Advances in Simple, Rapid, and Contamination-Free Instantaneous Nucleic Acid Devices for Pathogen Detection
Abstract
:1. Introduction
2. Extraction-Free Rapid Nucleic Acid Testing
2.1. Thermal Cycling
2.1.1. Spatial-Domain-Based Thermal Cycling
2.1.2. Time-Domain-Based Thermal Cycling
2.2. Isothermal Amplification
3. Extraction, Amplification, and Detection Fully Automated, Fully Closed Detection
3.1. Microfluidic Chips
3.2. Cassettes
4. Commercial Nucleic Acid Testing Equipment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suarez, A.A.R.; Testoni, B.; Baumert, T.F.; Lupberger, J. Nucleic Acid-Induced Signaling in Chronic Viral Liver Disease. Front. Immunol. 2021, 11, 624034. [Google Scholar] [CrossRef]
- Ahmad Faris, A.N.; Ahmad Najib, M.; Mohd Nazri, M.N.; Hamzah, A.S.A.; Aziah, I.; Yusof, N.Y.; Mustafa, F.H. Colorimetric Approach for Nucleic Acid Salmonella spp. Detection: A Systematic Review. Int. J. Env. Res. Public Health 2022, 19, 10570. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Yang, X.; Wang, Y.; Guan, Q.; Fu, W.; Zhang, C.; Liu, Q.; An, W.; Zhao, Y.; Xing, W.; et al. A Novel Sample-to-Answer Visual Nucleic Acid Detection System for Adenovirus Detection. Microbiol. Spectr. 2023, 11, e0517022. [Google Scholar] [CrossRef] [PubMed]
- Batule, B.S.; Seok, Y.; Kim, M.-G. Paper-based nucleic acid testing system for simple and early diagnosis of mosquito-borne RNA viruses from human serum. Biosens. Bioelectron. 2019, 151, 111998. [Google Scholar] [CrossRef] [PubMed]
- Germaner, E.T.E.; Wassill, L.; Dichtl, K.; Roider, J.; Seybold, U. Rapid point of care testing for four bacterial sexually transmitted infections using the portable isothermal loop-mediated nucleic acid amplification eazyplex platform. Infection 2023, 14, 1–5. [Google Scholar] [CrossRef]
- Pujol, F.; Jaspe, R.C.; Loureiro, C.L.; Chemin, I. Hepatitis B virus American genotypes: Pathogenic variants? Clin. Res. Hepatol. Gastroenterol. 2020, 44, 825–835. [Google Scholar] [CrossRef]
- Mou, X.; Sheng, D.; Chen, Z.; Liu, M.; Liu, Y.; Deng, Y.; Xu, K.; Hou, R.; Zhao, J.; Zhu, Y.; et al. In-Situ Mutation Detection by Magnetic Beads-Probe Based on Single Base Extension and Its Application in Genotyping of Hepatitis B Virus Pre-C Region 1896nt Locus Single Nucleotide Polymorphisms. J. Biomed. Nanotechnol. 2019, 15, 2393–2400. [Google Scholar] [CrossRef]
- Fulkerson, H.L.; Nogalski, M.T.; Collins-McMillen, D.; Yurochko, A.D. Overview of Human Cytomegalovirus Pathogenesis. Methods Mol. Biol. 2021, 2244, 1–18. [Google Scholar] [CrossRef]
- Devnath, P.; Wajed, S.; Das, R.C.; Kar, S.; Islam, I.; Al Masud, H.M.A. The pathogenesis of Nipah virus: A review. Microb. Pathog. 2022, 170, 105693. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Pagliano, P.; Sellitto, C.; Conti, V.; Ascione, T.; Esposito, S. Characteristics of viral pneumonia in the COVID-19 era: An update. Infection 2021, 49, 607–616. [Google Scholar] [CrossRef]
- Xiao, Z.; Chen, H.; Chen, H.; Wu, L.; Yang, G.; Wu, Y.; He, N. Advanced Diagnostic Strategies for Clostridium difficile Infection (CDI). J. Biomed. Nanotechnol. 2019, 15, 1113–1134. [Google Scholar] [CrossRef]
- Chaguza, C.; Yang, M.; Jacques, L.C.; Bentley, S.D.; Kadioglu, A. Serotype 1 pneumococcus: Epidemiology, genomics, and disease mechanisms. Trends Microbiol. 2021, 30, 581–592. [Google Scholar] [CrossRef]
