Overview of Optical and Electrochemical Alkaline Phosphatase (ALP) Biosensors: Recent Approaches in Cells Culture Techniques
Abstract
:1. Introduction
2. ALP Isoenzyme and Tests
3. ALP Secretion System
4. Traditional ALP Methods
5. Optical Detection Techniques
5.1. Fluorescence Methods
5.2. Chemiluminescence Methods
5.3. Raman Spectroscopy
5.4. Infrared Spectra Techniques
5.5. Colorimetry Methods
5.6. Surface Plasmon Resonance
6. Electrochemistry Detection Techniques
6.1. Amperometric
6.2. Potentiometric
6.3. Conductometric
7. Other Detection Techniques
7.1. Electrochemical Impedance Spectroscopy
7.2. Quartz Crystal Microbalance
7.3. Field-Effect Transistor
8. Recent Technology
8.1. Optical Nanomaterials
8.2. Electrical Nanomaterials
8.3. Microarray Techniques
8.4. Lab-on-Chip Technique
9. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- McComb, R.B.; Bowers, G.N., Jr.; Posen, S. Alkaline Phosphatase; Plenum Press: New York, NY, USA, 1979. [Google Scholar]
- Scriver, C.R. The Metabolic & Molecular Bases of Inherited Disease, 8th ed.; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Chatterjee, R.; Mitra, A. An overview of effective therapies and recent advances in biomarkers for chronic liver diseases and associated liver cancer. Int. Immunopharmacol. 2015, 24, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Tartter, P.I.; Slater, G.; Gelernt, I.; Aufses, A.H., Jr. Screening for liver metastases from colorectal cancer with carcinoembryonic antigen and alkaline phosphatase. Ann. Surg. 1981, 193, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Annibali, O.; Petrucci, M.T.; Santini, D.; Mariani, M.; Pisani, F.; Bongarzoni, V.; Avvisati, G. Alkaline Phosphatase (ALP) Levels in Multiple Myeloma (MM) and Cancer with Bone Lesions: Is There any Difference? Clin. Lymphoma Myeloma Leuk. 2015, 15 (Suppl. 3), e125. [Google Scholar] [CrossRef]
- Abdallah, E.A.; Said, R.N.; Mosallam, D.S.; Moawad, E.M.; Kamal, N.M.; Fathallah, M.G. Serial serum alkaline phosphatase as an early biomarker for osteopenia of prematurity. Medicine 2016, 95, e4837. [Google Scholar] [CrossRef] [PubMed]
- Balzola, F.; Bernstein, C.; Ho, G.T.; Lees, C. Exogenous alkaline phosphatase for the treatment of patients with moderate to severe ulcerative colitis: Commentary. Inflamm. Bowel Dis. Monit. 2010, 11, 83. [Google Scholar]
- Pickkers, P.; Heemskerk, S.; Schouten, J.; Laterre, P.F.; Vincent, J.L.; Beishuizen, A.; van der Hoeven, J.G. Alkaline phosphatase for treatment of sepsis–induced acute kidney injury: A prospective randomized double-blind placebo-controlled trial. Crit. Care 2012, 16. [Google Scholar] [CrossRef] [PubMed]
- Orsaria, M.; Londero, A.P.; Marzinotto, S.; Di Loreto, C.; Marchesoni, D.; Mariuzzi, L. Placental type alkaline phosphatase tissue expression in ovarian serous carcinoma. Cancer Biomark. 2017, 17, 479–486. [Google Scholar] [CrossRef] [Green Version]
- D’Oronzo, S.; Brown, J.; Coleman, R. The value of biomarkers in bone metastasis. Eur. J. Cancer Care 2017, 26. [Google Scholar] [CrossRef]
- Maisano, R.; Azzarello, D.; Del Medico, P.; Maisano, M.; Bottari, M.; Egitto, G.; Nardi, M. Alkaline phosphatase levels as a prognostic factor in metastatic colorectal cancer treated with the FOLFOX 4 regimen: A monoinstitutional retrospective study. Tumori 2011, 97, 39–42. [Google Scholar] [CrossRef]
- Saif, M.W.; Alexander, D.; Wicox, C.M. Serum alkaline phosphatase level as a prognostic tool in colorectal cancer: A study of 105 patients. J. Appl. Res. 2005, 5, 88–95. [Google Scholar]
- William, C.S.; Melissa, G.S.; Lee, D.; Jay, W.M.; Mathur, R. Webster’s New World Medical Dictionary, 5th ed.; Wiley Publishing, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Fersht, A. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding; World Scientific: Hackensack, NJ, USA, 2017. [Google Scholar]
- Millán, J.L. Mammalian Alkaline Phosphatases: From Biology to Applications in Medicine and Biotechnology; John Wiley and Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Millán, J.L. Alkaline Phosphatases. Purinergic Signal. 2006, 2, 335. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, S.; Rishishwar, P.; Sharma, R.K. Malnutrition and hyperphosphatemia in dialysis patients. Clin. Queries Nephrol. 2015, 4, 25–27. [Google Scholar] [CrossRef]
- Bukowczan, J.; Pattman, S.; Jenkinson, F.; Quinton, R. Regan isoenzyme of alkaline phosphatase as a tumour marker for renal cell carcinoma. Ann. Clin. Biochem. 2014, 51, 611–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rader, B.A. Alkaline Phosphatase, an Unconventional Immune Protein. Front. Immunol. 2017, 8, 897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, D.J.; Branum, E.L.; O’Brien, J.F. Liver- and bone-derived isoenzymes of alkaline phosphatase in serum as determined by high-performance affinity chromatography. Clin. Chem. 1990, 36, 240–246. [Google Scholar]
- Sharp, C.A.; Linder, C.; Magnusson, P. Analysis of human bone alkaline phosphatase isoforms: Comparison of isoelectric focusing and ion-exchange high-performance liquid chromatography. Clin. Chim. Acta 2007, 379, 105–112. [Google Scholar] [CrossRef]
- Parviainen, M.T.; Galloway, J.H.; Towers, J.H.; Kanis, J.A. Alkaline phosphatase isoenzymes in serum determined by high-performance anion-exchange liquid chromatography with detection by enzyme reaction. Clin. Chem. 1988, 34, 2406–2409. [Google Scholar]
