Motion Artifacts (MA) At-Rest in Measured Arterial Pulse Signals: Time-Varying Amplitude in Each Harmonic and Non-Flat Harmonic-MA-Coupled Baseline
Abstract
1. Introduction
2. Materials and Methods
2.1. Arterial Pulse Measurment Using a Microfluidic-Based Tactile Sensor
2.2. An Analytical Model of MA in a Measured Pulse Signal
2.3. TFA Algorithm of a Measured Pulse Signal Using the HVD Method
2.4. Calculation
3. Results
3.1. Calculated Pusle Signals with Pre-Defined MA
3.2. Measured Pulse Signals Pre-Exercise and 5 min Post-Exercise
4. Discussion
4.1. HVD Method, BD and TVSP, and TFA
4.1.1. Effectiveness of the HVD Method
4.1.2. BD and TVSP
- (1)
- TVSP causes the time-varying amplitude but has no effect on the frequency of each harmonic in a measured pulse signal;
- (2)
- The time-varying amplitude caused by TVSP decreases with the harmonic-order;
- (3)
- A measured pulse signal with no BD possesses a non-flat harmonic-MA-coupled baseline.
4.1.3. TFA Versus Time-Domain and Frequency-Domain Analysis
4.2. Implications for Measured Pulse Signals and Clinical Applications
4.3. Comparison with the Related Studies in the Literature
4.4. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BD | Baseline drift |
DOF | Degree-of-freedom |
TVSP | Time-varying system parameters |
MA | Motion artifacts |
FFT | Fast Fourier transform |
HVD | Hilbert vibration transform |
TFA | Time-frequency analysis |
References
- Mitchell, G.F.; Parise, H.; Benjamin, E.J.; Larson, M.G.; Keyes, M.J.; Vita, J.A.; Vasan, R.S.; Levy, D. Changes in Arterial Stiffness and Wave Reflection With Advancing Age in Healthy Men and Women. Hypertension 2004, 43, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Alastruey, J.; Charlton, P.H.; Bikia, V.; Paliakaite, B.; Hametner, B.; Bruno, R.M.; Mulder, M.P.; Vennin, S.; Piskin, S.; Khir, A.W.; et al. Arterial pulse wave modeling and analysis for vascular-age studies: A review from VascAgeNet. Am. J. Physiol. -Heart Circ. Physiol. 2023, 325, H1–H29. [Google Scholar] [CrossRef]
- Elgendi, M. On the Analysis of Fingertip Photoplethysmogram Signals. Curr. Cardiol. Rev. 2012, 8, 14–25. [Google Scholar] [CrossRef]
- Charlton, P.H.; Mariscal Harana, J.; Vennin, S.; Li, Y.; Chowienczyk, P.; Alastruey, J. Modeling arterial pulse waves in healthy aging: A database for in silico evaluation of hemodynamics and pulse wave indexes. Am. J. Physiol.-Heart Circ. Physiol. 2019, 317, H1062–H1085. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Sun, N.; Yao, Y.; Hao, L.; Xu, L.; Greenwald, S.E. Quantitative Comparison of the Performance of Piezoresistive, Piezoelectric, Acceleration, and Optical Pulse Wave Sensors. Front. Physiol. 2020, 10. [Google Scholar] [CrossRef]
- Wang, D.; Reynolds, L.; Alberts, T.; Vahala, L.; Hao, Z. Model-based analysis of arterial pulse signals for tracking changes in arterial wall parameters: A pilot study. Biomech. Model Mechanobiol. 2019, 18, 1629–1638. [Google Scholar] [CrossRef] [PubMed]
- Di Lascio, N.; Gemignani, V.; Bruno, R.M.; Bianchini, E.; Stea, F.; Ghiadoni, L.; Faita, F. Noninvasive Assessment of Carotid Pulse Pressure Values: An Accelerometric-Based Approach. IEEE Trans. Biomed. Eng. 2016, 63, 869–875. [Google Scholar] [CrossRef]
- Arathy, R.; Nabeel, P.M.; Abhidev, V.V.; Sivaprakasam, M.; Joseph, J. An Accelerometric Sensor System With Integrated Hydrostatic Pressure Correction to Assess Carotid Arterial Stiffness. IEEE Sens. J. 2021, 21, 11163–11175. [Google Scholar] [CrossRef]
- Pandey, R.K.; Chao, P.C.P. A Dual-Channel PPG Readout System With Motion-Tolerant Adaptability for OLED-OPD Sensors. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 36–51. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, H.; Jang, J.; Lee, J.; Minseo, K.; Jaehyuk, L.; Kim, H.; Yoo, S.; Yoo, H.-J. Sticker-Type Hybrid Photoplethysmogram Monitoring System Integrating CMOS IC With Organic Optical Sensors. IEEE J. Emerg. Sel. Top. Circuits Syst. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, D.; Reynolds, L. Post-exercise Response of Arterial Parameters for Arterial Health Assessment Using a Microfluidic Tactile Sensor and Vibration-Model-Based Analysis: A Proof-of-Concept Study. Cardiovasc. Eng. Technol. 2020, 11, 295–307. [Google Scholar] [CrossRef]
- Hao, Z. A 2-DOF Model of the Artery-Sensor System for Interpreting Variability in Measured Arterial Pulse Waveform. IEEE Sens. J. 2023, 23, 22668–22678. [Google Scholar] [CrossRef]
