (IQR) 15–50 kg (IQR) | Not reported | Standard dosing regimen 40–60 mg/kg/day in 3 doses leads to subtherapeutic exposure. Vancomycin CL was approx. 50 mL/min/1.73 m2 higher in children with ARC vs. those without ARC. Patients older than 7.9 years were more likely to experience ARC. |
Lee et al. 2017 [113] | Vancomycin | Retrospective PK study in mixed PICU patients with eGFR ≥50 mL/min/1.73 m2 (n = 101) | 3.7–13.6 y (IQR) 15–38.7 kg (IQR) | 130 (91–163) (IQR) | Standard dosing regimen IQR 37–51 mg/kg/day in 3–4 doses leads to subtherapeutic exposure in 75% of the patients. An eGFR cutoff of 110.5 mL/min/1.73 m2 is predictive of subtherapeutic exposure. |
Lv et al. 2020 [114] | Vancomycin | Retrospective popPK study with dosing simulations in patients with hematologic malignancy and eGFR ≥ 130 mL/min/1.73 m2 (n = 53, of which 15 PICU patients) | 2.2–17.9 y 11–72 kg | 258 (mean) (133–1284) | Standard dosing regimen leads to subtherapeutic exposure. Dosing recommendation: 50–75 mg/kg/day to achieve AUC/MIC ≥ 400. Higher dosage (per kg) needed with decreasing body weight. |
He et al. 2021 [115] | Vancomycin | PopPK study with dosing simulations in infants, children and adolescents with ARC (n = 113) | 0.4–14.9 y 6–62 kg | 199 (160–332) | The currently recommended dosing regimen of 60 mg/kg/day leads to high risk of underdosing. Increased dosing is needed to reach the target AUC/MIC of 400–700: 75 mg/kg/day for infants and children (1 m–12 y), 70 mg/kg/day for adolescents (12–18 y). |
Yu et al. 2015 [116] | Amikacin | Prospective popPK study with dosing simulations in burns patients with sepsis (n = 70) | 2–10 y (IQR) 13–49 kg (IQR) | Not reported | Burns patients show markedly increased amikacin CL (and Vd) compared to patients without burns. Standard dosing regimens lead to subtherpaeutic exposure. Dosing recommendation: Increased doses (≥25 mg/kg) are needed to achieve Cmax/MIC ≥ 8. |
Sridharan et al. 2020 [76] | Gentamicin | Retrospective popPK study in critically ill children (n = 73) | 3.6 ± 4.6 (mean ± SD) 14.7 ± 16.5 (mean ± SD) | 145 ± 87 | Standard dosing regimens lead to lower AUC and subtherapeutic exposure in patients with ARC. Dosing recommendation: Monitor not only trough concentrations but also AUC in patients with ARC. |
Cies et al. 2014 [84] | Piperacillin/tazobactam | Prospective popPK study with dosing simulations in mixed PICU patients (n = 13) | 9 m–9 y 8.5–30 kg | Not reported | Standard dosing regimen 75–100 mg/kg q6h leads to subtherapeutic exposure in ARC patients Dosing recommendation: 400 mg/kg/day in 4 dose infused over 3h or in continuous infusion to achieve 50% fT>MIC. |
Nichols et al. 2016 [81] | Piperacillin/tazobactam | Prospective popPK study with dosing simulations in mixed PICU patients with eGFR > 60 mL/min/1.73 m2 (n = 12) | 1–9 y 9.5–30.1 kg | 105 (86–189) | Standard dosing regimens lead to subtherapeutic exposure Dosing recommendation: 80–100 mg/kg q8h infused over 4 h to achieve 50% fT>MIC. |
De Cock et al. 2017 [82] | Piperacillin/tazobactam | Prospective popPK study with dosing simulations in mixed PICU patients (n = 47) | 2 m–15 y 3.4–45 kg | NA (many SCr concentrations below the limit of quantification) | Standard dosing regimen 75 mg/kg q6h infused over 5–30 min leads to subtherapeutic exposure in ARC patients. Dosing recommendation: 75 mg/kg q4h infused over 2h or 100 mg/kg q4h over 1h or loading dose of 75 mg/kg followed by continuous infusion of 300 mg/kg/day to achieve 60% fT>MIC. |
Beranger et al. 2019 [83] | Piperacillin/tazobactam | Prospective popPK study with dosing simulations in PICU patients (n = 50) | 0.1– 18 y 2.7–50 kg | 142 (26–675) | Standard dosing regimens lead to subtherapeutic exposure Dosing recommendation: 400 mg/kg/day as extended or continuous infusion in patients with ARC to achieve 50% fT>MIC or 100% fT>MIC. |
De Cock et al. 2015 [93] | Amoxicillin/clavulanic acid | Prospective popPK study with dosing simulations in mixed PICU patients (n = 50) | 1 m–15 y 4.07–65 kg | NA (many SCr concentrations below the limit of quantification) | Standard dosing regimens 25–35 mg/kg q6h infused over 5–30 min lead to subtherapeutic exposure. Dosing recommendation: 25 mg/kg q4h infused over 1h for ARC patients. |
Cies et al. 2017 [95] | Meropenem | Retrospective popPK study with dosing simulations in mixed PICU patients with sepsis and eGFR >50 mL/min/1.73 m2 (n = 9) | 1–9 y 7.5–40 kg | 168 (104–224) | Standard dosing regimen 20–40 mg/kg q8h infused over 30 min leads to subtherapeutic exposure in ARC patients. Dosing recommendation: 20–40 mg/kg q6-8h infused over 3–4 h or continuous infusion to achieve 40% fT>MIC. 120–160 mg/kg/day as continuous infusion to achieve 80% fT>MIC. |
Rapp et al. 2020 [97] | Meropenem | Prospective popPK study with dosing simulations in PICU patients (n = 40) | 1.4 m–187.2 m 3.8–59 kg | 151 (19–440) | Standard dosing regimens lead to subtherapeutic exposure Dosing advice: 60–120 mg/kg/day as continuous infusion to achieve 50% fT>MIC or 100% fT>MIC. |
Saito et al. 2021 [98] | Meropenem | Retrospective popPK study with dosing simulations in mixed PICU patients (n = 34) | 0.03–14.6 y 2.7–40.9 kg | 38.2 (1.4–183.8) | Standard dosing regimens lead to subtherapeutic exposure Dosing advice: 40–80 mg/kg q8h infused over 3h to achieve 100% fT>MIC. |
Beranger et al. 2018 [87] | Cefotaxime | Prospective popPK study with dosing simulations in mixed PICU patients (n = 49) | 6 d–19 y 2.5–68 kg | 171 (40–304) | Standard dosing regimen 25–75 mg/kg q6h infused over 30 min leads to subtherapeutic exposure Dosing recommendation: 100 mg/kg/day as continuous infusion. |
Cies et al. 2018 [91] | Ceftaroline | Retrospective popPK study in PICU patients with eGFR >60 mL/min/1.73 m2 (n = 7) | 1–13 y 12.6–40.1 kg | Not reported | Standard dosing regimen leads to subtherapeutic exposure in ARC patients Dosing recommendation: 15 mg/kg q6h. |
Reference | Antibiotic | Study Aspects | Age and Weight Range | Results and Clinical Implications |
---|---|---|---|---|
Zylberstajn et al. 2018 [126] | Vancomycin | Retrospective popPK study in children <15 y (n = 40) | Age and body weight not reported for whole population (IQR varied between 1 m–100 m and 2.9–23 kg) | Standard dosing vancomycin 40–60 mg/kg/day in 4 doses. ECMO patients without acute kidney injury or RRT had similar Vd and lower CL lower than non-ECMO critically ill pediatric patients. Initial dosing must be adjusted according to renal function. |
Amaker et al. 1996 [125] | Vancomycin | Prospective study in neonates (n = 12) | 11 h–152 h 2.7–3.9 kg | Larger Vd and lower CL in ECMO vs. non-ECMO patients. Neonates without renal impairment should receive 20 mg/kg q24h. Estimated creatinine clearance is strongly associated with vancomycin CL, and can be used to guide vancomycin dosing. |
Buck et al. 1998 [124] | Vancomycin | Retrospective study in neonates (n = 15 + 15 controls) | 12.7 d ± 5.1 (mean ± SD) 3.1 kg ± 0.6 (mean ± SD) | Prolonged elimination but no statistically significant difference in CL and Vd compared to controls. Dosing interval should be extended beyond 6–8 h in neonates undergoing ECMO. |
Cies et al. 2017 [121] | Vancomycin | Retrospective popPK study with dosing simulations in neonates with eGFR ≥10 mL/min/1.73 m2 (n = 12) | 0–28 d 2.2–4 kg | More rapid CL compared to previous studies with older ECMO systems. More aggressive initial dosing regimen compared to older studies. A dosing interval q8-12h or continuous infusion is needed to achieve trough concentrations >10 mg/L. |
Moffett et al. 2018 [123] | Vancomycin | Retrospective popPK study with dosing simulations in children <19 years without RRT (n = 93) | 0.07–6.7 y (IQR) 3.7–21.9 kg (IQR) | SCr is associated with vancomycin CL. Infants and children showed lower target attainment, and had lower SCr concentrations. 25–30 mg/kg q12-24h had the greatest likelihood of achieving targt AUC/MIC values. Higher doses might be needed for patients with normal renal function. Likewise, increased dosing intervals might be necessary for patients with increased SCr concentrations. |
An et al. 2019 [122] | Vancomycin | Prospective study in neonates (n = 25 + 25 controls) | 8 ± 7.9 (mean ± SD) 3.1 ± 0.4 (mean ± SD) | Increased elimination half-life and decreased CL in the ECMO patients compared to the controls. Vd was unchanged. CL was associated with SCr. However ECMO remained significantly associated with CL after adjusting for SCr. It is unclear if analyses were also adjusted for RRT. Dosing adjustments and TDM are required in neonates undergoing ECMO. |
Southgate et al. 1989 [127] | Gentamicin | Prospective study in neonates (n = 10) | Post-natal age not reported (‘soon after birth’) 2.7–4.8 kg | Similar Vd to non-ECMO neonates. Longer elimination half-life compared to non-ECMO neonates. SCr was strongly associated with the elimination half-life. A dose of 2.5 mg/kg is a reasonable starting point. The dosing interval varied between 8–30 h and needs to be determined by TDM. |
Cohen et al. 1990 [128] | Gentamicin | Prospective popPK study in neonates (n = 18, of which 12 were their own control after ECMO discontinuation) | 2–8 d Body weight not reported | Increased Vd in ECMO vs. non-ECMO patients. CL was decreased by 25% due to a decrease in eGFR. A 25% increase in dose and longer dosing intervals should be considered. |
Munzenberger et al. 1991 [129] | Gentamicin | Retrospective study in neonates (n = 15) | Age not reported 2.5–6.6 kg | No major impact of ECMO on gentamicin Vd and CL when compared to previous studies in neonates not supported with ECMO. |
Bhatt-Mehta et al. 1992 [130] | Gentamicin | Retrospective study in neonates (n = 29) | Post-natal age not reported 3.35 ± 0.71 kg (mean ± SD) | Similar Vd and prolonged elimination half-life in ECMO patients compared to previously reported Vd in non-ECMO neonates. No significant differences in Vd and CL between different types of ECMO (veno-arterial vs. veno-venous) and oxygenator. A dosing regimen of 2.5 mg/kg q18h is recommended for neonates undergoing ECMO. TDM should be used to individualise the dosing interval. |
Dodge et al. 1994 [131] | Gentamicin | Prospective popPK study in neonates (n = 11, of which 6 were their own control after ECMO discontinuation) | Post-natal age not reported 2.7–5.1 kg | Decrease in Vd and increase in CL after discontinuation of ECMO. Increase in loading dose (>2.5 mg/kg) and prolonged dosing interval beyond 8–12h is needed. |