- Magnusson, P.; Löfman, O.; Larsson, L. Determination of alkaline phosphatase isoenzymes in serum by high-performance liquid chromatography with post-column reaction detection. J. Chromatogr. B Biomed. Sci. Appl. 1992, 576, 79–86. [Google Scholar] [CrossRef]
- Khan, K.H. Gene Expression in Mammalian Cells and its Applications. Adv. Pharm. Bull. 2013, 3, 257–263. [Google Scholar] [CrossRef]
- Pike, A.F.; Kramer, N.I.; Blaauboer, B.J.; Seinen, W.; Brands, R. A novel hypothesis for an alkaline phosphatase ’rescue’ mechanism in the hepatic acute phase immune response. BBA Mol. Basis Dis. 2013, 1832, 2044–2056. [Google Scholar] [CrossRef]
- Haarhaus, M.; Brandenburg, V.; Kalantar-Zadeh, K.; Stenvinkel, P.; Magnusson, P. Alkaline phosphatase: A novel treatment target for cardiovascular disease in CKD. Nat. Rev. Nephrol. 2017, 13, 429–442. [Google Scholar] [CrossRef] [PubMed]
- Antoni, D.; Burckel, H.; Josset, E.; Noel, G. Three-dimensional cell culture: A breakthrough in vivo. Int. J. Mol. Sci. 2015, 16, 5517–5527. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Liu, Y.; Wang, R.; Hu, H.; Zeng, R.; Chen, H. A high-quality secretome of A549 cells aided the discovery of C4b-binding protein as a novel serum biomarker for non-small cell lung cancer. J. Proteom. 2011, 74, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Pyo, J.S.; Ju, H.K.; Park, J.H.; Kwon, S.W. Determination of volatile biomarkers for apoptosis and necrosis by solid-phase microextraction–gas chromatography/mass spectrometry: A pharmacometabolomic approach to cisplatin’s cytotoxicity to human lung cancer cell lines. J. Chromatogr. B 2008, 876, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Daniela Viačková, J.P.; Kubala, L.; Pacherník, J. Modulation of cell proliferation and differentiation of human lung carcinoma cells by the interferon-alpha. Gen. Physiol. Biophys. 2009, 28, 294–301. [Google Scholar] [Green Version]
- Doyle, L.A.; Yang, W.; Abruzzo, L.V.; Krogmann, T.; Gao, Y.; Rishi, A.K.; Ross, D.D. A Multidrug Resistance Transporter from Human MCF-7 Breast Cancer Cells. Proc. Natl. Acad. Sci. USA 1998, 95, 15665–15670. [Google Scholar] [CrossRef]
- Kovalchuk, O.; Filkowski, J.; Meservy, J.; Ilnytskyy, Y.; Tryndyak, V.P.; Chekhun, V.F.; Pogribny, I.P. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol. Cancer Ther. 2008, 7, 2152–2159. [Google Scholar] [CrossRef] [Green Version]
- Vignon, F.; Capony, F.; Chambon, M.; Freiss, G.; Garcia, M.; Rochefort, H. Autocrine growth stimulation of the MCF 7 breast cancer cells by the estrogen-regulated 52 K protein. Endocrinology 1986, 118, 1537–1545. [Google Scholar] [CrossRef]
- Singh, A.K.; Pandey, A.; Tewari, M.; Kumar, R.; Sharma, A.; Singh, K.A.; Shukla, H.S. Advanced stage of breast cancer hoist alkaline phosphatase activity: Risk factor for females in India. 3 Biotech 2013, 3, 517–520. [Google Scholar] [CrossRef]
- Bellion, P.; Olk, M.; Will, F.; Dietrich, H.; Baum, M.; Eisenbrand, G.; Janzowski, C. Formation of hydrogen peroxide in cell culture media by apple polyphenols and its effect on antioxidant biomarkers in the colon cell line HT-29. Mol. Nutr. Food Res. 2009, 53, 1226–1236. [Google Scholar] [CrossRef]
- Hong, J.; Lu, H.; Meng, X.; Ryu, J.H.; Hara, Y.; Yang, C.S. Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (-)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells. Cancer Res. 2002, 62, 7241–7246. [Google Scholar] [PubMed]
- Chen, C.; Shen, G.X.; Hebbar, V.; Hu, R.; Owuor, E.D.; Kong, A.N.T. Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells. Carcinogenesis 2003, 24, 1369–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, H.; Erickson, R.H.; Gum, J.R.; Yoshioka, M.; Gum, E.; Kim, Y.S. Biosynthesis of alkaline-phosphatase during differentiation of the human colon cancer cell-line caco-2. Gastroenterology 1990, 98, 1199–1207. [Google Scholar] [CrossRef]
- Kovaříková, M.; Pacherník, J.; Hofmanová, J.; Zadák, Z.; Kozubík, A. TNF-α modulates the differentiation induced by butyrate in the HT-29 human colon adenocarcinoma cell line. Eur. J. Cancer 2000, 36, 1844–1852. [Google Scholar] [CrossRef]
- Perry, M.D.; Rajendran, V.M.; MacLennan, K.A.; Sandle, G.I. Segmental differences in upregulated apical potassium channels in mammalian colon during potassium adaptation. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G785–G793. [Google Scholar] [CrossRef] [Green Version]
- Gerlach, A.C.; Gangopadhyay, N.N.; Devor, D.C. Kinase-dependent Regulation of the Intermediate Conductance, Calcium-dependent Potassium Channel, hIK1. J. Biol. Chem. 2000, 275, 585–598. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Cao, L.; Liu, B.; McCaig, C.D.; Pu, J. The Transition from Proliferation to Differentiation in Colorectal Cancer Is Regulated by the Calcium Activated Chloride Channel A1. PLoS ONE 2013, 8, e60861. [Google Scholar] [CrossRef]
- Takahashi, A.; Iida, T.; Naim, R.; Naykaya, Y.; Honda, T. Chloride secretion induced by thermostable direct haemolysin of Vibrio parahaemolyticus depends on colonic cell maturation. J. Med. Microbiol. 2001, 50, 870–878. [Google Scholar] [CrossRef] [Green Version]
- Zahanich, I.; Graf, E.M.; Heubach, J.F.; Hempel, U.; Boxberger, S.; Ravens, U. Molecular and Functional Expression of Voltage-Operated Calcium Channels During Osteogenic Differentiation of Human Mesenchymal Stem Cells. J. Bone Miner. Res. 2005, 20, 1637–1646. [Google Scholar] [CrossRef]