- Pollreisz, D.; Taherinejad, N. Detection and Removal of Motion Artifacts in PPG Signals. Mob. Netw. Appl. 2022, 27, 728–738. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, D.; Wang, K.; Li, N.; Wang, X. Baseline wander correction in pulse waveforms using wavelet-based cascaded adaptive filter. Comput. Biol. Med. 2007, 37, 716–731. [Google Scholar] [CrossRef]
- Kan, L.; Jianqing, L.; Jianfeng, W.; Gaozhi, X. A cascade filter for pulse wave baseline drift elimination. In Proceedings of the 2012 5th International Congress on Image and Signal Processing, Chongqing, China, 16–18 October 2012; pp. 1495–1499. [Google Scholar]
- Hao, Z. A Vibrating-String Model for Closed-Loop Wave Transmission and Reflection Between the Aorta and Periphery. J. Eng. Sci. Med. Diagn. Ther. 2023, 6, 1–42. [Google Scholar] [CrossRef]
- Reddy, J.N. An Introduction to the Finite Element Method, 3rd ed.; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- Wang, Z.; Ren, W.-X.; Chen, G. Time-frequency analysis and applications in time-varying/nonlinear structural systems: A state-of-the-art review. Adv. Struct. Eng. 2018, 21, 136943321775196. [Google Scholar] [CrossRef]
- Chon, K.H.; Dash, S.; Ju, K. Estimation of respiratory rate from photoplethysmogram data using time-frequency spectral estimation. IEEE Trans. Biomed. Eng. 2009, 56, 2054–2063. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H. Extraction of Respiration from PPG Signals Using Hilbert Vibration Decomposition. In Proceedings of the International Conference Bioscience, Biochemistry and Bioinformatics, New York, NY, USA, 7–9 January 2019; pp. 48–52. [Google Scholar]
- Feldman, M. Time-varying vibration decomposition and analysis based on the Hilbert transform. J. Sound Vib. 2006, 295, 518–530. [Google Scholar] [CrossRef]
- Cheng, P.; Gu, W.; Shen, J.; Ghosh, A.; Beskok, A.; Hao, Z. Performance study of a PDMS-based microfluidic device for the detection of continuous distributed static and dynamic loads. J. Micromech. Microeng. 2013, 23, 085007. [Google Scholar] [CrossRef]
- Wang, D.; Shen, J.; Mei, L.; Qian, S.; Li, J.; Hao, J. Performance Investigation of a Wearable Distributed-Deflection Sensor in Arterial Pulse Waveform Measurement. IEEE Sens. J. 2017, 17, 3994–4004. [Google Scholar] [CrossRef]
- Ramos, J.J.; Reyes, J.I.; Barocio, E. An improved Hilbert Vibration Decomposition method for analysis of low frequency oscillations. In Proceedings of the 2014 IEEE PES Transmission & Distribution Conference and Exposition—Latin America (PES T&D-LA), Medellin, Colombia, 10–13 September 2014; pp. 1–6. [Google Scholar]
- Vesala, G.T.; Srinivasarao, G.; Ghali, V.S.; Rama Sastry, D.V.A.; Naik, R.B. Non-Stationary Thermal Wave Mode Decomposition: A Comparative Study of EMD, HVD, and VMD for Defect Detection. Russ. J. Nondestruct. Test. 2022, 58, 521–535. [Google Scholar] [CrossRef]
- Feldman, M. Hilbert Transform Applications in Mechanical Vibration, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
Harmonics | Pre-Exercise | 5 min Post-Exercise | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
TR1 | TR3 | TR4 | TR5 | |||||||
FFT | TFA | FFT | TFA | FFT | TFA | FFT | TFA | FFT | TFA | |
1st | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2nd | 0.506 | 0.595 | 0.322 | 0.657 | 0.619 | 0.627 | 0.578 | 0.623 | 0.561 | 0.630 |
3rd | 0.244 | 0.415 | 0.196 | 0.238 | 0.186 | 0.220 | 0.168 | 0.218 | 0.165 | 0.225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Hasan, M.; Hao, Z. Motion Artifacts (MA) At-Rest in Measured Arterial Pulse Signals: Time-Varying Amplitude in Each Harmonic and Non-Flat Harmonic-MA-Coupled Baseline. Biosensors 2025, 15, 578. https://doi.org/10.3390/bios15090578
Rahman MM, Hasan M, Hao Z. Motion Artifacts (MA) At-Rest in Measured Arterial Pulse Signals: Time-Varying Amplitude in Each Harmonic and Non-Flat Harmonic-MA-Coupled Baseline. Biosensors. 2025; 15(9):578. https://doi.org/10.3390/bios15090578
Chicago/Turabian StyleRahman, MD Mahfuzur, Mamun Hasan, and Zhili Hao. 2025. "Motion Artifacts (MA) At-Rest in Measured Arterial Pulse Signals: Time-Varying Amplitude in Each Harmonic and Non-Flat Harmonic-MA-Coupled Baseline" Biosensors 15, no. 9: 578. https://doi.org/10.3390/bios15090578
APA StyleRahman, M. M., Hasan, M., & Hao, Z. (2025). Motion Artifacts (MA) At-Rest in Measured Arterial Pulse Signals: Time-Varying Amplitude in Each Harmonic and Non-Flat Harmonic-MA-Coupled Baseline. Biosensors, 15(9), 578. https://doi.org/10.3390/bios15090578