Moffett et al. 2018 [132] | Gentamicin | Retrospective popPK study with dosing simulations in children <19 y (n = 37) | 0.12–0.82 m (IQR) 2.4–3.8 kg (IQR) | Fat-free mass should be used to guide gentamicin dosing. SCr is predictive of gentamicin CL, and should be used to adjust dosing. Dosing regimens for neonates and infants undergoing ECMO are not significantly different from those in non-ECMO patients. A dosing regimen of 4–5 mg/kg q24h is acceptable for neonates and infants. Older children may need longer dosing intervals to compensate for increased trough concentrations. |
Cies et al. 2011 [136] | Piperacillin/tazobactam | Retrospective popPK study with dosing simulations (n = 6) | 8 d–7 m Body weight not reported | Trough concentrations of 150 mg/L were not attained. A dosing regimen of 50 mg/kg q2h, 100 mg/kg q4h or 200 mg/kg q6g would be needed to obtain a piperacillin trough concentration of 150 mg/L. |
Lindsay et al. 1996 [141] | Ticarcillin/clavulanic acid | Prospective study (n = 3, of which 2 patients were on ECMO) | 6–6.5 y 22.1–27.6 kg | CL of ticarcillin and clavulanic acid were comparable in the two patients receiving ECMO and the third patient not receiving ECMO (all patients received CRRT). CL is decreased compared to historical controls. |
Cies et al. 2014 [153] | Meropenem | Case report in a pediatric cardiac critically ill patient (n = 1) | 8 m Body weight not reported | Meropenem 40 mg/kg bolus followed by continuous infusion of 200 mg/kg/day resulted in attainment of 40% fT>MIC in serum and lungs, and was associated with successful clinical outcome in a patient infected with P. aeruginosa with a MIC of 0.5 mg/L. |
Alqaqaa et al. 2016 [140] | Meropenem | Case report in a pediatric patient with septic shock supported with ECMO and CRRT | 4 y | Significantly reduced CL compared with other case reports. Supratherapeutic concentrations were obtained with continuous infusion of 10 mg/kg/h (following an intermittent dosing of 40 mg/kg q8h). |
Cies et al. 2016 [139] | Meropenem | Case report in a full-term neonate with concomitant ECMO and CCRT (n = 1) | 10 d 2.8 kg | CL is larger than in a previous case report with ECMO but without CRRT. Meropenem 40 mg/kg bolus followed by continuous infusion of 240 mg/kg/day resulted in attainment of 40% fT>MIC in serum, and was associated with microbiological eradication in a patient infected with P. aeruginosa with a MIC of 0.25 mg/L. |
Rapp et al. 2020 [97] | Meropenem | Prospective popPK study with dosing simulations in PICU patients (n = 40, of which 8 received ECMO) | 1.4 m–187.2 m 3.8–59 kg | ECMO had no significant effect on meropenem Vd and CL. |
Saito et al. 2021 [98] | Meropenem | Retrospective popPK study with dosing simulations in mixed PICU patients (n = 34, of which 3 received ECMO) | 0.03–14.6 y 2.7–40.9 kg | ECMO had no significant effect on meropenem Vd and CL. |
Tan et al. 2021 [138] | Meropenem | Prospective popPK study with dosing simulations in children receiving CRRT (n = 9, of which 4 received ECMO) | 0.1–18.9 y 2.6–56.3 kg | ECMO had no significant effect on meropenem Vd and CL. |
Wang et al. 2021 [137] | Meropenem | Propspective study in children with sepsis (n = 27, of which 6 received ECMO) | 0.5–5.2 y (IQR) 6.5–21.5 kg (IQR) | ECMO did not significantly alter meropenem Vd and CL, hence dosing adjustments might not be needed in patients supported with ECMO. |
Ahsman et al. 2010 [134] | Cefotaxime | Prospective popPK study with dosing simulations (n = 37) | 1–199 d 2–6.2 kg | Larger Vd and comparable CL compared to non-ECMO patients. The standard dosing regimen (50 mg/kg q12h for PNA <1 week; 50 mg/kg q8g for PNA 1–4 weeks; 37.5 mg/kg q6h for PNA >4 weeks) provides sufficient exposure (50% fT>MIC) in infants receiving ECMO. |
Zuppa et al. 2019 [135] | Cefepime | Prospective popPK study (n = 17) | 1.4–22.2 m 3.3–10 kg | CL was reduced and Vd increased compared to non-ECMO children. The central Vd decreased with increasing age of the ECMO oxygenator. Only 14/19 doses studied achieved 70% fT>MIC. |
Yang et al. 2021 [102] | Linezolid | Prospective popPK study with dosing simulations (n = 63, of which 2 received ECMO) | 0.1–15.3 y 4.2–70 kg | ECMO had no significant effect on linezolid Vd and CL. |
Reference | Antibiotic | Study Aspects | Age and Weight Range | Results and Clinical Implications |
---|---|---|---|---|
Haessler et al. 2003 [144] | Cefazolin, Gentamicin | Prospective study in children less than 10 kg during and after CPB (n = 19) | 1 d–2.6 y 3.8–10.5 kg | Increase in Vd during CPB for cefazolin and gentamicin. Vd returned to baseline for cefazolin. Vd increased further after surgery for gentamicin. The elimination constant decreased during surgery for both antibiotics. However, it increased after surgery for cefazolin, but remained low after surgery for gentamicin. For cefazolin, 40 mg/kg at induction of anesthesia, followed by 35 mg/kg q8h for 48 h lead to sufficiently high trough concentrations (>8 mg/L). For gentamicin, 5 mg/kg at induction of anesthesia, followed by 2 mg/kg q12h for 48 h lead to unnecessary high trough concentrations (>6–8 mg/L). Therefore, a reduced dose of 2 mg/kg, with a second dose after 4 h if surgery is not yet completed, and no postoperative dose, is recommended |
Cies et al. 2019 [154] | Cefazolin | Prospective popPK study in children during CPB (n = 41) | From birth to 16 y (range not specified) 3.5–79 kg (IQR for lowest and highest age group, respectively) | Mixing cefazolin (25 mg/kg) in the CPB priming fluid resulted in adequate exposure during cardiac surgery. Repeated administration of cefazolin during and after surgery is probably not needed. |
De Cock et al. 2017 [142] | Cefazolin | Prospective popPK study with dosing simulations in children before, during and after CPB (n = 56) | 6 d–15 y 2.7–70 kg | Increase in Vd during CPB. Decreasing eGFR during and after CPB leads to decreased CL. Subtherapeutic exposure in a substantial fraction of patients, especially in patients with prolonged cardiac surgery and preserved renal function. An adapted dosing regimen consisting of: 40 mg/kg, 30 min before surgical incision; 20 mg/kg, at start of CPB and at start of rewarming on CPB; and 40 mg/kg 8 h after the third and fourth dose improves the probability of target attainment from 40% to >88% for infections caused by staphylococci. |
Gertler et al. 2018 [143] | Cefuroxime | Prospective popPK study with dosing simulations in children less than one year with congenital heart defect undergoing cardiac surgery with (n = 36) or without (n = 6) CPB | 6–348 d 2.3–9.5 kg | No effect on Vd, but significantly increased CL during CPB. An adapted dosing regimen of 25 mg/kg bolus followed by continuous infusion of 5 mg/kg/h, with an additional 25 mg/kg bolus in the priming fluid maintains free plasma cefuroxime concentrations above 4xMIC (i.e., 32 mg/L). If continuous infusion is not used, intermittent infusion of 50 mg/kg q2h is recommended. |
Reference | Antibiotic | Study Aspects | Age and Weight Range | Results and Clinical Implications |
---|---|---|---|---|
Cies et al. 2016 [151] | Vancomycin | Retrospective study in children receiving CRRT (CVVH, CVVHD and CVVHDF) (n = 11) | 0.08–18 y 3.1–65 kg | Mixing of vancomycin in the CRRT solution lead to therapeutic plateau concentrations (15–30 mg/L) in 10/11 patients 8 h after start of CRRT. |
Moffett et al. 2019 [150] | Vancomycin | Retrospective popPK study with dosing simulations in children receiving CVVHDF (n = 138) | 1–14.5 y (IQR) 31 ± 25.8 kg (mean ± SD) | The CL is within the range of values observed in non-CVVHDF children. The ultrafiltration rate and dialysis rate have a significant positive effect on the CL. There is high variability in dosing regimens needed to attain therapeutic exposure. The most optimal empiric dosing regimen is 15 mg/kg q8h based on fat-free mass, which leads to target attainment in approx. 80% of patients. |
Girdwood et al. 2020 [155] | Piperacilllin/tazobactam | Case report in one child with sepsis and liver failure supported with concomitant CRRT and MARS | 13 y 42 kg | 50% fT>4xMIC was attained under CRRT alone, but not during MARS due to increased CL of piperacillin. Higher dose and extended infusion are recommended when initiating MARS, but not for CRRT alone. |
Rapp et al. 2020 [97] | Meropenem | Prospective popPK study with dosing simulations in PICU patients (n = 40, of which 11 received CRRT) | 1.4 m–187.2 m 3.8–59 kg | Standard dosing regimens lead to subtherapeutic exposure not only in patients with normal or augmented renal clearance, but also in CRRT patients. CRRT had a significant effect on CL. A dosing regimen of 60 mg/kg/day as continuous infusion is needed to achieve 50% fT>MIC or 100% fT>MIC. In case of MIC values <2 mg/L, intermittent infusion of 20 mg/kg q8h is also adequate. |
Saito et al. 2021 [98] | Meropenem | Retrospective popPK study with dosing simulations in mixed PICU patients (n = 34, of which 8 received CRRT [CVVHDF and CVVHD]) | 0.03–14.6 y 2.7–40.9 kg | Standard dosing regimens lead to suboptimal exposure. Vd was 66% higher in CRRT patients. A dosing regimen of 40–80 mg/kg q8h infused over 3 h is needed to achieve 100% fT>MIC. |
Tan et al. 2021 [138] | Meropenem | Prospective popPK study with dosing simulations in children receiving CRRT (CVVH or CVVHDF) (n = 9) | 0.1–18.9 y 2.6–56.3 kg | Meropenem is freely filtered over the hemofilter/dialysis membrane (mean sieving coefficient of approx. 1). Standard dosing regimen of 40 mg/kg q12h lead to suboptimal exposure when targeting 100% fT>MIC in CRRT patients. 20 mg/kg q8h over 4 h or 40 mg/kg q8h over 2 h are needed to achieve 100% fT>MIC. |
Wang et al. 2021 [137] | Meropenem | Prospective study in children with sepsis (n = 27, of which 6 patients received CVVHDF) | 1.13–6.88 y (IQR) 8.6–27.1 kg (IQR) | Lower sieving coefficient than previously reported (0.26 vs. approx. 1). CRRT intensity (no high-flow filtration was used in this study) did not significantly alter meropenem Vd and CL, hence dosing adjustments might not be needed in patients supported with CRRT. |
Stitt et al. 2019 [156] | Cefepime | Retrospective study in children receiving CVVHDF (n = 4) | 0.5–5 y 5.4–25 kg | The standard dosing regimen of 50 mg/kg q12h might not be sufficient to reach 100% fT>1–4xMIC. The CVVHDF clearance might be the driver of decreased exposure. |
Butragueño-Laiseca et al. 2020 [90] | Ceftolozane/tazobactam | Case series with one patient receiving CVVHDF and two patients without CRRT | 8–19 m 5.8–11 kg | The CL was approx. half that of the patient with normal renal function. A dosing regimen of 30 mg/kg q8h resulted in adequate target attainment. |