- Macrae, M.X.; Blake, S.; Jiang, X.; Capone, R.; Estes, D.J.; Mayer, M.; Yang, J. A semi-synthetic ion channel platform for detection of phosphatase and protease activity. ACS Nano 2009, 3, 3567–3580. [Google Scholar] [CrossRef] [PubMed]
- Telford, W.G.; Cox, W.G.; Stiner, D.; Singer, V.L.; Doty, S.B. Detection of endogenous alkaline phosphatase activity in intact cells by flow cytometry using the fluorogenic ELF-97 phosphatase substrate. Cytometry 1999, 37, 314–319. [Google Scholar] [CrossRef]
- Shugar, D.; Szenberg, A.; Sierakowska, H. Quantitative histochemistry by means of radioactive indicators - alkaline phosphatase. Exp. Cell Res. 1957, 13, 424–426. [Google Scholar] [CrossRef]
- Yi-Wei, T.; Charles, W.S. Advanced Techniques in Diagnostic Microbiology, 2nd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Roelofs, H.; Manes, T.; Janszen, T.; Millan, J.L.; Oosterhuis, J.W.; Looijenga, L.H.J. Heterogeneity in alkaline phosphatase isozyme expression in human testicular germ cell tumours: An enzyme-/immunohistochemical and molecular analysis. J. Pathol. 1999, 189, 236–244. [Google Scholar] [CrossRef]
- Mano, H.; Furuhashi, Y.; Morikawa, Y.; Hattori, S.E.; Goto, S.; Tomoda, Y. Radioimmunoassay of placental alkaline-phosphatase in ovarian-cancer sera and tissues. Obstet. Gynecol. 1986, 68, 759–764. [Google Scholar] [PubMed]
- Degroote, G.; Dewaele, P.; Vandevoorde, A.; Debroe, M.; Fiers, W. Use of monoclonal-antibodies to detect human placental alkaline-phosphatase. Clin. Chem. 1983, 29, 115–119. [Google Scholar]
- Fisken, J.; Leonard, R.C.F.; Shaw, G.; Bowman, A.; Roulston, J.E. Serum placental-like alkaline-phosphatase (PLAP)-a novel combined enzyme linked immunoassay for monitoring ovarian-cancer. J. Clin. Pathol. 1989, 42, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Ake, M.S.; Johnston, K.H.; Russell-Jones, G.J.; Gotschlich, E.C. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal. Biochem. 1984, 136, 175–179. [Google Scholar] [CrossRef]
- Thiha, A.; Ibrahim, F. A Colorimetric Enzyme-Linked Immunosorbent Assay (ELISA) Detection Platform for a Point-of-Care Dengue Detection System on a Lab-on-Compact-Disc. Sensors (Basel) 2015, 15, 11431–11441. [Google Scholar] [CrossRef] [Green Version]
- Hammar, F. Chemgapedia. 2018. Available online: http://www.chemgapedia.de/vsengine/en/index.html (accessed on 12 April 2018).
- Sussman, H.H.; Small, P.J.; Cotlove, E. Human alkaline phosphatase. Immunochemical identification of organ-specific isoenzymes. J. Biol. Chem. 1968, 243, 160–166. [Google Scholar]
- Singh, I.; Tsang, K.Y. An in vitro production of bone specific alkaline phosphatase. Exp. Cell Res. 1975, 95, 347–358. [Google Scholar] [CrossRef]
- Rosivatz, E. Imaging the boundaries—innovative tools for microscopy of living cells and real-time imaging. J. Chem. Biol. 2008, 1, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Tseng, J.C.; Kung, A.L. In vivo imaging of endogenous enzyme activities using luminescent 1,2-dioxetane compounds. J. Biomed. Sci. 2015, 22. [Google Scholar] [CrossRef] [PubMed]
- Cagnin, S.; Caraballo, M.; Guiducci, C.; Martini, P.; Ross, M.; Santaana, M.; Lanfranchi, G. Overview of Electrochemical DNA Biosensors: New Approaches to Detect the Expression of Life. Sensors (Basel) 2009, 9, 3122–3148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peltomaa, R.; Glahn-Martínez, B.; Benito-Peña, E.; Moreno-Bondi, M. Optical Biosensors for Label-Free Detection of Small Molecules. Sensors 2018, 18, 4126. [Google Scholar] [CrossRef]
- Deng, J.J.; Yu, P.; Wang, Y.; Mao, L. Real-time Ratiometric Fluorescent Assay for Alkaline Phosphatase Activity with Stimulus Responsive Infinite Coordination Polymer Nanoparticles. Anal. Chem. 2015, 87, 3080–3086. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.Q.; Lu, J.C.; Huang, Y.Y.; Tang, C.; Shen, J.J.; Chen, J.R.; Feng, H. A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon quantum dots. Biosens. Bioelectron. 2015, 68, 675–680. [Google Scholar]
- Liu, X.G.; Xing, X.J.; Li, B.; Guo, Y.M.; Zhang, Y.Z.; Yang, Y.; Zhang, L.F. Fluorescent assay for alkaline phosphatase activity based on graphene oxide integrating with λ exonuclease. Biosens. Bioelectron. 2016, 81, 460–464. [Google Scholar] [CrossRef]
- Qu, F.L.; Pei, H.; Kong, R.; Zhu, S.; Xia, L. Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets. Talanta 2017, 165, 136–142. [Google Scholar] [CrossRef]
- Chen, L.; Yang, G.; Wu, P.; Cai, C. Real-time fluorescence assay of alkaline phosphatase in living cells using boron-doped graphene quantum dots as fluorophores. Biosens. Bioelectron. 2017, 96, 294–299. [Google Scholar] [CrossRef]
- Siraj, N.; El-Zahab, B.; Hamdan, S.; Karam, T.E.; Haber, L.H.; Li, M.; Warner, I.M. Fluorescence, Phosphorescence, and Chemiluminescence. Anal. Chem. 2016, 88, 170–202. [Google Scholar] [CrossRef] [PubMed]
- Sasamoto, H.; Maeda, M.; Tsuji, A. Chemiluminescent assay of alkaline phosphatase using phenacyl phosphate. Anal. Chim. Acta 1995, 306, 161–166. [Google Scholar] [CrossRef]
- Ximenes, V.F.; Campa, A.; Baader, W.J.; Catalani, L.H. Facile chemiluminescent method for alkaline phosphatase determination. Anal. Chim. Acta 1999, 402, 99–104. [Google Scholar] [CrossRef]