- Shen, M.; Zhou, Y.; Ye, J.; Al-Maskri, A.A.A.; Kang, Y.; Zeng, S.; Cai, S. Recent advances and perspectives of nucleic acid detection for coronavirus. J. Pharm. Anal. 2020, 10, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Jin, B.; Fang, Y.; Deng, Y.; Chen, Z.; Chen, H.; Li, S.; Chow, F.W.-N.; Leung, P.H.; Wang, H.; et al. Selected aptamer specially combing 5-8F cells based on automatic screening instrument. Chin. Chem. Lett. 2022, 33, 4208–4212. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, Y.; He, N.; Deng, Y.; Jin, L. Discussion of the protein characterization techniques used in the identification of membrane protein targets corresponding to tumor cell aptamers. Chin. Chem. Lett. 2020, 32, 40–47. [Google Scholar] [CrossRef]
- Peeling, R.W.; Olliaro, P.L.; Boeras, D.I.; Fongwen, N. Scaling up COVID-19 rapid antigen tests: Promises and challenges. Lancet Infect. Dis. 2021, 21, e290–e295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, L.; Wang, Y.; Liu, J.; Tan, G.; Huang, F.; He, N.; Lu, Z. A novel therapeutic vaccine based on graphene oxide nanocomposite for tumor immunotherapy. Chin. Chem. Lett. 2022, 33, 4089–4095. [Google Scholar] [CrossRef]
- Zhao, H.; Su, E.; Huang, L.; Zai, Y.; Liu, Y.; Chen, Z.; Li, S.; Jin, L.; Deng, Y.; He, N. Washing-free chemiluminescence immunoassay for rapid detection of cardiac troponin I in whole blood samples. Chin. Chem. Lett. 2021, 33, 743–746. [Google Scholar] [CrossRef]
- Gill, D.; Ponsford, M.J. Testing for antibodies to SARS-CoV-2. BMJ 2020, 371, m4288. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Huang, R.; Xiao, P.; Liu, Y.; Jin, L.; Liu, H.; Li, S.; Deng, Y.; Chen, Z.; Li, Z.; et al. Current signal amplification strategies in aptamer-based electrochemical biosensor: A review. Chin. Chem. Lett. 2021, 32, 1593–1602. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, G.; Li, T.; Deng, Y.; Chen, Z.; He, N. Selection of a DNA aptamer for the development of fluorescent aptasensor for carbaryl detection. Chin. Chem. Lett. 2021, 32, 1957–1962. [Google Scholar] [CrossRef]
- Liu, Y.; Li, T.; Yang, G.; Deng, Y.; Mou, X.; He, N. A simple AuNPs-based colorimetric aptasensor for chlorpyrifos detection. Chin. Chem. Lett. 2022, 33, 1913–1916. [Google Scholar] [CrossRef]
- Chen, H.; Ma, X.; Zhang, X.; Hu, G.; Deng, Y.; Li, S.; Jiang, Z. Novel aerosol detection platform for SARS-CoV-2: Based on specific magnetic nanoparticles adsorption sampling and digital droplet PCR detection. Chin. Chem. Lett. 2023, 34, 107701. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; He, Z.; Chen, Z.; Chen, F.; Wang, C.; Zhou, W.; Liu, J.; Liu, H.; Shi, R. Inhibition of Th17 cells by donepezil ameliorates experimental lung fibrosis and pulmonary hypertension. Theranostics 2023, 13, 1826–1842. [Google Scholar] [CrossRef]
- Liu, M.; Xi, L.; Tan, T.; Jin, L.; Wang, Z.; He, N. A novel aptamer-based histochemistry assay for specific diagnosis of clinical breast cancer tissues. Chin. Chem. Lett. 2020, 32, 1726–1730. [Google Scholar] [CrossRef]
- Liu, D.-N.; Wu, H.-P.; Zhou, G.-H. Research progress of visual detection in rapid on-site detection of pathogen nucleic acid. Hereditas 2023, 45, 306–323. [Google Scholar]