Yang et al. 2021 [102] | Linezolid | Prospective popPK study with dosing simulations (n = 63, of which 15 received CRRT) | 0.1–15.3 y 4.2–70 kg | CRRT had no significant effect on linezolid Vd and CL. |
4.3. Whole Body Hypothermia in Neonates
5. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Versporten, A.; Sharland, M.; Bielicki, J.; Drapier, N.; Vankerckhoven, V.; Goossens, H.; Members, A.P.G. The antibiotic resistance and prescribing in European Children project: A neonatal and Pediatric antimicrobial web-based point prevalence survey in 73 hospitals worldwide. Pediatr. Infect. Dis. J. 2013, 32, e242–e253. [Google Scholar] [CrossRef] [PubMed]
- Gerber, J.S.; Newland, J.G.; Coffin, S.E.; Hall, M.; Thurm, C.; Prasad, P.A.; Feudtner, C.; Zaoutis, T.E. Variability in antibiotic use at children’s hospitals. Pediatrics 2010, 126, 1067–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poole, N.M.; Shapiro, D.J.; Fleming-Dutra, K.E.; Hicks, L.A.; Hersh, A.L.; Kronman, M.P. Antibiotic Prescribing for Children in United States Emergency Departments: 2009–2014. Pediatrics 2019, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brogan, T.V.; Thurm, C.; Hersh, A.L.; Gerber, J.S.; Smith, M.J.; Shah, S.S.; Courter, J.D.; Patel, S.J.; Parker, S.K.; Kronman, M.P.; et al. Variability in Antibiotic Use Across PICUs. Pediatr. Crit. Care Med. 2018, 19, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, E.M.; Hornik, C.P.; Clark, R.H.; Laughon, M.M.; Benjamin, D.K., Jr.; Smith, P.B. Medication use in the neonatal intensive care unit. Am. J. Perinatol. 2014, 31, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Asin-Prieto, E.; Rodriguez-Gascon, A.; Isla, A. Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J. Infect. Chemother. 2015, 21, 319–329. [Google Scholar] [CrossRef]
- Nielsen, E.I.; Friberg, L.E. Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs. Pharm. Rev. 2013, 65, 1053–1090. [Google Scholar] [CrossRef] [Green Version]
- Cella, M.; Knibbe, C.; Danhof, M.; Della Pasqua, O. What is the right dose for children? Br. J. Clin. Pharm. 2010, 70, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Anderson, B.J.; Holford, N.H. Tips and traps analyzing Pediatric PK data. Paediatr. Anaesth. 2011, 21, 222–237. [Google Scholar] [CrossRef]
- Le, J.; Bradley, J.S. Optimizing Antibiotic Drug Therapy in Pediatrics: Current State and Future Needs. J. Clin. Pharm. 2018, 58 (Suppl. 10), S108–S122. [Google Scholar] [CrossRef] [Green Version]
- Downes, K.J.; Hahn, A.; Wiles, J.; Courter, J.D.; Vinks, A.A. Dose optimisation of antibiotics in children: Application of pharmacokinetics/pharmacodynamics in paediatrics. Int. J. Antimicrob. Agents 2014, 43, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Van den Anker, J.; Reed, M.D.; Allegaert, K.; Kearns, G.L. Developmental Changes in Pharmacokinetics and Pharmacodynamics. J. Clin. Pharm. 2018, 58 (Suppl. 10), S10–S25. [Google Scholar] [CrossRef] [Green Version]
- Wilbaux, M.; Fuchs, A.; Samardzic, J.; Rodieux, F.; Csajka, C.; Allegaert, K.; van den Anker, J.N.; Pfister, M. Pharmacometric Approaches to Personalize Use of Primarily Renally Eliminated Antibiotics in Preterm and Term Neonates. J. Clin. Pharm. 2016, 56, 909–935. [Google Scholar] [CrossRef]
- Allegaert, K.; Simons, S.H.P.; Tibboel, D.; Krekels, E.H.; Knibbe, C.A.; van den Anker, J.N. Non-maturational covariates for dynamic systems pharmacology models in neonates, infants, and children: Filling the gaps beyond developmental pharmacology. Eur. J. Pharm. Sci. 2017, 109, S27–S31. [Google Scholar] [CrossRef]
- Thaden, J.T.; Chiswell, K.; Jaffe, I.; Bergin, S.P.; Yang, W.E.; Romaine, A.; Roberts, J.; Nambiar, S.; Farley, J.; Benjamin, D.K., Jr.; et al. Pediatric Antibacterial and Antifungal Trials From 2007 to 2017. Pediatrics 2018, 142. [Google Scholar] [CrossRef] [Green Version]
- Schrier, L.; Hadjipanayis, A.; Stiris, T.; Ross-Russell, R.I.; Valiulis, A.; Turner, M.A.; Zhao, W.; De Cock, P.; de Wildt, S.N.; Allegaert, K.; et al. Off-label use of medicines in neonates, infants, children, and adolescents: A joint policy statement by the European Academy of Paediatrics and the European society for Developmental Perinatal and Pediatric Pharmacology. Eur. J. Pediatr. 2020, 179, 839–847. [Google Scholar] [CrossRef]
- Van der Zanden, T.M.; Mooij, M.G.; Vet, N.J.; Neubert, A.; Rascher, W.; Lagler, F.B.; Male, C.; Grytli, H.; Halvorsen, T.; de Hoog, M.; et al. Benefit-Risk Assessment of Off-Label Drug Use in Children: The Bravo Framework. Clin. Pharm. 2021, 110, 952–956. [Google Scholar] [CrossRef]
- Abdulla, A.; Edwina, A.E.; Flint, R.B.; Allegaert, K.; Wildschut, E.D.; Koch, B.C.P.; de Hoog, M. Model-Informed Precision Dosing of Antibiotics in Pediatric Patients: A Narrative Review. Front. Pediatr. 2021, 9, 624639. [Google Scholar] [CrossRef]
- Smits, A.; Annaert, P.; Cavallaro, G.; De Cock, P.; de Wildt, S.N.; Kindblom, J.M.; Lagler, F.B.; Moreno, C.; Pokorna, P.; Schreuder, M.F.; et al. Current knowledge, challenges and innovations in developmental pharmacology: A combined conect4children Expert Group and European Society for Developmental, Perinatal and Paediatric Pharmacology White Paper. Br. J. Clin. Pharm. 2021, 1–20. [Google Scholar] [CrossRef]
- Manolis, E.; Pons, G. Proposals for model-based paediatric medicinal development within the current European Union regulatory framework. Br. J. Clin. Pharm. 2009, 68, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Colin, P.J.; Allegaert, K.; Thomson, A.H.; Touw, D.J.; Dolton, M.; de Hoog, M.; Roberts, J.A.; Adane, E.D.; Yamamoto, M.; Santos-Buelga, D.; et al. Vancomycin Pharmacokinetics Throughout Life: Results from a Pooled Population Analysis and Evaluation of Current Dosing Recommendations. Clin. Pharmacokinet. 2019, 58, 767–780. [Google Scholar] [CrossRef] [Green Version]
- Vancomycin FDA Label. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209481s000lbl.pdf (accessed on 26 August 2021).
- Vinarov, Z.; Abdallah, M.; Agundez, J.A.G.; Allegaert, K.; Basit, A.W.; Braeckmans, M.; Ceulemans, J.; Corsetti, M.; Griffin, B.T.; Grimm, M.; et al. Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review. Eur. J. Pharm. Sci. 2021, 162, 105812. [Google Scholar] [CrossRef]
- Keij, F.M.; Kornelisse, R.F.; Hartwig, N.G.; Reiss, I.K.M.; Allegaert, K.; Tramper-Stranders, G.A. Oral antibiotics for neonatal infections: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2019, 74, 3150–3161. [Google Scholar] [CrossRef] [Green Version]
- Friis-Hansen, B. Body water compartments in children: Changes during growth and related changes in body composition. Pediatrics 1961, 28, 169–181. [Google Scholar]
- Sethi, P.K.; White, C.A.; Cummings, B.S.; Hines, R.N.; Muralidhara, S.; Bruckner, J.V. Ontogeny of plasma proteins, albumin and binding of diazepam, cyclosporine, and deltamethrin. Pediatr. Res. 2016, 79, 409–415. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, S.G.; Bradt, S.K.; Hall, R.T. Postnatal changes in total body water and extracellular volume in the preterm infant with respiratory distress syndrome. J. Pediatr. 1986, 109, 509–514. [Google Scholar] [CrossRef]
- Tréluyer, J.M.; Merlé, Y.; Tonnelier, S.; Rey, E.; Pons, G. Nonparametric population pharmacokinetic analysis of amikacin in neonates, infants, and children. Antimicrob. Agents Chemother. 2002, 46, 1381–1387. [Google Scholar] [CrossRef] [Green Version]
- Lingvall, M.; Reith, D.; Broadbent, R. The effect of sepsis upon gentamicin pharmacokinetics in neonates. Br. J. Clin. Pharm. 2005, 59, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Smits, A.; Kulo, A.; Verbesselt, R.; Naulaers, G.; de Hoon, J.; Vermeersch, P.; Allegaert, K. Cefazolin plasma protein binding and its covariates in neonates. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 3359–3365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smits, A.; Pauwels, S.; Oyaert, M.; Peersman, N.; Spriet, I.; Saegeman, V.; Allegaert, K. Factors impacting unbound vancomycin concentrations in neonates and young infants. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1503–1510. [Google Scholar] [CrossRef] [PubMed]
- Oyaert, M.; Spriet, I.; Allegaert, K.; Smits, A.; Vanstraelen, K.; Peersman, N.; Wauters, J.; Verhaegen, J.; Vermeersch, P.; Pauwels, S. Factors impacting unbound vancomycin concentrations in different patient populations. Antimicrob. Agents Chemother. 2015, 59, 7073–7079. [Google Scholar] [CrossRef] [Green Version]
- Martin, E.; Fanconi, S.; Kälin, P.; Zwingelstein, C.; Crevoisier, C.; Ruch, W.; Brodersen, R. Ceftriaxone--bilirubin-albumin interactions in the neonate: An in vivo study. Eur. J. Pediatr. 1993, 152, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Rhodin, M.M.; Anderson, B.J.; Peters, A.M.; Coulthard, M.G.; Wilkins, B.; Cole, M.; Chatelut, E.; Grubb, A.; Veal, G.J.; Keir, M.J.; et al. Human renal function maturation: A quantitative description using weight and postmenstrual age. Pediatr. Nephrol. 2009, 24, 67–76. [Google Scholar] [CrossRef] [PubMed]
- De Cock, R.F.; Allegaert, K.; Brussee, J.M.; Sherwin, C.M.; Mulla, H.; de Hoog, M.; van den Anker, J.N.; Danhof, M.; Knibbe, C.A. Simultaneous pharmacokinetic modeling of gentamicin, tobramycin and vancomycin clearance from neonates to adults: Towards a semi-physiological function for maturation in glomerular filtration. Pharm. Res. 2014, 31, 2643–2654. [Google Scholar] [CrossRef] [Green Version]
- Cristea, S.; Krekels, E.H.J.; Allegaert, K.; Knibbe, C.A.J. The Predictive Value of Glomerular Filtration Rate-Based Scaling of Pediatric Clearance and Doses for Drugs Eliminated by Glomerular Filtration with Varying Protein-Binding Properties. Clin. Pharmacokinet. 2020, 59, 1291–1301. [Google Scholar] [CrossRef]
- Cristea, S.; Krekels, E.H.J.; Rostami-Hodjegan, A.; Allegaert, K.; Knibbe, C.A.J. The Influence of Drug Properties and Ontogeny of Transporters on Pediatric Renal Clearance through Glomerular Filtration and Active Secretion: A Simulation-Based Study. AAPS J. 2020, 22, 87. [Google Scholar] [CrossRef]
- Cristea, S.; Allegaert, K.; Falcao, A.C.; Falcao, F.; Silva, R.; Smits, A.; Knibbe, C.A.J.; Krekels, E.H.J. Larger Dose Reductions of Vancomycin Required in Neonates with Patent Ductus Arteriosus Receiving Indomethacin versus Ibuprofen. Antimicrob. Agents Chemother. 2019, 63, e00853-19. [Google Scholar] [CrossRef] [Green Version]
- Allegaert, K.; Cossey, V.; Langhendries, J.P.; Naulaers, G.; Vanhole, C.; Devlieger, H.; Van Overmeire, B. Effects of co-administration of ibuprofen-lysine on the pharmacokinetics of amikacin in preterm infants during the first days of life. Biol Neonate. 2004, 86, 207–211. [Google Scholar] [CrossRef]