- Kokado, A.; Arakawa, H.; Maeda, M. Chemiluminescent assay of alkaline phosphatase using dihydroxyacetone phosphate as substrate detected with lucigenin. Luminescence 2002, 17, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Kasai, A.; Hiramatsu, N.; Hayakawa, K.; Takeda, M.; Shimizu, F.; Kitamura, M. Real-time monitoring of mesangial cell-macrophage cross-talk using SEAP in vitro and ex vivo. Kidney Int. 2005, 68, 886–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larkin, P.; ProQuest. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Cottat, M.; Yasukuni, R.; Homma, Y.; Lidgi-Guigui, N.; Varin-Blank, N.; de la Chapelle, M.L.; Le Roy, C. Phosphorylation impact on Spleen Tyrosine kinase conformation by Surface Enhanced Raman Spectroscopy. Sci. Rep. 2017, 7, 39766. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Gao, M.X.; Zhan, L.; Gong, M.; Zhen, S.J.; Huang, C.Z. An enzyme-induced Au@Ag core-shell nanoStructure used for an ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarkers. Nanoscale 2017, 9, 2640–2645. [Google Scholar] [CrossRef]
- Bozkurt, A.G.; Buyukgoz, G.G.; Soforoglu, M.; Tamer, U.; Suludere, Z.; Boyaci, I.H. Alkaline phosphatase labeled SERS active sandwich immunoassay for detection of Escherichia coli. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 194, 8–13. [Google Scholar] [CrossRef]
- Ren, Z.Y.; Do, L.D.; Bechkoff, G.; Mebarek, S.; Keloglu, N.; Ahamada, S.; Buchet, R. Direct Determination of Phosphatase Activity from Physiological Substrates in Cells. PLoS ONE 2015, 10, e0120087. [Google Scholar] [CrossRef]
- Li, S.J.; Li, C.Y.; Li, Y.F.; Fei, J.J.; Wu, P.; Yang, B.; Nie, S.X. Facile and Sensitive Near-Infrared Fluorescence Probe for the Detection of Endogenous Alkaline Phosphatase Activity in Vivo. Anal. Chem. 2017, 89, 6854–6860. [Google Scholar] [CrossRef]
- Gao, Z.; Gao, M.; Sun, J.; Yu, F.; Chen, L.; Chen, Q. A unique off-on near-infrared cyanine-based probe for imaging of endogenous alkaline phosphatase activity in cells and in vivo. Sens. Actuators B Chem. 2018, 265, 565–574. [Google Scholar] [CrossRef]
- Wu, C.F.; Zhang, R.; Du, W.; Cheng, L.; Liang, G.L. Alkaline Phosphatase-Triggered Self-Assembly of Near-Infrared Nanoparticles for the Enhanced Photoacoustic Imaging of Tumors. Nano Lett. 2018, 18, 7749–7754. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.B.; He, X.; Huang, Y.B.; Ma, P.Y.; Jiang, Y.X.; Liu, X.; Wang, X.H. A novel near-infrared fluorescent probe for detecting intracellular alkaline phosphatase and imaging of living cells. J. Mater. Chem. B 2019, 7, 1284–1291. [Google Scholar] [CrossRef]
- Im, H.; Hong, S.; Lee, Y.; Lee, H.; Kim, S. Colorimetric Sensing Systems: A Colorimetric Multifunctional Sensing Method for Structural-Durability-Health Monitoring Systems (Adv. Mater. 23/2019). Adv. Mater. 2019, 31, 1970163. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Zhang, H.Y.; Wang, F.B.; Wang, F.F.; Ji, X.H.; He, Z.K. Colorimetric Detection of Alkaline Phosphatase on Microfluidic Paper-based Analysis Devices. Chin. J. Anal. Chem. 2016, 44, 591–596. [Google Scholar] [CrossRef]
- Hu, Q.; Zhou, B.; Dang, P.; Li, L.; Kong, J.; Zhang, X. Facile colorimetric assay of alkaline phosphatase activity using Fe(II)-phenanthroline reporter. Anal. Chim. Acta 2017, 950, 170–177. [Google Scholar] [CrossRef]
- Hu, Q.; He, M.; Mei, Y.; Feng, W.; Jing, S.; Kong, J.; Zhang, X. Sensitive and selective colorimetric assay of alkaline phosphatase activity with Cu(II)-phenanthroline complex. Talanta 2017, 163, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; He, C.; Zhang, J.; Li, W.; Fu, Y. Unlocking the hidden talent of DNA: Unexpected catalytic activity for colorimetric assay of alkaline phosphatase. Anal. Chim. Acta 2019, 1055, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.T.; Hou, W.L.; Ma, Z.Y.; Liu, M.L.; Liu, X.Y.; Zhang, Y.Y.; Yao, S.Z. Colorimetric determination of ascorbic acid and the activity of alkaline phosphatase based on the inhibition of the peroxidase-like activity of citric acid-capped Prussian Blue nanocubes. Microchim. Acta 2019, 186, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.B.; Cronin, S.B. A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619. [Google Scholar] [CrossRef]
- Halling Linder, C.; Enander, K.; Magnusson, P. Glycation Contributes to Interaction Between Human Bone Alkaline Phosphatase and Collagen Type, I. Calcif. Tissue Int. 2016, 98, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Sappia, L.; Piccinini, E.; Santilli, N.; Marmisolé, W.; Madrid, R.; Azzaroni, O. Lectin-modified surfaces for the real-time determination of Bone Alkaline Phosphatase by Surface Plasmon Resonance (SPR) Spectroscopy. In Proceedings of the 1st Argentine-German Workshop on Nanotechnology and Nanobiosensors, Buenos Aires, Argentina, 4–7 July 2017. [Google Scholar]
- Wang, K.; Jiang, L.; Zhang, F.; Wei, Y.Q.; Wang, H.S.; Qi, Z.J.; Liu, S.Q. Strategy for in Situ Imaging of Cellular Alkaline Phosphatase Activity Using Gold Nanoflower Probe and Localized Surface Plasmon Resonance Technique. Anal. Chem. 2018, 90, 14056–14062. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Zhang, Q.; Li, C.W.; Yang, J.; Zhao, J.; Yang, M. Optical and Electrochemical Detection Techniques for Cell-Based Microfluidic Systems; Springer: Berlin/Heidelberg, Germany, 2006; Volume 384, pp. 1259–1268. [Google Scholar]