- Wang, J.; Jiang, H.; Pan, L.; Gu, X.; Xiao, C.; Liu, P.; Tang, Y.; Fang, J.; Li, X.; Lu, C. Rapid on-site nucleic acid testing: On-chip sample preparation, amplification, and detection, and their integration into all-in-one systems. Front. Bioeng. Biotechnol. 2023, 11, 1020430. [Google Scholar] [CrossRef]
- Watson, C.; Senyo, S. All-in-one automated microfluidics control system. Hardwarex 2019, 5, e00063. [Google Scholar] [CrossRef]
- Chen, H.; Wu, Y.; Chen, Z.; He, N. Full-Automated Thermal Cycler in Nucleic Acid Testing Workstation. J. Nanosci. Nanotechnol. 2017, 17, 568–572. [Google Scholar] [CrossRef]
- Ruggiero, V.J.; Benitez, O.J.; Tsai, Y.-L.; Lee, P.-Y.A.; Tsai, C.-F.; Lin, Y.-C.; Chang, H.-F.G.; Wang, H.-T.T.; Bartlett, P. On-site detection of bovine leukemia virus by a field-deployable automatic nucleic extraction plus insulated isothermal polymerase chain reaction system. J. Virol. Methods 2018, 259, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Nishijima, R.; Endo, T.; Gankhuyag, E.; Khin, S.T.M.M.; Jafar, S.M.; Shinohara, Y.; Tanaka, Y.; Sawakami, K.; Yohda, M.; Furuya, T. Detection of anti-feline infectious peritonitis virus activity of a Chinese herb extract using geneLEAD VIII, a fully automated nucleic acid extraction/quantitative PCR testing system. J. Vet. Med. Sci. 2023, 85, 443–446. [Google Scholar] [CrossRef]
- Jin, B.; Ma, B.; Li, J.; Hong, Y.; Zhang, M. Simultaneous Detection of Five Foodborne Pathogens Using a Mini Automatic Nucleic Acid Extractor Combined with Recombinase Polymerase Amplification and Lateral Flow Immunoassay. Microorganisms 2022, 10, 1352. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, S.; Imamura, Y.; Matsuura, T. A thermal cycler-based, homogenization-free plant total nucleic acid extraction method for plant viruses and viroids assay. J. Virol. Methods 2023, 313, 114666. [Google Scholar] [CrossRef]
- Li, S.X.; Shen, J.J.; Cao, P.J.; Li, Z.C. Application of Automatic Nucleic Acid Extractor Combined with Vacuum Concentrator in Forensic Science. Fa Yi Xue Za Zhi 2021, 37, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Mullegama, S.V.; Alberti, M.O.; Au, C.; Li, Y.; Toy, T.; Tomasian, V.; Xian, R.R. Nucleic Acid Extraction from Human Biological Samples. Methods Mol. Biol. 2018, 1897, 359–383. [Google Scholar] [CrossRef]
- Deraney, R.N.; Schneider, L.; Tripathi, A. Synergistic use of electroosmotic flow and magnetic forces for nucleic acid extraction. Analyst 2020, 145, 2412–2419. [Google Scholar] [CrossRef]
- Ali, Z.; Wang, J.; Mou, X.; Tang, Y.; Li, T.; Liang, W.; Shah, M.A.A.; Ahmad, R.; Li, Z.; He, N. Integration of Nucleic Acid Extraction Protocol with Automated Extractor for Multiplex Viral Detection. J. Nanosci. Nanotechnol. 2017, 17, 862–870. [Google Scholar] [CrossRef]
- Branch, D.W.; Vreeland, E.C.; McClain, J.L.; Murton, J.K.; James, C.D.; Achyuthan, K.E. Rapid Nucleic Acid Extraction and Purification Using a Miniature Ultrasonic Technique. Micromachines 2017, 8, 228. [Google Scholar] [CrossRef] [Green Version]
- Pauly, M.D.; Kamili, S.; Hayden, T.M. Impact of nucleic acid extraction platforms on hepatitis virus genome detection. J. Virol. Methods 2019, 273, 113715. [Google Scholar] [CrossRef]