- Marsot, A. Population pharmacokinetic models of first choice beta-lactam antibiotics for severe infections treatment: What antibiotic regimen to prescribe in children? J. Pharm. Pharm. Sci. Publ. Can. Soc. Pharm. Sci. Soc. Can. Des. Sci. Pharm. 2020, 23, 470–485. [Google Scholar] [CrossRef]
- Hartman, S.J.F.; Brüggemann, R.J.; Orriëns, L.; Dia, N.; Schreuder, M.F.; de Wildt, S.N. Pharmacokinetics and Target Attainment of Antibiotics in Critically Ill Children: A Systematic Review of Current Literature. Clin. Pharmacokinet. 2020, 59, 173–205. [Google Scholar] [CrossRef] [Green Version]
- Hayton, W.L. Maturation and growth of renal function: Dosing renally cleared drugs in children. AAPS Pharmsci. 2000, 2, E3. [Google Scholar] [CrossRef] [Green Version]
- Zembles, T.N.; Schortemeyer, R.; Kuhn, E.M.; Bushee, G.; Thompson, N.E.; Mitchell, M.L. Extended Infusion of Beta-Lactams Is Associated with Improved Outcomes in Pediatric Patients. J. Pediatr. Pharm. 2021, 26, 187–193. [Google Scholar] [CrossRef]
- Chai, M.G.; Cotta, M.O.; Abdul-Aziz, M.H.; Roberts, J.A. What Are the Current Approaches to Optimising Antimicrobial Dosing in the Intensive Care Unit? Pharmaceutics 2020, 12, 638. [Google Scholar] [CrossRef]
- Abdul-Aziz, M.H.; Alffenaar, J.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.A.; Pea, F.; Sjovall, F.; et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: A Position Paper. Intensive Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef]
- Cies, J.J.; Moore, W.S., 2nd; Enache, A.; Chopra, A. β-lactam Therapeutic Drug Management in the PICU. Crit. Care Med. 2018, 46, 272–279. [Google Scholar] [CrossRef]
- Balamuth, F.; Weiss, S.L.; Neuman, M.I.; Scott, H.; Brady, P.W.; Paul, R.; Farris, R.W.; McClead, R.; Hayes, K.; Gaieski, D.; et al. Pediatric severe sepsis in U.S. children’s hospitals. Pediatr. Crit. Care Med. 2014, 15, 798–805. [Google Scholar] [CrossRef] [Green Version]
- Weiss, S.L.; Fitzgerald, J.C.; Pappachan, J.; Wheeler, D.; Jaramillo-Bustamante, J.C.; Salloo, A.; Singhi, S.C.; Erickson, S.; Roy, J.A.; Bush, J.L.; et al. Global epidemiology of Pediatric severe sepsis: The sepsis prevalence, outcomes, and therapies study. Am. J. Respir. Crit. Care Med. 2015, 191, 1147–1157. [Google Scholar] [CrossRef]
- Tamma, P.D.; Turnbull, A.E.; Milstone, A.M.; Hsu, A.J.; Carroll, K.C.; Cosgrove, S.E. Does the piperacillin minimum inhibitory concentration for Pseudomonas aeruginosa influence clinical outcomes of children with pseudomonal bacteremia? Clin. Infect. Dis. 2012, 55, 799–806. [Google Scholar] [CrossRef] [Green Version]
- De Cock, P.A.J.G.; Desmet, S.; De Jaeger, A.; Biarent, D.; Dhont, E.; Herck, I.; Vens, D.; Colman, S.; Stove, V.; Commeyne, S.; et al. Impact of vancomycin protein binding on target attainment in critically ill children: Back to the drawing board? J. Antimicrob. Chemother. 2016, 72, 801–804. [Google Scholar] [CrossRef] [PubMed]
- Seixas, G.T.F.; Araujo, O.R.; Silva, D.C.B.; Arduini, R.G.; Petrilli, A.S. Vancomycin Therapeutic Targets and Nephrotoxicity in Critically Ill Children with Cancer. J. Pediatr. Hematol. Oncol. 2016, 38, e56–e62. [Google Scholar] [CrossRef] [PubMed]
- Giachetto, G.A.; Telechea, H.M.; Speranza, N.; Oyarzun, M.; Nanni, L.; Menchaca, A. Vancomycin pharmacokinetic-pharmacodynamic parameters to optimize dosage administration in critically ill children. Pediatr. Crit Care Med. 2011, 12, e250–e254. [Google Scholar] [CrossRef] [PubMed]
- Gous, A.G.S.; Dance, M.D.; Lipman, J.; Luyt, D.K.; Mathivha, R.; Scribante, J. Changes in Vancomycin Pharmacokinetics in Critically Ill Infants. Anaesth. Intensive Care 1995, 23, 678–682. [Google Scholar] [CrossRef] [PubMed]
- Bonazza, S.; Bresee, L.C.; Kraft, T.; Ross, B.C.; Dersch-Mills, D. Frequency of and Risk Factors for Acute Kidney Injury Associated with Vancomycin Use in the Pediatric Intensive Care Unit. J. Pediatr. Pharmacol. Ther. 2016, 21, 486–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cies, J.J.; Shankar, V. Nephrotoxicity in Patients with Vancomycin Trough Concentrations of 15–20 μg/ml in a Pediatric Intensive Care Unit. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2013, 33, 392–400. [Google Scholar] [CrossRef]
- Silva, D.C.; Seixas, G.T.; Araujo, O.R.; Arduini, R.G.; Carlesse, F.A.; Petrilli, A.S. Vancomycin serum concentrations in Pediatric oncologic/hematologic intensive care patients. Braz. J. Infect. Dis 2012, 16, 361–365. [Google Scholar] [CrossRef] [Green Version]
- Totapally, B.R.; Machado, J.; Lee, H.; Paredes, A.; Raszynski, A. Acute Kidney Injury During Vancomycin Therapy in Critically Ill Children. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2013, 33, 598–602. [Google Scholar] [CrossRef]
- Goboova, M.; Kuzelova, M.; Kissova, V.; Bodakova, D.; Martisova, E. An adjustment of vancomycin dosing regimen for a young patient with augmented renal clearance: A case report/Úprava dávkového režimu vankomycínu pre mladého pacienta so zvýšeným renálnym klírensom: Kazuistika. Eur. Pharm. J. 2015, 62, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.A.; Picone, A.; Menon, S.; Willis, B.C. Empirical Vancomycin Dosing in Pediatric Patients with Congenital Heart Disease and the Impact of Cardiopulmonary Bypass on Trough Concentrations. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2017, 37, 1341–1346. [Google Scholar] [CrossRef]
- Fitzgerald, J.C.; Zane, N.R.; Himebauch, A.S.; Reedy, M.D.; Downes, K.J.; Topjian, A.A.; Furth, S.L.; Thomas, N.J.; Scheetz, M.H.; Zuppa, A.F. Vancomycin Prescribing and Therapeutic Drug Monitoring in Children with and Without Acute Kidney Injury After Cardiac Arrest. Pediatr. Drugs 2019, 21, 107–112. [Google Scholar] [CrossRef]
- Glover, M.L.; Cole, E.; Wolfsdorf, J. Vancomycin dosage requirements among Pediatric intensive care unit patients with normal renal function. J. Crit. Care 2000, 15, 1–4. [Google Scholar] [CrossRef]
- Holsen, M.R.; Meaney, C.J.; Hassinger, A.B.; Fusco, N.M. Increased Risk of Acute Kidney Injury in Critically Ill Children Treated with Vancomycin and Piperacillin/Tazobactam. Pediatr. Crit. Care Med. 2017, 18, e585–e591. [Google Scholar] [CrossRef]
- Maloni, T.M.; Belucci, T.R.; Malagutti, S.R.; Furtado, G.H.C. Describing vancomycin serum levels in Pediatric intensive care unit (ICU) patients: Are expected goals being met. BMC Pediatr. 2019, 19, 240. [Google Scholar] [CrossRef] [Green Version]
- Avedissian, S.N.; Bradley, E.; Zhang, D.; Bradley, J.S.; Nazer, L.H.; Tran, T.M.; Nguyen, A.; Le, J. Augmented Renal Clearance Using Population-Based Pharmacokinetic Modeling in Critically Ill Pediatric Patients. Pediatr. Crit Care Med. 2017, 18, e388–e394. [Google Scholar] [CrossRef]
- Zane, N.R.; Reedy, M.D.; Gastonguay, M.R.; Himebauch, A.S.; Ramsey, E.Z.; Topjian, A.A.; Zuppa, A.F. A Population Pharmacokinetic Analysis to Study the Effect of Therapeutic Hypothermia on Vancomycin Disposition in Children Resuscitated from Cardiac Arrest. Pediatr. Crit. Care Med. 2017, 18, e290–e297. [Google Scholar] [CrossRef]
- Genuini, M.; Oualha, M.; Bouazza, N.; Moulin, F.; Treluyer, J.-M.; Lesage, F.; Renolleau, S.; Benaboud, S. Achievement of Therapeutic Vancomycin Exposure with Continuous Infusion in Critically Ill Children. Pediatr. Crit. Care Med. 2018, 19, e263–e269. [Google Scholar] [CrossRef]
- Moffett, B.S.; Resendiz, K.; Morris, J.; Akcan-Arikan, A.; Checchia, P.A. Population Pharmacokinetics of Vancomycin in the Pediatric Cardiac Surgical Population. J. Pediatr. Pharmacol. Ther. 2019, 24, 107–116. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, D.; Dong, M.; Zhu, Y.; Lu, J.; Li, X.; Chen, C.; Li, Z. Population pharmacokinetics of vancomycin and AUC-guided dosing in Chinese neonates and young infants. Eur. J. Clin. Pharm. 2018, 74, 921–930. [Google Scholar] [CrossRef]
- Sánchez, A.; López-Herce, J.; Cueto, E.; Carrillo, A.; Moral, R. Teicoplanin pharmacokinetics in critically ill paediatric patients. J. Antimicrob. Chemother. 1999, 44, 407–409. [Google Scholar] [CrossRef] [Green Version]
- Reed, M.D.; Yamashita, T.S.; Myers, C.M.; Blumer, J.L. The pharmacokinetics of teicoplanin in infants and children. J. Antimicrob. Chemother. 1997, 39, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Lukas, J.C.; Karikas, G.; Gazouli, M.; Kalabalikis, P.; Hatzis, T.; Macheras, P. Pharmacokinetics of Teicoplanin in An ICU Population of Children and Infants. Pharm. Res. 2004, 21, 2064–2071. [Google Scholar] [CrossRef]
- Aulin, L.B.S.; De Paepe, P.; Dhont, E.; de Jaeger, A.; Vande Walle, J.; Vandenberghe, W.; McWhinney, B.C.; Ungerer, J.P.J.; van Hasselt, J.G.C.; De Cock, P. Population Pharmacokinetics of Unbound and Total Teicoplanin in Critically Ill Pediatric Patients. Clin. Pharmacokinet. 2021, 60, 353–363. [Google Scholar] [CrossRef]
- Zakova, M.; Pong, S.; Trope, A.; Atenafu, E.G.; Papaioannou, V.; Bitnun, S.A.; Richardson, S.; Schwartz, S.; Cox, P.; Parshuram, C.; et al. Dose Derivation of Once-Daily Dosing Guidelines for Gentamicin in Critically Ill Pediatric Patients. Ther. Drug Monit. 2014, 36, 288–294. [Google Scholar] [CrossRef]
- Lopez, S.A.; Mulla, H.; Durward, A.; Tibby, S.M. Extended-interval gentamicin: Population pharmacokinetics in Pediatric critical illness. Pediatr. Crit. Care Med. 2010, 11, 267–274. [Google Scholar] [CrossRef]
- Kraus, D.M.; Dusik, C.M.; Rodvold, K.A.; Campbell, M.M.; Kecskes, S.A. Bayesian forecasting of gentamicin pharmacokinetics in Pediatric intensive care unit patients. Pediatr. Infect. Dis. J. 1993, 12, 713–717. [Google Scholar] [CrossRef]
- Sridharan, K.; Al Daylami, A. Clinical audit of gentamicin use by Bayesian pharmacokinetic approach in critically ill children. J. Infect. Chemother. 2020, 26, 540–548. [Google Scholar] [CrossRef]
- Marik, P.E.; Havlik, I.; Monteagudo, F.S.E.; Lipman, J. The pharmacokinetics of amikacin in critically ill adult and paediatric patients: Comparison of once- versus twice-daily dosing regimens. J. Antimicrob. Chemother. 1991, 27, 81–89. [Google Scholar] [CrossRef]
- Bressolle, F.; Gouby, A.; Martinez, J.M.; Joubert, P.; Saissi, G.; Guillaud, R.; Gomeni, R. Population pharmacokinetics of amikacin in critically ill patients. Antimicrob. Agents Chemother. 1996, 40, 1682–1689. [Google Scholar] [CrossRef] [Green Version]
- Sherwin, C.M.T.; Wead, S.; Stockmann, C.; Healy, D.; Spigarelli, M.G.; Neely, A.; Kagan, R. Amikacin population pharmacokinetics among paediatric burn patients. Burns 2014, 40, 311–318. [Google Scholar] [CrossRef]
- Wagner, B.P.; Pfenninger, J. Once daily dosing of netilmicin in neonatal and pediatric intensive care. Intensive Care Med. 1994, 20, 365–367. [Google Scholar] [CrossRef]