- Stradiotto, N.R.; Yamanaka, H.; Zanoni, M.V.B. Electrochemical sensors: A powerful tool in analytical chemistry. J. Braz. Chem. Soc. 2003, 14, 159–173. [Google Scholar] [CrossRef]
- Sołoducho, J.; Cabaj, J. Electrochemical and Optical Biosensors in Medical Applications; Intech Open, Science Open Mind: London, UK, 2015. [Google Scholar]
- Lee, T.M.H.; Hsing, I.M. DNA-based bioanalytical microsystems for handheld device applications. Anal. Chim. Acta 2006, 556, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.Q.; Barone, G.C.; Halsall, H.B.; Heineman, W.R. Comparison of methods for following alkaline-phosphatase catalysis—spectrophotometric versus amperometric detection. Anal. Biochem. 1991, 192, 90–95. [Google Scholar] [CrossRef]
- Matysik, F.M. Advances in amperometric and conductometric detection in capillary and chip-based electrophoresis. Microchim. Acta 2008, 160, 1–14. [Google Scholar] [CrossRef]
- Kelso, E.; McLean, J.; Cardosi, M.F. Electrochemical detection of secreted alkaline phosphatase: Implications to cell based assays. Electroanalysis 2000, 12, 490–494. [Google Scholar] [CrossRef]
- Ito, S.; Yamazaki, S.I.; Kano, K.; Ikeda, T. Highly sensitive electrochemical detection of alkaline phosphatase. Anal. Chim. Acta 2000, 424, 57–63. [Google Scholar] [CrossRef]
- Wang, J.H.; Wang, K.; Bartling, B.; Liu, C.C. The Detection of Alkaline Phosphatase Using an Electrochemical Biosensor in a Single-Step Approach. Sensors (Basel) 2009, 9, 8709–8721. [Google Scholar] [CrossRef]
- Ru, S.P.; Wu, J.; Ying, Y.B.; Ji, F. Electrochemical Detection of Alkaline Phosphatase Using Ionic Liquid Modified Carbon Nanotubes Electrode. Chin. J. Anal. Chem. 2012, 40, 835–839. [Google Scholar] [CrossRef]
- Xia, N.; Ma, F.; Zhao, F.; He, Q.; Du, J.; Li, S.; Liu, L. Comparing the performances of electrochemical sensors using p-aminophenol redox cycling by different reductants on gold electrodes modified with self-assembled monolayers. Electrochim. Acta 2013, 109, 348–354. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, T.; Li, H.; Li, F. A highly sensitive homogeneous electrochemical assay for alkaline phosphatase activity based on single molecular beacon-initiated T7 exonuclease-mediated signal amplification. Analyst 2015, 14, 43–436. [Google Scholar] [CrossRef] [PubMed]
- Yildirim-Semerci, C.; Benayahu, D.; Adamovski, M.; Wollenberger, U. An Electrochemical Assay for Monitoring Differentiation of the Osteoblastic Cell Line (MBA-15) on the Sensor Chip. Electroanalysis 2015, 27, 1350–1358. [Google Scholar] [CrossRef]
- Porat-Ophir, C.; Dergachev, V.; Belkin, A.; Vernick, S.; Freynd, G.; Katsnelson, M.; Shacham-Diamand, Y. Chip level agitation effects on the electrochemical sensing of alkaline-phosphatase expressed from integrated liver tissue. Sens. Actuators B Chem. 2015, 213, 465–473. [Google Scholar] [CrossRef]
- Vernick, S.; Freeman, A.; Rishpon, J.; Niv, Y.; Vilkin, A.; Shacham-Diamand, Y. Electrochemical Biosensing for Direct Biopsy Slices Screening for Colorectal Cancer Detection. J. Electrochem. Soc. 2011, 158, P1–P4. [Google Scholar] [CrossRef]
- Ragones, H.; Schreiber, D.; Inberg, A.; Berkh, O.; Kósa, G.; Freeman, A.; Shacham-Diamand, Y. Disposable electrochemical sensor prepared using 3D printing for cell and tissue diagnostics. Sens. Actuators B Chem. 2015, 216, 434–442. [Google Scholar] [CrossRef]
- Zdrachek, E.; Bakker, E. Potentiometric Sensing. Anal. Chem. 2019, 91, 2–26. [Google Scholar] [CrossRef] [PubMed]
- Keyes, M.H. Electrochemical Potentiometric Method for Selectively Determining Alkaline Phosphatase Content in Aqueous Fluids. U.S. Patent 3896008A, 22 July 1975. [Google Scholar]
- Katsu, T.; Yamanaka, K.; Hiramaki, S.; Tanaka, T.; Nagamatsu, T. Potentiometric Determination of Alkaline Phosphatase in Blood Serum Using a Hordenine-Sensitive Membrane Electrode. Electroanalysis 1996, 1101–1104. [Google Scholar] [CrossRef]
- Koncki, R.; Ogończyk, D.; Głąb, S. Potentiometric assay for acid and alkaline phosphatase. Anal. Chim. Acta 2005, 538, 257–261. [Google Scholar] [CrossRef]
- Koncki, R.; Rudnicka, K.; Tymecki, Ł. Flow injection system for potentiometric determination of alkaline phosphatase inhibitors. Anal. Chim. Acta 2006, 577, 134–139. [Google Scholar] [CrossRef]
- Ogończyk, D.; Koncki, R. Potentiometric flow-injection system for determination of alkaline phosphatase in human serum. Anal. Chim. Acta 2007, 600, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.S.M.; Sayour, H.E.M.; Kamel, A.H. A simple-potentiometric method for determination of acid and alkaline phosphatase enzymes in biological fluids and dairy products using a nitrophenylphosphate plastic membrane sensor. Anal. Chim. Acta 2009, 640, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Kanno, Y.; Ino, K.; Sakamoto, C.; Inoue, K.Y.; Matsudaira, M.; Suda, A.; Matsue, T. Potentiometric bioimaging with a large-scale integration (LSI)-based electrochemical device for detection of enzyme activity. Biosens. Bioelectron. 2016, 77, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Kucherenko, I.S.; Kucherenko, D.Y.; Soldatkin, A.P.; Soldatkin, O.O.; Lagarde, F.; Dzyadevych, S.V. A novel conductometric biosensor based on hexokinase for determination of adenosine triphosphate. Talanta 2016, 150, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Guedri, H.; Durrieu, C. A self-assembled monolayers based conductometric algal whole cell biosensor for water monitoring. Microchim. Acta 2008, 163, 179–184. [Google Scholar] [CrossRef]