- Tong, R.; Zhang, L.; Hu, C.; Chen, X.; Song, Q.; Lou, K.; Tang, X.; Chen, Y.; Gong, X.; Gao, Y.; et al. An Automated and Miniaturized Rotating-Disk Device for Rapid Nucleic Acid Extraction. Micromachines 2019, 10, 204. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Shen, X.; Duan, X. A portable nucleic acid extraction system based on gigahertz acoustic tweezers. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2020, 2020, 6147–6150. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.; Park, J.; Seong, H.; Lee, H.; Choi, W.; Noh, J.; Kim, W.; Shin, S. Rapid Extraction of Viral Nucleic Acids Using Rotating Blade Lysis and Magnetic Beads. Diagnostics 2022, 12, 1995. [Google Scholar] [CrossRef] [PubMed]
- Korthase, C.; Elnagar, A.; Beer, M.; Hoffmann, B. Easy Express Extraction (TripleE)—A Universal, Electricity-Free Nucleic Acid Extraction System for the Lab and the Pen. Microorganisms 2022, 10, 1074. [Google Scholar] [CrossRef] [PubMed]
- Faggioli, F.; Luigi, M. Multiplex RT-PCR. Methods Mol. Biol. 2022, 2316, 163–179. [Google Scholar]
- Mayboroda, O.; Katakis, I.; O’Sullivan, C.K. Multiplexed isothermal nucleic acid amplification. Anal. Biochem. 2018, 545, 20–30. [Google Scholar] [CrossRef]
- Moon, J.; Song, J.; Jang, H.; Kang, H.; Huh, Y.-M.; Son, H.Y.; Rho, H.W.; Park, M.; Talwar, C.S.; Park, K.-H.; et al. Ligation-free isothermal nucleic acid amplification. Biosens. Bioelectron. 2022, 209, 114256. [Google Scholar] [CrossRef]
- Mao, R.; Qi, L.; Li, J.; Sun, M.; Wang, Z.; Du, Y. Competitive annealing mediated isothermal amplification of nucleic acids. Analyst 2017, 143, 639–642. [Google Scholar] [CrossRef]
- Mao, R.; Qi, L.; Wang, Z.; Liu, H.; Du, Y. Helix loop-mediated isothermal amplification of nucleic acids. RSC Adv. 2018, 8, 19098–19102. [Google Scholar] [CrossRef]
- Tabata, M.; Miyahara, Y. Liquid biopsy in combination with solid-state electrochemical sensors and nucleic acid amplification. J. Mater. Chem. B 2019, 7, 6655–6669. [Google Scholar] [CrossRef]
- Asadi, R.; Mollasalehi, H. The mechanism and improvements to the isothermal amplification of nucleic acids, at a glance. Anal. Biochem. 2021, 631, 114260. [Google Scholar] [CrossRef]
- Nakano, M.; Inaba, M.; Suehiro, J. Rapid and low-cost amplicon visualization for nucleic acid amplification tests using magnetic microbeads. Analyst 2021, 146, 2818–2824. [Google Scholar] [CrossRef]
- Gulinaizhaer, A.; Zou, M.; Ma, S.; Yao, Y.; Fan, X.; Wu, G. Isothermal nucleic acid amplification technology in HIV detection. Analyst 2023, 148, 1189–1208. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-C.; Lin, C.-B.; Chien, S.-T.; Wang, J.-Y.; Lin, C.-J.; Feng, J.-Y.; Lee, C.-H.; Shu, C.-C.; Yu, M.-C.; Lee, J.-J.; et al. Performance of Nucleic Acid Amplification Tests in Patients with Presumptive Pulmonary Tuberculosis in Taiwan. Infect. Dis. Ther. 2022, 11, 871–885. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, L.; Hsieh, K.; Wang, T.-H. Ratiometric Fluorescence Coding for Multiplex Nucleic Acid Amplification Testing. Anal. Chem. 2018, 90, 12180–12186. [Google Scholar] [CrossRef]
- Péré, H.; Podglajen, I.; Baillard, J.L.; Bouassa RS, M.; Veyer, D.; Bélec, L. Thermal inactivation and nucleic acid amplification-based testing for SARS-CoV-2. J. Clin. Virol. 2020, 131, 104588. [Google Scholar] [CrossRef] [PubMed]
- Gorgannezhad, L.; Stratton, H.; Nguyen, N.-T. Microfluidic-Based Nucleic Acid Amplification Systems in Microbiology. Micromachines 2019, 10, 408. [Google Scholar] [CrossRef] [Green Version]