- Nichols, K.; Chung, E.K.; Knoderer, C.A.; Buenger, L.E.; Healy, D.P.; Dees, J.; Crumby, A.S.; Kays, M.B. Population Pharmacokinetics and Pharmacodynamics of Extended-Infusion Piperacillin and Tazobactam in Critically Ill Children. Antimicrob. Agents Chemother. 2016, 60, 522–531. [Google Scholar] [CrossRef] [Green Version]
- De Cock, P.; van Dijkman, S.C.; de Jaeger, A.; Willems, J.; Carlier, M.; Verstraete, A.G.; Delanghe, J.R.; Robays, H.; Vande Walle, J.; Della Pasqua, O.E.; et al. Dose optimization of piperacillin/tazobactam in critically ill children. J. Antimicrob. Chemother. 2017, 72, 2002–2011. [Google Scholar] [CrossRef] [PubMed]
- Béranger, A.; Benaboud, S.; Urien, S.; Moulin, F.; Bille, E.; Lesage, F.; Zheng, Y.; Genuini, M.; Gana, I.; Renolleau, S.; et al. Piperacillin Population Pharmacokinetics and Dosing Regimen Optimization in Critically Ill Children with Normal and Augmented Renal Clearance. Clin. Pharmacokinet. 2019, 58, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Cies, J.J.; Shankar, V.; Schlichting, C.; Kuti, J.L. Population Pharmacokinetics of Piperacillin/Tazobactam in Critically Ill Young Children. Pediatr. Infect. Dis. J. 2014, 33, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Hartman, S.J.F.; Boeddha, N.P.; Ekinci, E.; Koch, B.C.P.; Donders, R.; Hazelzet, J.A.; Driessen, G.J.; de Wildt, S.N. Target attainment of cefotaxime in critically ill children with meningococcal septic shock as a model for cefotaxime dosing in severe pediatric sepsis. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1255–1260. [Google Scholar] [CrossRef] [Green Version]
- Von Hattingberg, H.M.; Marget, W.; Belohradsky, B.H.; Roos, R. Pharmacokinetics of cefotaxime in neonates and children: Clinical aspects. J. Antimicrob. Chemother. 1980, 6, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Beranger, A.; Oualha, M.; Urien, S.; Genuini, M.; Renolleau, S.; Aboura, R.; Hirt, D.; Heilbronner, C.; Toubiana, J.; Treluyer, J.M.; et al. Population Pharmacokinetic Model to Optimize Cefotaxime Dosing Regimen in Critically Ill Children. Clin. Pharmacokinet. 2018, 57, 867–875. [Google Scholar] [CrossRef]
- Olguin, H.J.; Asseff, I.L.; Vieyra, A.C.; Pérez, A.G.; Saldaña, N.G.; Quesada, A.C.; Guillé, G.P. Effect of Severity Disease on the Pharmacokinetics of Cefuroxime in Children with Multiple Organ System Failure. Biol. Pharm. Bull. 2008, 31, 316–320. [Google Scholar] [CrossRef] [Green Version]
- Hartman, S.J.F.; Upadhyay, P.J.; Hagedoorn, N.N.; Mathôt, R.A.A.; Moll, H.A.; van der Flier, M.; Schreuder, M.F.; Brüggemann, R.J.; Knibbe, C.A.; de Wildt, S.N. Current Ceftriaxone Dose Recommendations are Adequate for Most Critically Ill Children: Results of a Population Pharmacokinetic Modeling and Simulation Study. Clin. Pharmacokinet. 2021, 1–12. [Google Scholar] [CrossRef]
- Butragueno-Laiseca, L.; Troconiz, I.F.; Grau, S.; Campillo, N.; Garcia, X.; Padilla, B.; Fernandez, S.N.; Santiago, M.J. Finding the Dose for Ceftolozane-Tazobactam in Critically Ill Children with and without Acute Kidney Injury. Antibiotics 2020, 9, 887. [Google Scholar] [CrossRef]
- Cies, J.J.; Moore, W.S., 2nd; Enache, A.; Chopra, A. Ceftaroline for Suspected or Confirmed Invasive Methicillin-Resistant Staphylococcus aureus: A Pharmacokinetic Case Series. Pediatr. Crit. Care Med. 2018, 19, e292–e299. [Google Scholar] [CrossRef]
- Jones, A.E.; Barnes, N.D.; Tasker, T.C.; Horton, R. Pharmacokinetics of intravenous amoxycillin and potassium clavulanate in seriously ill children. J. Antimicrob. Chemother. 1990, 25, 269–274. [Google Scholar] [CrossRef]
- De Cock, P.A.; Standing, J.F.; Barker, C.I.; de Jaeger, A.; Dhont, E.; Carlier, M.; Verstraete, A.G.; Delanghe, J.R.; Robays, H.; De Paepe, P. Augmented renal clearance implies a need for increased amoxicillin-clavulanic acid dosing in critically ill children. Antimicrob. Agents Chemother. 2015, 59, 7027–7035. [Google Scholar] [CrossRef] [Green Version]
- D’Agate, S.; Musuamba, F.T.; Della Pasqua, O. Dose Rationale for Amoxicillin in Neonatal Sepsis When Referral Is Not Possible. Front. Pharm. 2020, 11, 521933. [Google Scholar] [CrossRef]
- Cies, J.J.; Moore, W.S., 2nd; Enache, A.; Chopra, A. Population Pharmacokinetics and Pharmacodynamic Target Attainment of Meropenem in Critically Ill Young Children. J. Pediatr. Pharm. 2017, 22, 276–285. [Google Scholar] [CrossRef] [Green Version]
- Cies, J.J.; Moore II, W.S.; Calaman, S.; Brown, M.; Narayan, P.; Parker, J.; Chopra, A. Pharmacokinetics of Continuous-Infusion Meropenem for the Treatment of Serratia marcescens Ventriculitis in a Pediatric Patient. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2015, 35, e32–e36. [Google Scholar] [CrossRef]
- Rapp, M.; Urien, S.; Foissac, F.; Beranger, A.; Bouazza, N.; Benaboud, S.; Bille, E.; Zheng, Y.; Gana, I.; Moulin, F.; et al. Population pharmacokinetics of meropenem in critically ill children with different renal functions. Eur. J. Clin. Pharm. 2020, 76, 61–71. [Google Scholar] [CrossRef]
- Saito, J.; Shoji, K.; Oho, Y.; Kato, H.; Matsumoto, S.; Aoki, S.; Nakamura, H.; Ogawa, T.; Hasegawa, M.; Yamatani, A.; et al. Population Pharmacokinetics and Pharmacodynamics of Meropenem in Critically Ill Pediatric Patients. Antimicrob. Agents Chemother. 2021, 65, e1909–e1920. [Google Scholar] [CrossRef]
- Wang, Z.-M.; Chen, X.-Y.; Bi, J.; Wang, M.-Y.; Xu, B.-P.; Tang, B.-H.; Li, C.; Zhao, W.; Shen, A.-D. Reappraisal of the Optimal Dose of Meropenem in Critically Ill Infants and Children: A Developmental Pharmacokinetic-Pharmacodynamic Analysis. Antimicrob. Agents Chemother. 2020, 64, e00760-20. [Google Scholar] [CrossRef]
- Giannoni, E.; Moreillon, P.; Cotting, J.; Moessinger, A.; Bille, J.; Decosterd, L.; Zanetti, G.; Majcherczyk, P.; Bugnon, D. Prospective determination of plasma imipenem concentrations in critically ill children. Antimicrob. Agents Chemother. 2006, 50, 2563–2568. [Google Scholar] [CrossRef] [Green Version]
- Cies, J.J.; LaCoursiere, R.J.; Moore, W.S., II; Chopra, A. Therapeutic Drug Monitoring of Prolonged Infusion Aztreonam for Multi-Drug Resistant Pseudomonas aeruginosa: A Case Report. J. Pediatr. Pharmacol. Ther. 2017, 22, 467–470. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Zhao, L.; Wang, X.; Sun, C.; Gao, H.; Wang, X.; Qian, S. Population Pharmacokinetics and Dosage Optimization of Linezolid in Critically Ill Pediatric Patients. Antimicrob. Agents Chemother. 2021, 65, e02504-20. [Google Scholar] [CrossRef]
- Lipman, J.; Gous, A.; Mathivha, L.; Tshukutsoane, S.; Scribante, J.; Hon, H.; Pinder, M.; Riera-Fanego, J.; Verhoef, L.; Stass, H. Ciprofloxacin pharmacokinetic profiles in paediatric sepsis: How much ciprofloxacin is enough? Intensive Care Med. 2002, 28, 493–500. [Google Scholar] [CrossRef]
- Antachopoulos, C.; Ilia, S.; Kadiltzoglou, P.; Baira, E.; Dokoumetzidis, A.; Gikas, E.; Volakli, E.; Sdougka, M.; Briassoulis, G.; Roilides, E. Pharmacokinetics of Daptomycin in Critically Ill Pediatric Patients. Antimicrob. Agents Chemother. 2018, 62, e02462-17. [Google Scholar] [CrossRef] [Green Version]
- Morris, S.; Gould, K.; Ferguson, L.P. The Use of Daptomycin to Treat Methicillin-Resistant Staphylococcus Epidermidis Bacteremia in a Critically Ill Child with Renal Failure. J. Pediatr. Pharmacol. Ther. 2017, 22, 300–303. [Google Scholar] [CrossRef] [Green Version]
- Akins, R.L.; Haase, M.R.; Levy, E.N. Pharmacokinetics of Daptomycin in a Critically Ill Adolescent with Vancomycin-Resistant Enterococcal Endocarditis. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2006, 26, 694–698. [Google Scholar] [CrossRef]
- Cook, A.M.; Hatton-Kolpek, J. Augmented Renal Clearance. Pharmacotherapy 2019, 39, 346–354. [Google Scholar] [CrossRef]
- Van Der Heggen, T.; Dhont, E.; Peperstraete, H.; Delanghe, J.R.; Vande Walle, J.; De Paepe, P.; De Cock, P.A. Augmented renal clearance: A common condition in critically ill children. Pediatr. Nephrol. 2019, 34, 1099–1106. [Google Scholar] [CrossRef]
- Piepsz, A.; Tondeur, M.; Ham, H. Revisiting normal (51)Cr-ethylenediaminetetraacetic acid clearance values in children. Eur. J. Nucl. Med. Mol. Imaging 2006, 33, 1477–1482. [Google Scholar] [CrossRef]
- Dhont, E.; Van Der Heggen, T.; De Jaeger, A.; Vande Walle, J.; De Paepe, P.; De Cock, P.A. Augmented renal clearance in Pediatric intensive care: Are we undertreating our sickest patients? Pediatr. Nephrol. 2020, 35, 25–39. [Google Scholar] [CrossRef]
- Gomez, D.S.; Campos, E.V.; de Azevedo, R.P.; Silva, J.M., Jr.; Ferreira, M.C.; Sanches-Giraud, C.; Silva, C.V., Jr.; Santos, S.R. Individualised vancomycin doses for paediatric burn patients to achieve PK/PD targets. Burns 2013, 39, 445–450. [Google Scholar] [CrossRef]
- Hirai, K.; Ihara, S.; Kinae, A.; Ikegaya, K.; Suzuki, M.; Hirano, K.; Itoh, K. Augmented Renal Clearance in Pediatric Patients with Febrile Neutropenia Associated with Vancomycin Clearance. Ther. Drug Monit. 2016, 38, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Kim, J.; Park, J.D.; Kang, H.M.; Cho, Y.S.; Kim, K.S. Predicting augmented renal clearance using estimated glomerular filtration rate in critically-ill children. Clin. Nephrol. 2017, 88, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.L.; Lu, J.J.; Chen, M.; Zhang, R.; Li, Q.C.; Chen, Y.Y.; Liu, T.T. Vancomycin population pharmacokinetics and dosing recommendations in haematologic malignancy with augmented renal clearance children. J. Clin. Pharm. Ther. 2020, 45, 1278–1287. [Google Scholar] [CrossRef] [PubMed]
- He, C.Y.; Ye, P.P.; Liu, B.; Song, L.; van den Anker, J.; Zhao, W. Population pharmacokinetics and dosing optimization of vancomycin in infants, children and adolescents with augmented renal clearance. Antimicrob. Agents Chemother. 2021, 65, e0089721. [Google Scholar] [CrossRef]
- Yu, T.; Stockmann, C.; Healy, D.P.; Olson, J.; Wead, S.; Neely, A.N.; Kagan, R.J.; Spigarelli, M.G.; Sherwin, C.M. Determination of Optimal Amikacin Dosing Regimens for Pediatric Patients with Burn Wound Sepsis. J. Burn Care Res. 2015, 36, e244–e252. [Google Scholar] [CrossRef]
- Di Nardo, M.; Wildschut, E.D. Drugs pharmacokinetics during veno-venous extracorporeal membrane oxygenation in Pediatrics. J. Thorac. Dis. 2018, 10, S642–S652. [Google Scholar] [CrossRef]
- Sherwin, J.; Heath, T.; Watt, K. Pharmacokinetics and Dosing of Anti-infective Drugs in Patients on Extracorporeal Membrane Oxygenation: A Review of the Current Literature. Clin. Ther. 2016, 38, 1976–1994. [Google Scholar] [CrossRef] [Green Version]