- Upadhyay, L.S.B.; Verma, N. Alkaline phosphatase inhibition based conductometric biosensor for phosphate estimation in biological fluids. Biosens. Bioelectron. 2015, 68, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Chouteau, C.; Dzyadevych, S.; Chovelon, J.M.; Durrieu, C. Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae. Biosens. Bioelectron. 2004, 19, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Berezhetskyy, A.L.; Sosovska, O.F.; Durrieu, C.; Chovelon, J.M.; Dzyadevych, S.V.; Tran-Minh, C. Alkaline phosphatase conductometric biosensor for heavy-metal ions determination. IRBM 2008, 29, 136–140. [Google Scholar] [CrossRef]
- Gomes, W.P.; Vanmaekelbergh, D. Impedance spectroscopy at semiconductor electrodes: Review and recent developments. Electrochim. Acta 1996, 41, 967–973. [Google Scholar] [CrossRef]
- Cai, Q.; Wei, W.; Wang, R.; Nie, L.; Yao, S. Measurement of Serum Alkaline Phosphatase with a Surface Acoustic Wave Impedance Sensor Device. Anal. Sci. 1997, 13, 121–125. [Google Scholar] [CrossRef]
- Lee, J.Y.; Ahn, J.K.; Park, K.S.; Park, H.G. An impedimetric determination of alkaline phosphatase activity based on the oxidation reaction mediated by Cu2+ bound to poly-thymine DNA. RSC Adv. 2018, 8, 11241–11246. [Google Scholar] [CrossRef]
- Lucarelli, F.; Marrazza, G.; Mascini, M. Enzyme-based impedimetric detection of PCR products using oligonucleotide-modified screen-printed gold electrodes. Biosens. Bioelectron. 2005, 20, 2001–2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferancova, A.; Hattuniemi, M.; Pääkkönen, S.; Tervo, P.; Ohtonen, E.; Sesay, A.; Virtanen, V. Electrochemical Impedance Spectroscopy for Monitoring of Alkaline Phosphatase Reaction with Substrate. Procedia Technol. 2017, 27, 315–316. [Google Scholar] [CrossRef]
- Shrikrishnan, S.; Sankaran, K.; Lakshminarayanan, V. Electrochemical Impedance Analysis of Adsorption and Enzyme Kinetics of Calf Intestine Alkaline Phosphatase on SAM-Modified Gold Electrode. J. Phys. Chem. C 2012, 116, 16030–16037. [Google Scholar] [CrossRef]
- Mintz Hemed, N.; Convertino, A.; Shacham-Diamand, Y. Alkaline phosphatase detection using electrochemical impedance of anti-alkaline phosphatase antibody (Ab354) functionalized silicon-nanowire-forest in phosphate buffer solution. Sens. Actuators B Chem. 2018, 259, 809–815. [Google Scholar] [CrossRef]
- Kaatz, M.; Schulze, H.; Ciani, I.; Lisdat, F.; Mount, A.R.; Bachmann, T.T. Alkaline phosphatase enzymatic signal amplification for fast, sensitive impedimetric DNA detection. Analyst 2012, 137, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Sekar, S.; Giermanska, J.; Chapel, J.P. Reusable and recyclable quartz crystal microbalance sensors. Sens. Actuators B Chem. 2015, 212, 196–199. [Google Scholar] [CrossRef]
- Ebersole, R.C.; Ward, M.D. Amplified Mass Immunosorbent Assay with a Quartz Crystal Microbalance. Am. Chem. Soc. 1988, 110, 8623–8628. [Google Scholar] [CrossRef]
- Kacar, T.; Zin, M.T.; So, C.; Wilson, B.; Ma, H.; Gul-Karaguler, N.; Tamerler, C. Directed Self-Immobilization of Alkaline Phosphatase on Micro-Patterned Substrates Via Genetically Fused Metal-Binding Peptide. Biotechnol. Bioeng. 2009, 103, 696–705. [Google Scholar] [CrossRef]
- Thammasittirong, A.; Dechklar, M.; Leetachewa, S.; Pootanakit, K.; Angsuthanasombat, C. Aedes aegypti Membrane-Bound Alkaline Phosphatase Expressed in Escherichia coli Retains High-Affinity Binding for Bacillus thuringiensis Cry4Ba Toxin. Appl. Environ. Microbiol. 2011, 77, 6836–6840. [Google Scholar] [CrossRef] [Green Version]
- Syu, Y.C.; Hsu, W.E.; Lin, C.T. Review-Field-Effect Transistor Biosensing: Devices and Clinical Applications. ECS J. Solid State Sci. Technol. 2018, 7, Q3196–Q3207. [Google Scholar] [CrossRef]
- Jang, H.J.; Ahn, J.; Kim, M.G.; Shin, Y.B.; Jeun, M.; Cho, W.J.; Lee, K.H. Electrical signaling of enzyme-linked immunosorbent assays with an ion-sensitive field-effect transistor. Biosens. Bioelectron. 2015, 64, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Freeman, R.; Gill, R.; Willner, I. Following a protein kinase activity using a field-effect transistor device. Chem. Commun. 2007, 3450–3452. [Google Scholar] [CrossRef] [PubMed]
- Favero, G.; Fusco, G.; Mazzei, F.; Tasca, F.; Antiochia, R. Electrochemical Characterization of Graphene and MWCNT Screen-Printed Electrodes Modified with AuNPs for Laccase Biosensor Development. Nanomaterials 2015, 5, 1995–2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, N.M.; Jackson, S.R.; Haselton, F.R.; Wright, D.W. Design, Synthesis, and Characterization of Nucleic-Acid-Functionalized Gold Surfaces for Biomarker Detection. Langmuir 2012, 28, 1068–1082. [Google Scholar] [CrossRef] [PubMed]
- Li, C.M.; Li, Y.F.; Zhen, S.J.; Wang, J.; Huang, C.Z. A gold nanoparticles-based colorimetric assay for alkaline phosphatase detection with tunable dynamic range. Biosens. Bioelectron. 2013, 43, 366–371. [Google Scholar] [CrossRef]
- Ruan, C.M.; Wang, W.; Gu, B.H. Detection of alkaline phosphatase using surface-enhanced Raman spectroscopy. Anal. Chem. 2006, 78, 3379–3384. [Google Scholar] [CrossRef]