- Kaye, O.E.; Cook, P. Determination of a Beckman Coulter AU turbidometric method-specific caeruloplasmin reference interval. Ann. Clin. Biochem. Int. J. Biochem. Lab. Med. 2021, 58, 244–246. [Google Scholar] [CrossRef] [PubMed]
- Verding, P.; Deferme, W.; Steffen, W. Velocity and size measurement of droplets from an ultrasonic spray coater using photon correlation spectroscopy and turbidimetry. Appl. Opt. 2020, 59, 7496. [Google Scholar] [CrossRef]
- Alanio, A.; Gits-Muselli, M.; Guigue, N.; Denis, B.; Bergeron, A.; Touratier, S.; Hamane, S.; Bretagne, S. Prospective comparison of (1,3)-beta-D-glucan detection using colorimetric and turbidimetric assays for diagnosing invasive fungal disease. Med. Mycol. 2021, 59, 882–889. [Google Scholar] [CrossRef]
- Kim, R.H.; Brinster, N.K. Practical Direct Immunofluorescence. Am. J. Dermatopathol. 2020, 42, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, X.; Wang, Y.; Chen, K.; Wang, F.; Weng, X.; Zhou, X. One-pot fluorescent assay for sensitive detection of APOBEC3A activity. RSC Chem. Biol. 2021, 2, 1201–1205. [Google Scholar] [CrossRef] [PubMed]
- Obino, D.; Vassalli, M.; Franceschi, A.; Alessandrini, A.; Facci, P.; Viti, F. An Overview on Microfluidic Systems for Nucleic Acids Extraction from Human Raw Samples. Sensors 2021, 21, 3058. [Google Scholar] [CrossRef]
- Ouyang, W.; Han, J. One-Step Nucleic Acid Purification and Noise-Resistant Polymerase Chain Reaction by Electrokinetic Concentration for Ultralow-Abundance Nucleic Acid Detection. Angew. Chem. Int. Ed. 2020, 59, 10981–10988. [Google Scholar] [CrossRef]
- Komiazyk, M.; Walory, J.; Kozinska, A.; Wasko, I.; Baraniak, A. Impact of the nucleic acid extraction method and the RT-qpcr assay on SARS-COV-2 detection in low-viral samples. Diagnostics 2021, 11, 2247. [Google Scholar] [CrossRef]
- Pearlman, S.I.; Leelawong, M.; Richardson, K.A.; Adams, N.M.; Russ, P.K.; Pask, M.E.; Wolfe, A.E.; Wessely, C.; Haselton, F.R. Low-Resource Nucleic Acid Extraction Method Enabled by High-Gradient Magnetic Separation. ACS Appl. Mater. Interfaces 2020, 12, 12457–12467. [Google Scholar] [CrossRef] [Green Version]
- Baksh, S.; Volodko, N.; Soucie, M.; Geier, S.B.; Diep, A.; Rozak, K.; Chan, T.Y.; Mustapha, J.; Lai, R.; Estey, M.; et al. Extractionless nucleic acid detection: A high capacity solution to COVID-19 testing. Diagn. Microbiol. Infect. Dis. 2021, 101, 115458. [Google Scholar] [CrossRef]
- Ma, L.; Fan, Y.; Kong, X.; Jiang, Y.; Huang, H.; Zhao, M.; Cao, Y. Fast and Sensitive Detection of SARS-CoV-2 Nucleic Acid Using a Rapid Detection System Free of RNA Extraction. Int. J. Anal. Chem. 2023, 2023, 8053524. [Google Scholar] [CrossRef]
- Silva, L.M.; Riani, L.R.; Silvério, M.S.; Pereira-Júnior, O.D.S.; Pittella, F. Comparison of Rapid Nucleic Acid Extraction Methods for SARS-CoV-2 Detection by RT-qPCR. Diagnostics 2022, 12, 601. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Song, Q.; Zhang, B.; Gao, Y.; Lou, K.; Liu, Y.; Wen, W. A Rapid Digital PCR System with a Pressurized Thermal Cycler. Micromachines 2021, 12, 1562. [Google Scholar] [CrossRef]