- Sutiman, N.; Koh, J.C.; Watt, K.; Hornik, C.; Murphy, B.; Chan, Y.H.; Lee, J.H. Pharmacokinetics Alterations in Critically Ill Pediatric Patients on Extracorporeal Membrane Oxygenation: A Systematic Review. Front. Pediatr. 2020, 8, 260. [Google Scholar] [CrossRef]
- Shekar, K.; Roberts, J.A.; McDonald, C.I.; Ghassabian, S.; Anstey, C.; Wallis, S.C.; Mullany, D.V.; Fung, Y.L.; Fraser, J.F. Protein-bound drugs are prone to sequestration in the extracorporeal membrane oxygenation circuit: Results from an ex vivo study. Crit. Care 2015, 19, 164. [Google Scholar] [CrossRef] [Green Version]
- Cies, J.J.; Moore, W.S., 2nd; Nichols, K.; Knoderer, C.A.; Carella, D.M.; Chopra, A. Population Pharmacokinetics and Pharmacodynamic Target Attainment of Vancomycin in Neonates on Extracorporeal Life Support. Pediatr. Crit. Care Med. 2017, 18, 977–985. [Google Scholar] [CrossRef]
- An, S.H.; Lee, E.M.; Kim, J.Y.; Gwak, H.S. Vancomycin pharmacokinetics in critically ill neonates receiving extracorporeal membrane oxygenation. Eur. J. Hosp. Pharm. 2020, 27, e25–e29. [Google Scholar] [CrossRef] [Green Version]
- Moffett, B.S.; Morris, J.; Galati, M.; Munoz, F.; Arikan, A.A. Population Pharmacokinetics of Vancomycin in Pediatric Extracorporeal Membrane Oxygenation. Pediatr. Crit. Care Med. 2018, 19, 973–980. [Google Scholar] [CrossRef]
- Buck, M.L. Vancomycin pharmacokinetics in neonates receiving extracorporeal membrane oxygenation. Pharmacotherapy 1998, 18, 1082–1086. [Google Scholar]
- Amaker, R.D.; DiPiro, J.T.; Bhatia, J. Pharmacokinetics of vancomycin in critically ill infants undergoing extracorporeal membrane oxygenation. Antimicrob. Agents Chemother. 1996, 40, 1139–1142. [Google Scholar] [CrossRef] [Green Version]
- Zylbersztajn, B.L.; Izquierdo, G.; Santana, R.C.; Fajardo, C.; Torres, J.P.; Cordero, J.; Valverde, C. Therapeutic Drug Monitoring of Vancomycin in Pediatric Patients with Extracorporeal Membrane Oxygenation Support. J. Pediatr. Pharm. 2018, 23, 305–310. [Google Scholar] [CrossRef]
- Southgate, W.M.; DiPiro, J.T.; Robertson, A.F. Pharmacokinetics of gentamicin in neonates on extracorporeal membrane oxygenation. Antimicrob. Agents Chemother. 1989, 33, 817–819. [Google Scholar] [CrossRef] [Green Version]
- Cohen, P.; Collart, L.; Prober, C.G.; Fischer, A.F.; Blaschke, T.F. Gentamicin pharmacokinetics in neonates undergoing extracorporal membrane oxygenation. Pediatr. Infect. Dis. J. 1990, 9, 562–566. [Google Scholar] [CrossRef]
- Munzenberger, P.J.; Massoud, N. Pharmacokinetics of gentamicin in neonatal patients supported with extracorporeal membrane oxygenation. ASAIO Trans. 1991, 37, 16–18. [Google Scholar] [CrossRef]
- Bhatt-Mehta, V.; Johnson, C.E.; Schumacher, R.E. Gentamicin pharmacokinetics in term neonates receiving extracorporeal membrane oxygenation. Pharmacotherapy 1992, 12, 28–32. [Google Scholar]
- Dodge, W.F.; Jelliffe, R.W.; Zwischenberger, J.B.; Bellanger, R.A.; Hokanson, J.A.; Snodgrass, W.R. Population pharmacokinetic models: Effect of explicit versus assumed constant serum concentration assay error patterns upon parameter values of gentamicin in infants on and off extracorporeal membrane oxygenation. Ther. Drug Monit. 1994, 16, 552–559. [Google Scholar] [CrossRef]
- Moffett, B.S.; Morris, J.; Galati, M.; Munoz, F.M.; Arikan, A.A. Population Pharmacokinetic Analysis of Gentamicin in Pediatric Extracorporeal Membrane Oxygenation. Ther. Drug Monit. 2018, 40, 581–588. [Google Scholar] [CrossRef]
- Raffaeli, G.; Pokorna, P.; Allegaert, K.; Mosca, F.; Cavallaro, G.; Wildschut, E.D.; Tibboel, D. Drug Disposition and Pharmacotherapy in Neonatal ECMO: From Fragmented Data to Integrated Knowledge. Front. Pediatr. 2019, 7, 360. [Google Scholar] [CrossRef] [Green Version]
- Ahsman, M.J.; Wildschut, E.D.; Tibboel, D.; Mathot, R.A. Pharmacokinetics of Cefotaxime and Desacetylcefotaxime in Infants during Extracorporeal Membrane Oxygenation. Antimicrob. Agents Chemother. 2010, 54, 1734–1741. [Google Scholar] [CrossRef] [Green Version]
- Zuppa, A.F.; Zane, N.R.; Moorthy, G.; Dalton, H.J.; Abraham, A.; Reeder, R.W.; Carcillo, J.A.; Yates, A.R.; Meert, K.L.; Berg, R.A.; et al. A Population Pharmacokinetic Analysis to Study the Effect of Extracorporeal Membrane Oxygenation on Cefepime Disposition in Children. Pediatr. Crit. Care Med. 2019, 20, 62–70. [Google Scholar] [CrossRef]
- Lai, Y.-C.; Searle, R.; Craigen, W.; Anderson, A. 1: Activation of poly(adp-ribose) polymerase-1 contributes to nad+ depletion and impaired nad+ dependent mitochondrial respiration following status epilepticus. Crit. Care Med. 2011, 39, 1. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Chen, W.; Yan, G.; Wang, G.; Lu, G.; Chen, C. Pharmacokinetics of meropenem in children with sepsis undergoing extracorporeal life support: A prospective observational study. J. Clin. Pharm. Ther. 2021, 46, 745–761. [Google Scholar] [CrossRef]
- Tan, W.W.; Watt, K.M.; Boakye-Agyeman, F.; Cohen-Wolkowiez, M.; Mok, Y.H.; Yung, C.F.; Chan, Y.H. Optimal Dosing of Meropenem in a Small Cohort of Critically Ill Children Receiving Continuous Renal Replacement Therapy. J. Clin. Pharm. 2021, 61, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Cies, J.J.; Moore, W.S., II; Conley, S.B.; Dickerman, M.J.; Small, C.; Carella, D.; Shea, P.; Parker, J.; Chopra, A. Pharmacokinetics of Continuous Infusion Meropenem with Concurrent Extracorporeal Life Support and Continuous Renal Replacement Therapy: A Case Report. J. Pediatr. Pharmacol. Ther. 2016, 21, 92–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alqaqaa, Y.; Witcher, R.; Ramirez, M.; Fisher, J.; Malaga-Dieguez, L.; Chopra, A. 1851: Continuous infusion of meropenem in a patient on ecmo and crrt. Crit. Care Med. 2016, 44, 538. [Google Scholar] [CrossRef]
- Lindsay, C.A.; Bawdon, R.; Quigley, R. Clearance of ticarcillin-clavulanic acid by continuous venovenous hemofiltration in three critically ill children, two with and one without concomitant extracorporeal membrane oxygenation. Pharmacotherapy 1996, 16, 458–462. [Google Scholar] [PubMed]
- De Cock, P.A.; Mulla, H.; Desmet, S.; De Somer, F.; McWhinney, B.C.; Ungerer, J.P.; Moerman, A.; Commeyne, S.; Vande Walle, J.; Francois, K.; et al. Population pharmacokinetics of cefazolin before, during and after cardiopulmonary bypass to optimize dosing regimens for children undergoing cardiac surgery. J. Antimicrob. Chemother. 2017, 72, 791–800. [Google Scholar] [CrossRef] [Green Version]
- Gertler, R.; Gruber, M.; Wiesner, G.; Grassin-Delyle, S.; Urien, S.; Tassani-Prell, P.; Martin, K. Pharmacokinetics of cefuroxime in infants and neonates undergoing cardiac surgery. Br. J. Clin. Pharm. 2018, 84, 2020–2028. [Google Scholar] [CrossRef]
- Haessler, D.; Reverdy, M.E.; Neidecker, J.; Brule, P.; Ninet, J.; Lehot, J.J. Antibiotic prophylaxis with cefazolin and gentamicin in cardiac surgery for children less than ten kilograms. J. Cardiothorac. Vasc. Anesth. 2003, 17, 221–225. [Google Scholar] [CrossRef]
- John, J.C.; Taha, S.; Bunchman, T.E. Basics of continuous renal replacement therapy in Pediatrics. Kidney Res. Clin. Pract. 2019, 38, 455–461. [Google Scholar] [CrossRef]
- Sanderson, K.R.; Harshman, L.A. Renal replacement therapies for infants and children in the ICU. Curr. Opin. Pediatr. 2020, 32, 360–366. [Google Scholar] [CrossRef]
- Roberts, J.A.; Joynt, G.M.; Lee, A.; Choi, G.; Bellomo, R.; Kanji, S.; Mudaliar, M.Y.; Peake, S.L.; Stephens, D.; Taccone, F.S.; et al. The Effect of Renal Replacement Therapy and Antibiotic Dose on Antibiotic Concentrations in Critically Ill Patients: Data from the Multinational Sampling Antibiotics in Renal Replacement Therapy Study. Clin. Infect. Dis. 2021, 72, 1369–1378. [Google Scholar] [CrossRef]
- Gatti, M.; Pea, F. Antimicrobial Dose Reduction in Continuous Renal Replacement Therapy: Myth or Real Need? A Practical Approach for Guiding Dose Optimization of Novel Antibiotics. Clin. Pharmacokinet. 2021, 1–19. [Google Scholar] [CrossRef]
- Economou, C.J.P.; Wong, G.; McWhinney, B.; Ungerer, J.P.J.; Lipman, J.; Roberts, J.A. Impact of beta-lactam antibiotic therapeutic drug monitoring on dose adjustments in critically ill patients undergoing continuous renal replacement therapy. Int. J. Antimicrob. Agents 2017, 49, 589–594. [Google Scholar] [CrossRef] [Green Version]
- Moffett, B.S.; Morris, J.; Munoz, F.; Arikan, A.A. Population pharmacokinetic analysis of vancomycin in Pediatric continuous renal replacement therapy. Eur. J. Clin. Pharm. 2019, 75, 1089–1097. [Google Scholar] [CrossRef]
- Cies, J.J.; Moore, W.S., 2nd; Conley, S.B.; Muneeruddin, S.; Parker, J.; Shea, P.; Chopra, A. Continuous Infusion Vancomycin Through the Addition of Vancomycin to the Continuous Renal Replacement Therapy Solution in the PICU: A Case Series. Pediatr. Crit. Care Med. 2016, 17, e138–e145. [Google Scholar] [CrossRef]
- Purohit, P.J.; Elkomy, M.H.; Frymoyer, A.; Sutherland, S.M.; Drover, D.R.; Hammer, G.B.; Su, F. Antimicrobial Disposition During Pediatric Continuous Renal Replacement Therapy Using an Ex Vivo Model. Crit. Care Med. 2019, 47, e767–e773. [Google Scholar] [CrossRef]
- Cies, J.J.; Moore, W.S., 2nd; Dickerman, M.J.; Small, C.; Carella, D.; Chopra, A.; Parker, J. Pharmacokinetics of continuous-infusion meropenem in a Pediatric patient receiving extracorporeal life support. Pharmacotherapy 2014, 34, e175–e179. [Google Scholar] [CrossRef]
- Cies, J.J.; Moore, W.S.; Parker, J.; Stevens, R.; Al-Qaqaa, Y.; Enache, A.; Chopra, A. Pharmacokinetics of cefazolin delivery via the cardiopulmonary bypass circuit priming solution in infants and children. J. Antimicrob. Chemother. 2019, 74, 1342–1347. [Google Scholar] [CrossRef]
- Tang Girdwood, S.; Arbough, T.; Dong, M.; Mizuno, T.; Tang, P.; Vinks, A.A.; Kaplan, J. Molecular Adsorbent Recirculating System Therapy with Continuous Renal Replacement Therapy Enhanced Clearance of Piperacillin in a Pediatric Patient and Led to Failure to Attain Pharmacodynamic Targets. Pharmacotherapy 2020, 40, 1061–1068. [Google Scholar] [CrossRef]
- Stitt, G.; Morris, J.; Schmees, L.; Angelo, J.; Akcan Arikan, A. Cefepime Pharmacokinetics in Critically Ill Pediatric Patients Receiving Continuous Renal Replacement Therapy. Antimicrob. Agents Chemother. 2019, 63, e02006-18. [Google Scholar] [CrossRef] [Green Version]
- Lutz, I.C.; Allegaert, K.; de Hoon, J.N.; Marynissen, H. Pharmacokinetics during therapeutic hypothermia for neonatal hypoxic ischaemic encephalopathy: A literature review. BMJ Paediatr. Open 2020, 4, e000685. [Google Scholar] [CrossRef]