- Zeng, Y.; Ren, J.Q.; Wang, S.K.; Mai, J.M.; Qu, B.; Zhang, Y.; Hu, J.M. Rapid and Reliable Detection of Alkaline Phosphatase by a Hot Spots Amplification Strategy Based on Well-Controlled Assembly on Single Nanoparticle. ACS Appl. Mater. Interfaces 2017, 9, 29547–29553. [Google Scholar] [CrossRef]
- Liu, Q.; Li, H.; Li, N.; Jin, R.; Yan, X.; Su, X. Ultrasensitive detection alkaline phosphatase activity using 3-aminophenylboronic acid functionalized gold nanoclusters. Sens. Actuators B Chem. 2019, 281, 175–181. [Google Scholar] [CrossRef]
- He, Y.; Jiao, B. Determination of the activity of alkaline phosphatase based on the use of ssDNA-templated fluorescent silver nanoclusters and on enzyme-triggered silver reduction. Microchim. Acta 2017, 184, 4167–4173. [Google Scholar] [CrossRef]
- Wang, H.B.; Li, Y.; Chen, Y.; Zhang, Z.P.; Gan, T.; Liu, Y.M. Determination of the activity of alkaline phosphatase by using nanoclusters composed of flower-like cobalt oxyhydroxide and copper nanoclusters as fluorescent probes. Microchim. Acta 2018, 185, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.L.; Geng, X.; Zhang, L.; Huang, Z.M.; Ge, J.; Li, Z.H. Nitrogen-doped Carbon Dots Mediated Fluorescent on-off Assay for Rapid and Highly Sensitive Pyrophosphate and Alkaline Phosphatase Detection. Sci. Rep. 2017, 7, 5849. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Sharma, A.K.; Sharma, K.H.; Nerthigan, Y.; Khan, M.S.; Hang, D.R.; Wu, H.F. Rapid naked eye detection of alkaline phosphatase using [alpha]-MoO.sub.3-x nano-flakes. Sens. Actuators B Chem. 2018, 254, 514. [Google Scholar] [CrossRef]
- Choi, Y.; Ho, N.H.; Tung, C.H. Sensing phosphatase activity by using gold nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 707–709. [Google Scholar] [CrossRef]
- Serizawa, T.; Hirai, Y.; Aizawa, M. Detection of enzyme activities based on the synthesis of gold nanoparticles in HEPES buffer. Mol. Biosyst. 2010, 6, 1561–1564. [Google Scholar] [CrossRef]
- Song, H.; Wang, H.; Li, X.; Peng, Y.; Pan, J.; Niu, X. Sensitive and selective colorimetric detection of alkaline phosphatase activity based on phosphate anion-quenched oxidase-mimicking activity of Ce (IV) ions. Anal. Chim. Acta 2018, 1044, 154–161. [Google Scholar] [CrossRef] [PubMed]
- AL-Rubaee, E.A.S.; Abd, S.T.; Kadim, N.M. The Effect of Titanium Dioxide Nanoparticles on Salivary Alkaline Phosphatase Activity. Eur. J. Mol. Biotechnol. 2015, 10, 188–196. [Google Scholar] [CrossRef]
- Zhang, L.; Nie, J.F.; Wang, H.L.; Yang, J.H.; Wang, B.Y.; Zhang, Y.; Li, J.P. Instrument-free quantitative detection of alkaline phosphatase using paper-based devices. Anal. Methods 2017, 9, 3375–3379. [Google Scholar] [CrossRef]
- Cao, F.Y.; Fan, J.X.; Long, Y.; Zeng, X.; Zhang, X.Z. A Smart Fluorescence Nanoprobe for the Detection of Cellular Alkaline Phosphatase Activity and Early Osteogenic Differentiation. Nanomed. Nanotechnol. Biol. Med. 2015, 12, 1313–1322. [Google Scholar] [CrossRef]
- Ru, S.-P.; Wu, J.; Ying, Y.-B.; Ji, F. Electrochemical Detection of Alkaline Phosphatase Using Ionic Liquid Modified Carbon Nanotubes Electrode: Electrochemical Detection of Alkaline Phosphatase Using Ionic Liquid Modified Carbon Nanotubes Electrode. Chin. J. Anal. Chem. (Chin. Version) 2013, 40, 835–840. [Google Scholar] [CrossRef]
- Peng, J.; Han, X.X.; Zhang, Q.C.; Yao, H.Q.; Gao, Z.N. Copper sulfide nanoparticle-decorated graphene as a catalytic amplification platform for electrochemical detection of alkaline phosphatase activity. Anal. Chim. Acta 2015, 878, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yin, H.; Li, Z.; Li, X.; Ai, S.; Lin, H. Electrochemical biosensor for protein kinase A activity assay based on gold nanoparticles-carbon nanospheres, phos-tag-biotin and β-galactosidase. Biosens. Bioelectron. 2016, 86, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.; Almog, R.O.; Sverdlov, Y.; Shacham-Diamand, Y. Self-Aligned Electrochemical Fabrication of Gold Nanoparticle Decorated Polypyrrole Electrode for Alkaline Phosphatase Enzyme Biosensing. J. Electrochem. Soc. 2017, 164, B168–B175. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, L.; Miao, Y.; Zhang, C. Gold Nanoparticle-Decorated Single-Walled Carbon Nanotubes as a Catalytic Amplification Platform for the Electrochemical Detection of Alkaline Phosphatase Activity. Int. J. Electrochem. Sci. 2018, 13, 1293–1307. [Google Scholar] [CrossRef]
- Simão, E.P.; Frías, I.A.M.; Andrade, C.A.S.; Oliveira, M.D.L. Nanostructured electrochemical immunosensor for detection of serological alkaline phosphatase. Colloids Surf. B Biointerfaces 2018, 171, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Kang, Q.; Wang, X.; Ma, X.; Kong, L.; Zhang, P.; Shen, D. Sensitive detection of ascorbic acid and alkaline phosphatase activity by double-channel photoelectrochemical detection design based on g-C3N4/TiO2 nanotubes hybrid film. Sens. Actuators B Chem. 2016, 230, 231–241. [Google Scholar] [CrossRef]
- Lin, Z.; Takahashi, Y.; Kitagawa, Y.; Umemura, T.; Shiku, H.; Matsue, T. An addressable microelectrode array for electrochemical detection. Anal. Chem. 2008, 80, 6830–6833. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Takahashi, Y.; Murata, T.; Takeda, M.; Ino, K.; Shiku, H.; Matsue, T. Electrochemical Gene-Function Analysis for Single Cells with Addressable Microelectrode/Microwell Arrays. Angew. Chem. Int. Ed. 2009, 48, 2044–2046. [Google Scholar] [CrossRef]
- Murata, T.; Yasukawa, T.; Shiku, H.; Matsue, T. Electrochemical single-cell gene-expression assay combining dielectrophoretic manipulation with secreted alkaline phosphatase reporter system. Biosens. Bioelectron. 2009, 25, 913–919. [Google Scholar] [CrossRef]
- Shiku, H.; Suzuki, J.; Murata, T.; Ino, K.; Matsue, T. Chronoamperometric characterization of secreted alkaline phosphatase from single-cell entrapped in a poly(dimethylsiloxisane) microwell. Electrochim. Acta 2010, 55, 8263–8267. [Google Scholar] [CrossRef]
- Takeda, M.; Shiku, H.; Ino, K.; Matsue, T. Electrochemical chip integrating scalable ring-ring electrode array to detect secreted alkaline phosphatase. Analyst 2011, 136, 4991–4996. [Google Scholar] [CrossRef] [PubMed]
- Ino, K.; Nishijo, T.; Arai, T.; Kanno, Y.; Takahashi, Y.; Shiku, H.; Matsue, T. Local Redox-Cycling-Based Electrochemical Chip Device with Deep Microwells for Evaluation of Embryoid Bodies. Angew. Chem. Int. Ed. Engl. 2012, 124, 6752–6756. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, C.H.; Pan, L.J.; Zeng, T.; Zhu, L.; Pang, D.W.; Zhang, Z.L. Reliable Digital Single Molecule Electrochemistry for Ultrasensitive Alkaline Phosphatase Detection. Anal. Chem. 2016, 88, 9166–9172. [Google Scholar] [CrossRef] [PubMed]
- Sen, M.; Ino, K.; Shiku, H.; Matsue, T. Accumulation and detection of secreted proteins from single cells for reporter gene assays using a local redox cycling-based electrochemical (LRC-EC) chip device. Lab Chip 2012, 12, 4328–4335. [Google Scholar] [CrossRef] [PubMed]
- Şen, M.; Ino, K.; Shiku, H.; Matsue, T. A new electrochemical assay method for gene expression using hela cells with a secreted alkaline phosphatase (SEAP) reporter system. Biotechnol. Bioeng. 2012, 109, 2163–2167. [Google Scholar] [CrossRef]
- Chen, Q.S.; Wu, J.; Zhuang, Q.C.; Lin, X.X.; Zhang, J.; Lin, J.M. Microfluidic isolation of highly pure embryonic stem cells using feeder-separated co-culture system. Sci. Rep. 2013, 3, 2433. [Google Scholar] [CrossRef] [PubMed]
- Ino, K.; Kanno, Y.; Nishijo, T.; Komaki, H.; Yamada, Y.; Yoshida, S.; Matsue, T. Densified Electrochemical Sensors Based on Local Redox Cycling between Vertically Separated Electrodes in Substrate Generation/Chip Collection and Extended Feedback Modes. Anal. Chem. 2014, 86, 4016–4023. [Google Scholar] [CrossRef]
- Ino, K.; Goto, T.; Kanno, Y.; Inoue, K.Y.; Takahashi, Y.; Shiku, H.; Matsue, T. Droplet array on local redox cycling-based electrochemical (LRC-EC) chip device. Lab Chip 2014, 14, 787–794. [Google Scholar] [CrossRef]
- Cao, X.Y.; Kong, F.Z.; Zhang, Q.; Liu, W.W.; Liu, X.P.; Li, G.Q.; Cao, C.X. iPhone-imaged and cell-powered electrophoresis titration chip for the alkaline phosphatase assay in serum by the moving reaction boundary. Lab Chip 2018, 18, 1758–1766. [Google Scholar] [CrossRef]
- Sun, D.; Cao, F.H.; Cong, L.L.; Xu, W.Q.; Chen, Q.D.; Shi, W.; Xu, S.P. Cellular heterogeneity identified by single-cell alkaline phosphatase (ALP) via a SERRS-microfluidic droplet platform. Lab Chip 2019, 19, 335–342. [Google Scholar] [CrossRef]
- Ino, K.; Shiku, H.; Matsue, T. Bioelectrochemical applications of microelectrode arrays in cell analysis and engineering. Curr. Opin. Electrochem. 2017, 5, 146–151. [Google Scholar] [CrossRef]
Detection Technique | Nanomaterials | Linear Range | Limit of Detection | Ref. |
---|---|---|---|---|
Colorimetric | gold nanoparticles | 100–600 U/L | 1000 U/L | [138] |
Raman spectroscopy | gold nanoparticles | 4 × 10−11 M to 4 × 10−15 M | 4 × 10−15 M | [139] |
Raman spectroscopy | gold nanoparticles | 0.72 to 3 U/L | 0.01 U/L | [140] |
Fluorescence | gold nanoclusters | 0.02–2.0 U/L. | 0.005 U/L | [141] |
Fluorescence | silver nanoclusters | 1–100 U/L | 0.63 U/L | [142] |
Fluorescence | copper nanoclusters | 0.5 to 150 mU/mL | 0.1 mU/mL | [143] |
Fluorescence | nitrogen-doped carbon dots | 2.5 to 45 U/L | 0.4 U/L | [144] |
Naked eye | α-moo3- × nano-flakes | 0.06 to 1 IU | [145] |
Detection Technique | Nanomaterials | Linear Range | Limit of Detection | Ref |
---|---|---|---|---|
Impedance | silicon-nanowire | 0.03–0.3 U/L | 0.3 U/L | [127] |
Electrochemical | copper sulfide nanoparticle | 0.1 to 100 U/L | 0.02 U/L | [153] |
Electrochemical | gold nanoparticle | 3 to 50 U/L | 0.2 U/L | [156] |
Electrochemical | gold nanoparticle-carbon nanotubes | 0.5 to 600 IU/L | 0.25 IU/L | [157] |
Photo-Electrochemical | graphic carbon nitride (g-C3N4)/TiO2 nanotubes | 0.3 mU/L–1 U/L | 0.1 mU/L. | [158] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balbaied, T.; Moore, E. Overview of Optical and Electrochemical Alkaline Phosphatase (ALP) Biosensors: Recent Approaches in Cells Culture Techniques. Biosensors 2019, 9, 102. https://doi.org/10.3390/bios9030102
Balbaied T, Moore E. Overview of Optical and Electrochemical Alkaline Phosphatase (ALP) Biosensors: Recent Approaches in Cells Culture Techniques. Biosensors. 2019; 9(3):102. https://doi.org/10.3390/bios9030102
Chicago/Turabian StyleBalbaied, Thanih, and Eric Moore. 2019. "Overview of Optical and Electrochemical Alkaline Phosphatase (ALP) Biosensors: Recent Approaches in Cells Culture Techniques" Biosensors 9, no. 3: 102. https://doi.org/10.3390/bios9030102
APA StyleBalbaied, T., & Moore, E. (2019). Overview of Optical and Electrochemical Alkaline Phosphatase (ALP) Biosensors: Recent Approaches in Cells Culture Techniques. Biosensors, 9(3), 102. https://doi.org/10.3390/bios9030102