- Favié, L.M.A.; de Haan, T.R.; Bijleveld, Y.A.; Rademaker, C.M.A.; Egberts, T.C.G.; Nuytemans, D.; Mathôt, R.A.A.; Groenendaal, F.; Huitema, A.D.R. Prediction of Drug Exposure in Critically Ill Encephalopathic Neonates Treated with Therapeutic Hypothermia Based on a Pooled Population Pharmacokinetic Analysis of Seven Drugs and Five Metabolites. Clin. Pharm. 2020, 108, 1098–1106. [Google Scholar] [CrossRef]
- Borloo, N.; Smits, A.; Thewissen, L.; Annaert, P.; Allegaert, K. Creatinine Trends and Patterns in Neonates Undergoing Whole Body Hypothermia: A Systematic Review. Children 2021, 8, 475. [Google Scholar] [CrossRef]
- Litz, J.E.; Goedicke-Fritz, S.; Härtel, C.; Zemlin, M.; Simon, A. Management of early- and late-onset sepsis: Results from a survey in 80 German NICUs. Infection 2019, 47, 557–564. [Google Scholar] [CrossRef]
- Bijleveld, Y.A.; de Haan, T.R.; van der Lee, H.J.; Groenendaal, F.; Dijk, P.H.; van Heijst, A.; de Jonge, R.C.; Dijkman, K.P.; van Straaten, H.L.; Rijken, M.; et al. Altered gentamicin pharmacokinetics in term neonates undergoing controlled hypothermia. Br. J. Clin. Pharm. 2016, 81, 1067–1077. [Google Scholar] [CrossRef]
- Liu, X.; Borooah, M.; Stone, J.; Chakkarapani, E.; Thoresen, M. Serum gentamicin concentrations in encephalopathic infants are not affected by therapeutic hypothermia. Pediatrics 2009, 124, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Frymoyer, A.; Lee, S.; Bonifacio, S.L.; Meng, L.; Lucas, S.S.; Guglielmo, B.J.; Sun, Y.; Verotta, D. Every 36-h gentamicin dosing in neonates with hypoxic-ischemic encephalopathy receiving hypothermia. J. Perinatol. 2013, 33, 778–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ting, J.Y.; Kwan, E.; McDougal, A.; Osiovich, H. Pharmacokinetics of gentamicin in newborns with moderate-to-severe hypoxic-ischemic encephalopathy undergoing therapeutic hypothermia. Indian J. Pediatr. 2015, 82, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Mark, L.F.; Solomon, A.; Northington, F.J.; Lee, C.K. Gentamicin pharmacokinetics in neonates undergoing therapeutic hypothermia. Ther. Drug Monit. 2013, 35, 217–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frymoyer, A.; Meng, L.; Bonifacio, S.L.; Verotta, D.; Guglielmo, B.J. Gentamicin pharmacokinetics and dosing in neonates with hypoxic ischemic encephalopathy receiving hypothermia. Pharmacotherapy 2013, 33, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Cies, J.J.; Habib, T.; Bains, V.; Young, M.; Menkiti, O.R. Population Pharmacokinetics of Gentamicin in Neonates with Hypoxemic-Ischemic Encephalopathy Receiving Controlled Hypothermia. Pharmacotherapy 2018, 38, 1120–1129. [Google Scholar] [CrossRef]
- 168. Záhora, J.; Martínková, J.; Pokorná, P.; Chládek, J.; Vobruba, V. Clearance of gentamicin in asphyxiated neonates undergoing modest therapeutic whole- body hypothermia. Basic Clin. Pharmacol. Toxicol. 2009, 105, 150. [Google Scholar]
- Riera, P.; Solé, N.; de Gamarra, E.F.; Moliner, E.; Garcia, M.J.; Mangues, M.A. Assessment of gentamicin dosing regimens in newborns treated with hypothermia. Int. J. Clin. Pharm. 2013, 35, 1271. [Google Scholar]
- Cristea, S.; Smits, A.; Kulo, A.; Knibbe, C.A.J.; van Weissenbruch, M.; Krekels, E.H.J.; Allegaert, K. Amikacin Pharmacokinetics to Optimize Dosing in Neonates with Perinatal Asphyxia Treated with Hypothermia. Antimicrob. Agents Chemother. 2017, 61, e01282-17. [Google Scholar] [CrossRef] [Green Version]
- Cies, J.J.; Fugarolas, K.N.; Moore, W.S., 2nd; Mason, R.W.; Menkiti, O.R. Population Pharmacokinetics and Pharmacodynamic Target Attainment of Ampicillin in Neonates with Hypoxemic-Ischemic Encephalopathy in the Setting of Controlled Hypothermia. Pharmacotherapy 2017, 37, 456–463. [Google Scholar] [CrossRef]
- Bijleveld, Y.A.; Mathôt, R.; van der Lee, J.H.; Groenendaal, F.; Dijk, P.H.; van Heijst, A.; Simons, S.; Dijkman, K.P.; van Straaten, H.; Rijken, M.; et al. Population Pharmacokinetics of Amoxicillin in Term Neonates Undergoing Moderate Hypothermia. Clin. Pharm. 2018, 103, 458–467. [Google Scholar] [CrossRef] [Green Version]
- Bijleveld, Y.A.; de Haan, T.R.; van der Lee, J.H.; Groenendaal, F.; Dijk, P.H.; van Heijst, A.; de Jonge, R.C.J.; Dijkman, K.P.; van Straaten, H.L.M.; Rijken, M.; et al. Evaluation of a System-Specific Function to Describe the Pharmacokinetics of Benzylpenicillin in Term Neonates Undergoing Moderate Hypothermia. Antimicrob. Agents Chemother. 2018, 62, de02311-17. [Google Scholar] [CrossRef] [Green Version]
- Smits, A.; De Cock, R.F.; Allegaert, K.; Vanhaesebrouck, S.; Danhof, M.; Knibbe, C.A. Prospective Evaluation of a Model-Based Dosing Regimen for Amikacin in Preterm and Term Neonates in Clinical Practice. Antimicrob. Agents Chemother. 2015, 59, 6344–6351. [Google Scholar] [CrossRef] [Green Version]
- De Velde, F.; Mouton, J.W.; de Winter, B.C.M.; van Gelder, T.; Koch, B.C.P. Clinical applications of population pharmacokinetic models of antibiotics: Challenges and perspectives. Pharm. Res. 2018, 134, 280–288. [Google Scholar] [CrossRef]
- Duffull, S.B.; Wright, D.F.; Winter, H.R. Interpreting population pharmacokinetic-pharmacodynamic analyses—A clinical viewpoint. Br. J. Clin. Pharm. 2011, 71, 807–814. [Google Scholar] [CrossRef] [Green Version]
- Hartman, S.J.F.; Orriëns, L.B.; Zwaag, S.M.; Poel, T.; de Hoop, M.; de Wildt, S.N. External Validation of Model-Based Dosing Guidelines for Vancomycin, Gentamicin, and Tobramycin in Critically Ill Neonates and Children: A Pragmatic Two-Center Study. Paediatr. Drugs 2020, 22, 433–444. [Google Scholar] [CrossRef]
- Zhao, W.; Kaguelidou, F.; Biran, V.; Zhang, D.; Allegaert, K.; Capparelli, E.V.; Holford, N.; Kimura, T.; Lo, Y.L.; Peris, J.E.; et al. External Evaluation of Population Pharmacokinetic Models of Vancomycin in Neonates: The transferability of published models to different clinical settings. Br. J. Clin. Pharm. 2013, 75, 1068–1080. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Sauberan, J.; Tran, M.T.; Adler-Shohet, F.C.; Michalik, D.E.; Tien, T.H.; Tran, L.; Do, D.H.; Bradley, J.S.; Le, J. Implementation of Vancomycin Therapeutic Monitoring Guidelines: Focus on Bayesian Estimation Tools in Neonatal and Pediatric Patients. Ther. Drug Monit. 2021. [Google Scholar] [CrossRef]
- Darwich, A.S.; Ogungbenro, K.; Vinks, A.A.; Powell, J.R.; Reny, J.L.; Marsousi, N.; Daali, Y.; Fairman, D.; Cook, J.; Lesko, L.J.; et al. Why has model-informed precision dosing not yet become common clinical reality? lessons from the past and a roadmap for the future. Clin. Pharm. 2017, 101, 646–656. [Google Scholar] [CrossRef]
- Barreto, E.F.; Rule, A.D.; Alshaer, M.H.; Roberts, J.A.; Abdul Aziz, M.H.; Scheetz, M.H.; Mara, K.C.; Jannetto, P.J.; Gajic, O.; O’Horo, J.C.; et al. Provider perspectives on beta-lactam therapeutic drug monitoring programs in the critically ill: A protocol for a multicenter mixed-methods study. Implement. Sci. Commun. 2021, 2, 34. [Google Scholar] [CrossRef]
- Liebchen, U.; Paal, M.; Scharf, C.; Schroeder, I.; Grabein, B.; Zander, J.; Siebers, C.; Zoller, M. The ONTAI study—A survey on Antimicrobial dosing and the practice of therapeutic drug monitoring in German intensive care units. J. Crit. Care 2020, 60, 260–266. [Google Scholar] [CrossRef]
- Charmillon, A.; Novy, E.; Agrinier, N.; Leone, M.; Kimmoun, A.; Levy, B.; Demore, B.; Dellamonica, J.; Pulcini, C. The ANTIBIOPERF study: A nationwide cross-sectional survey about practices for beta-lactam administration and therapeutic drug monitoring among critically ill patients in France. Clin. Microbiol. Infect. 2016, 22, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Hughes, D.M.; Goswami, S.; Keizer, R.J.; Hughes, M.A.; Faldasz, J.D. Bayesian clinical decision support-guided versus clinician-guided vancomycin dosing in attainment of targeted pharmacokinetic parameters in a paediatric population. J. Antimicrob. Chemother. 2020, 75, 434–437. [Google Scholar] [CrossRef]
- Leroux, S.; Jacqz-Aigrain, E.; Biran, V.; Lopez, E.; Madeleneau, D.; Wallon, C.; Zana-Taïeb, E.; Virlouvet, A.L.; Rioualen, S.; Zhao, W. Clinical Utility and Safety of a Model-Based Patient-Tailored Dose of Vancomycin in Neonates. Antimicrob. Agents Chemother. 2016, 60, 2039–2042. [Google Scholar] [CrossRef] [Green Version]
- Wicha, S.G.; Martson, A.G.; Nielsen, E.I.; Koch, B.C.P.; Friberg, L.E.; Alffenaar, J.W.; Minichmayr, I.K.; International Society of Anti-Infective Pharmacology. From Therapeutic Drug Monitoring to Model-Informed Precision Dosing for Antibiotics. Clin. Pharm. 2021, 109, 928–941. [Google Scholar] [CrossRef]
- Hagel, S.; Brinkmann, A.; Bach, F.; Bauer, M.; Brenner, T.; Witzke, D. Effect of Therapeutic Drug Monitoring-Based Dose Optimisation of Piperacillin-Tazobactam (TZP) on Sepsis-Related Organ Dysfunction in Patients with Sepsis: A Randomised Clinical Trial. In Proceedings of the ECCMID Conference, Vienna, Austria, 9–12 July 2021. [Google Scholar]
- Abdulla, A.; Ewoldt, T.M.J.; Hunfeld, N.G.M.; Muller, A.E.; Rietdijk, W.J.R.; Polinder, S.; van Gelder, T.; Endeman, H.; Koch, B.C.P. The effect of therapeutic drug monitoring of beta-lactam and fluoroquinolones on clinical outcome in critically ill patients: The Dolphin trial protocol of a multi-centre randomised controlled trial. BMC Infect. Dis. 2020, 20, 57. [Google Scholar] [CrossRef]
Age | Total Body Water/Weight % | Extracellular Water/Weight % | Intracellular Water/Weight % | Plasma Albumin g/L | Plasma Total Protein d/L |
---|---|---|---|---|---|
Preterm, 2 kg | 82 | 44 | 34 | 26 | 40 |
Term, at birth | 78 | 40 | 32 | 28 | 43 |
7–30 days | 74 | 32 | 43 | 29 | 53 |
1–3 months | 73 | 30 | 42 | 29 | 54 |
3–6 months | 70 | 30 | 42 | 29 | 54 |
6–12 months | 60 | 27 | 35 | 29 | 54 |
1–3 year | 58–63 | 27–21 | 38–34 | 31 | 59 |
>3–6 year | 62 | 21 | 46 | 31 | 62 |
>6–18 year | 61–57 | 22–18 | 43–42 | 32 | 59 |
Adult | 59 | 19 | 40 | 40 | 63 |
Category Based on the In Vitro Pattern of Antibacterial Activity | Antibiotic Class | PK/PD Target for Efficacy |
---|---|---|
Time-dependent with minimal-to-no persistent effect | Beta-lactams, Lincosamides | % fT>MIC |
Time-dependent with moderate-to-persistent effect | Glycopeptides, Oxazolidinones, Macrolides, Tetracyclines, Glycylcyclines, Polymyxins | AUC0–24/MIC % fT>MIC (erythromycin, linezolid) |
Concentration-dependent with moderate-to-persistent effect | Aminoglycosides, Fluoroquinolones, Lipopeptides, Metronidazole, Ketolides | AUC0–24/MIC Cmax/MIC |
Antibiotic | Number of Studies | Study Aspects | Age and Weight Range | Results and Clinical Implications |
---|---|---|---|---|
Vancomycin | 19 | 4 prospective studies (n = 168) [50,51,52,53] 10 retrospective TDM studies (n = 1120) [54,55,56,57,58,59,60,61,62,63] 5 retrospective popPK studies (n = 704) [64,65,66,67,68] | 0–18 y 0.68–108 kg | Conflicting results with regard to association between Cmin and acute kidney injury [54,55,57,62] Eight studies reported CL and Vd. Mean Vd 0.44–1.04 L/kg. Mean CL 0.072–0.19 L/kg/h [51,52,53,56,64,65,67,68] Eight studies reported measured, simulated or estimated AUCs [50,51,52,56,62,66,67,68] Only two studies used continuous dosing [50,66] Substantial percentage of target non-attainment with standard dosing regimens (up to 92%, mostly subtherapeutic but also supratherapeutic concentrations) [50,51,52,54,55,56,59,64,66,67,68] Dosing of 60 mg/kg/day q8h advised if no renal impairment [61,67] One study advised lower doses for neonates (30 mg/kg/day), infants (35–40 mg/kg/day) and children (45 mg/kg/day) [59] Another study in neonates and infants <2m advised 14–18 mg/kg q8–12 h [68] |
Teicoplanin | 4 | 2 prospective cohort studies (n = 33) [69,70] 1 RCT (n = 20) [71] 1 prospective popPK study with dosing simulations (n = 42) [72] | 7 d–15.6 y 3.74–56 kg | Three studies found that higher than standard dosing is needed to achieve Target attainment [70,71,72] One study found lower target attainment in older children (>1 y) compared to younger infants (<1 y) due to larger Vd and higher CL [71] Routine TDM of unbound concentrations was recommended due to highly variable unbound concentrations [72] |
Gentamicin | 4 | 1 retrospective TDM study (n = 140) [73] 1 prospective popPK study with dosing simulations (n = 36) [74] 2 studies investigating application of a Bayesian forecasting program (n = 117) [75,76] | 0 d–15 y Body weight not reported | Higher initial doses and/or extended dosing interval in neonates and (young) infants [74,75] Two studies found age and weight to be significant predictors for Vd and/or CL [73,74] One study also found serum creatinine to be a significant predictor for the elimination constant (k) [73] |
Amikacin | 3 | 1 RCT (n = 60) [77] 2 prospective popPK studies (n = 106) [78,79] | 6 m–17 y 8–90 kg | Higher doses per kg needed for neonates and infants (<1 y) due to higher Vd and CL [77] Higher Vd and CL in burn patients [79] |
Netilmicin | 1 | 1 prospective study (n = 9) [80] | 1 m–15.5 y 3.4–70 kg | Mainly neonates Once daily 6 mg/kg is sufficient |
Piperacillin/tazobactam | 5 | 4 popPK studies with dosing simulations (n = 139) [81,82,83,84] 1 prospective study (n = 14) [46] | 0.1–18 y 2.7–53 kg | High median eGFRSchwartz in all studies (lowest median eGFRSchwartz 142 mL/min/1.73 m2) [83] Median Vd: 0.24–0.444 L/kg (highest in neonates); Median CL: 0.19–0.299 L/kg/h [81,82,83,84] Insufficient target attainment with standard dosing. Extended infusion over >1 h needed for >90% probability of target attainment [46,81,82,83,84] |
Cefotaxime | 3 | 2 prospective studies (n = 39) [85,86] 1 prospective popPK study with dosing simulations (n = 49) [87] | 0–19 y 2.5–70 kg | Neonates had longer elimination half-life [87] Continuous infusion needed for optimal target attainment and/or less susceptible microorganisms [85,87] |
Cefuroxime | 1 | 1 prospective cohort study (n = 11) [88] | 4 m–14 y 5.1 kg–45 kg | Vd and CL higher in children with mechanical ventilation vs. children without mechanical ventilation and controls The elimination half-life is longer in critically ill children vs. controls |
Ceftriaxone | 1 | Prospective popPK study with dosing simulations (n = 45) [89] | 0.1–16.7y | Vd and CL comparable to non-critically ill children aged 1–6 y Vd and CL higher than non-critically ill children with cystic fibrosis 100 mg/kg q24h sufficient for most critically ill children and neonates 50 mg/kg q12h if eGFRSchwartz > 80 mL/min/1.73 m2 or increased MIC ≥0.5 mg/L |
Ceftolozane/tazobactam | 1 | 1 case series (n = 3) [90] | 8–19 m 5.8–11 kg | Normal renal function: 35 mg/kg q8h appropriate for multidrug-resistent Pseudomonas aeruginosa Acute kidney injury: reduced dose 10 mg/kg q8h appropriate |
Ceftaroline | 1 | 1 prospective study (n = 7) [91] | 1–13 y 12.6–40.1 kg | Higher median CL and Vd than reported in the package insert (non-critically ill children) Higher dosing and shorter dosing interval than package insert needed (15 mg/kg q6h) |
Amoxicillin/clavulanic acid | 3 | 1 prospective study (n = 15) [92] 1 prospective popPK study with dosing simulations (n = 50) [93] 1 meta-analytical modelling study (n = 44) [94] | 1 d–15 y 1.7–65 kg | Higher amoxicillin CL than critically ill adults, comparable amoxicillin Vd and clavulanic acid CL and Vd [92,93] 25 mg/kg q4h as bolus or 1h infusion, depending on renal function, needed for optimal target attainment [93] Meta-modelling study (in neonates and young infants (<60 d) [94]: Sepsis is associated with lower amoxicillin concentrations and longer elimination half-life. Fixed dosing regimen: 125 mg and 250 mg q12h depending on body weight <4 kg or ≥4 kg |
Meropenem | 5 | 1 retrospective popPK study (n = 9) [95] 1 case report (n = 1) [96] 1 prospective popPK study with dosing simulations (n = 23) [97] 1 retrospective popPK study with dosing simulations (n = 26) [98] 1 prospective study in children with sepsis (n = 15) [99] | 0.03–15.6 y 2.7–59 kg | CL is slightly lower [99], within [97], or higher [95,96,98] than the CL range observed in non-critically ill children, depending on the study population Increased dosing and extended infusion needed [95,96,97,98,99] |
Imipenem | 1 | 1 prospective study (n = 19) [100] | 9 d–12 y Body weight not reported | Vd and CL comparable to non-critically ill children At least 100 mg/kg/day to avoid subtherapeutic concentrations |
Aztreonam | 1 | 1 case report (n = 1) [101] | 16 y | CL double than reported in the package insert 2g q6h over 4h infusion achieved 40% fT>MIC |
Linezolid | 1 | 1 prospective popPK study with dosing simulations (n = 63) [102] | 0.1–15.3 y 4.2–70 kg | Recommended age-differentiated dosing regimens lead to adequate attainment of the target AUC/MIC (>80) for sensitive pathogens Dose increase needed if MIC >1 mg/L Dose reduction needed if liver impairment (aspartate aminotransferase) |
Ciprofloxacin | 1 | 1 prospective study (n = 20) [103] | 3 m–4.75 y 4.2–21.2 kg | No difference in CL and Vd between children aged <1 y and older. 20 mg/kg/day sufficient to cover pathogens with an MIC up to 0.8 mg/L 30 mg/kg/day in 3 doses needed in patients with normal renal function infected by pathogens with an MIC > 0.8 mg/L |
Daptomycin | 3 | 1 popPK study (n = 4) [104] 2 case reports (n = 2) [105,106] | 8–14 y 17–45 kg | Higher Vd and CL in sepsis patients vs. the patient without sepsis [104] CL in sepsis patients is double the CL in non-critically ill children [104] Children with sepsis showed suboptimal AUC values, even with increased dosing. This was even more pronounced in the burn patient. Increased dosing and TDM is recommended [104]. |
Reference | Antibiotic | Study Aspects | Results |
---|---|---|---|
Bijleveld et al. 2016 [161] | Gentamicin | Prospective popPK study during and following WBH (n = 47) | CL of a typical patient (3 kg, 40 weeks) was 0.06 L/kg/h and increased (+29%) after rewarming. Vdcentral 0.46 L/kg. |
Liu et al. 2009 [162] | Gentamicin | Retrospective study in asphyxia cases, either or not undergoing WBH (n = 55) | Impaired renal function is strongly associated with raised serum through concentrations, without additional effect of WBH versus normothermia. |
Frymoyer et al. 2013a [163] | Gentamicin | Retrospective study evaluating gentamicin, 5 mg/kg q24h (n = 29) vs. q36h (n = 23) | CL 1.17 versus 1.15 L/h/70 kg. Elevated trough concentration (>2 mg/L): 38 vs. 4%. |
Ting et al. 2015 [164] | Gentamicin | Retrospective study evaluating gentamicin, 2.5 mg/kg q12h, in various stages of asphyxia (n = 19 WBH cases vs. 15 controls) | Elimination half-life was longer in WBH cases (9.6 versus 7 h). Dose adjustments (interval extension) were more common in WBH. |
Mark et al. 2013 [165] | Gentamicin | Retrospective study evaluating WBH cases (n = 16) compared to non-WBH cases (n = 7) | Elimination half-life was longer in WBH cases (9.16 versus 6.6 h), CL 0.04 vs. 0.05 L/kg/h (−25%) |
Frymoyer et al. 2013b [166] | Gentamicin | Retrospective popPK study in WBH cases (n = 29) | Typical (3.3 kg) newborn: CL 0.034 L/kg/h, Vd 0.52 L/kg. Suggested dose 4–5 mg/kg/36 h. |
Cies et al. 2018 [167] | Gentamicin | Prospective study in WBH cases (n = 19) | CL 2.2, SD 0.7 mL/min/kg, Vd 0.96, SD 0.4 L/kg. Suggested dose 5 mg/kg q36h. |
Zahora et al. 2009 [168] | Gentamicin | Study in WBH (n = 12) compared to normo-thermic non asphyxia cases (n = 19) | CL 0.65, SD 0.23 versvs.us 0.9 (SD 0.31) mL/min/kg (−28%) |
Riera et al. 2013 [169] | Gentamicin | PopPK study in WBH cases (n = 6), using trough and peak concentrations | Time interval extension from 24 h to 36 h needed (4 mg/kg). |
Cristea et al. 2017 [170] | Amikacin | Retrospective popPK study in WBH cases (n = 56) and controls (n = 874) | CL 49.5 mL/kg/h, −40% compared to term controls, time interval from 24 h to 36 h. |
Cies et al. 2017 [171] | Ampicillin | Prospective popPK study in WBH cases (n = 13) | CL 0.43, SD 0.12 mL/min/kg, Vd 0.52, SD 0.28 L/kg. |
Bijleveld et al. 2018a [172] | Amoxicillin | Prospective popPK study in WBH cases (n = 125) | Typical patient (3 kg), CL increases from 0.26 to 0.41 L/h from day 2 to day 5. 50–75 mg/kg/24 h (q8h) suggested. |
Bijleveld et al. 2018b [173] | Benzylpenicillin | Prospective popPK study in WBH cases (n = 41) | Typical patient (3 kg), CL 0.48 and Vd 0.62 L/kg. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gijsen, M.; Vlasselaers, D.; Spriet, I.; Allegaert, K. Pharmacokinetics of Antibiotics in Pediatric Intensive Care: Fostering Variability to Attain Precision Medicine. Antibiotics 2021, 10, 1182. https://doi.org/10.3390/antibiotics10101182
Gijsen M, Vlasselaers D, Spriet I, Allegaert K. Pharmacokinetics of Antibiotics in Pediatric Intensive Care: Fostering Variability to Attain Precision Medicine. Antibiotics. 2021; 10(10):1182. https://doi.org/10.3390/antibiotics10101182
Chicago/Turabian StyleGijsen, Matthias, Dirk Vlasselaers, Isabel Spriet, and Karel Allegaert. 2021. "Pharmacokinetics of Antibiotics in Pediatric Intensive Care: Fostering Variability to Attain Precision Medicine" Antibiotics 10, no. 10: 1182. https://doi.org/10.3390/antibiotics10101182
APA StyleGijsen, M., Vlasselaers, D., Spriet, I., & Allegaert, K. (2021). Pharmacokinetics of Antibiotics in Pediatric Intensive Care: Fostering Variability to Attain Precision Medicine. Antibiotics, 10(10), 1182. https://doi.org/10.3390/antibiotics10101182