- Wee, S.K.; Sivalingam, S.P.; Yap, E.P.H. Rapid Direct Nucleic Acid Amplification Test without RNA Extraction for SARS-CoV-2 Using a Portable PCR Thermocycler. Genes 2020, 11, 664. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Lim, J.; Kim, M.-Y.; Yeom, J.; Cho, H.; Lee, H.; Shin, Y.-B.; Lee, J.-H. Portable low-power thermal cycler with dual thin-film Pt heaters for a polymeric PCR chip. Biomed. Microdevices 2018, 20, 14. [Google Scholar] [CrossRef] [PubMed]
- Yanase, S.; Sasahara, H.; Nabetani, M.; Yamazawa, K.; Aoyagi, K.; Mita, A.; Chiba, Y. Quantitative Real-Time RT-PCR Systems to Detect SARS-CoV-2. Methods Mol. Biol. 2022, 2511, 89–97. [Google Scholar]
- Owen, S.I.; Williams, C.T.; Garrod, G.; Fraser, A.J.; Menzies, S.; Baldwin, L.; Adams, E.R. Twelve lateral flow immunoassays (LFAs) to detect SARS-CoV-2 antibodies. J. Infect. 2022, 84, 355–360. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, S.; Han, J.; Kim, J.H.; Park, K.S. Equipment-free, salt-mediated immobilization of nucleic acids for nucleic acid lateral flow assays. Sens. Actuators B Chem. 2021, 351, 130975. [Google Scholar] [CrossRef]
- Derin, D.C.; Gültekin, E.; Taşkın, I.İ.; Yakupoğulları, Y. Development of nucleic acid based lateral flow assays for SARS-CoV-2 detection. J. Biosci. Bioeng. 2023, 135, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, L.; Kaliyaperumal, K. Screening for cervical cancer using visual inspection after acetic acid in a rural and semiurban population in South India. Indian. J. Community Med. 2022, 47, 304. [Google Scholar] [CrossRef]
- Zhang, M.; Ye, J.; He, J.-S.; Zhang, F.; Ping, J.; Qian, C.; Wu, J. Visual detection for nucleic acid-based techniques as potential on-site detection methods. A review. Anal. Chim. Acta 2020, 1099, 1–15. [Google Scholar] [CrossRef]
- Park, J.S.; Hsieh, K.; Chen, L.; Kaushik, A.; Trick, A.Y.; Wang, T.H. Digital CRISPR/Cas-Assisted Assay for Rapid and Sensitive Detection of SARS-CoV-2. Adv. Sci. 2021, 8, 2003564. [Google Scholar] [CrossRef]
- Xie, S.; Tao, D.; Fu, Y.; Xu, B.; Tang, Y.; Steinaa, L.; Hemmink, J.D.; Pan, W.; Huang, X.; Nie, X.; et al. Rapid Visual CRISPR Assay: A Naked-Eye Colorimetric Detection Method for Nucleic Acids Based on CRISPR/Cas12a and a Convolutional Neural Network. ACS Synth. Biol. 2021, 11, 383–396. [Google Scholar] [CrossRef]
- Ackerman, C.M.; Myhrvold, C.; Thakku, S.G.; Freije, C.A.; Metsky, H.C.; Yang, D.K.; Ye, S.H.; Boehm, C.K.; Kosoko-Thoroddsen, T.-S.F.; Kehe, J.; et al. Massively multiplexed nucleic acid detection with Cas13. Nature 2020, 582, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, S.; Supraja, P.; Mohanty, S.; Sai, V.M.; Agrawal, T.; Chowdary, C.G.; Singh, S.G. Artificial Intelligence-Based Portable Bioelectronics Platform for SARS-CoV-2 Diagnosis with Multi-nucleotide Probe Assay for Clinical Decisions. Anal. Chem. 2021, 93, 14955–14965. [Google Scholar] [CrossRef]
- Guo, J.; Ge, J.; Guo, Y. Recent advances in methods for the diagnosis of Corona Virus Disease. J. Clin. Lab. Anal. 2021, 36, e24178. [Google Scholar] [CrossRef]
- Hussain, M.; Liu, X.; Zou, J.; Yang, J.; Ali, Z.; Rehman, H.U.; He, N.; Dai, J.; Tang, Y. On-chip classification of micro-particles using laser light scattering and machine learning. Chin. Chem. Lett. 2022, 33, 1885–1888. [Google Scholar] [CrossRef]
- Walsh, D.P.; Ma, T.F.; Ip, H.S.; Zhu, J. Artificial intelligence and avian influenza: Using machine learning to enhance active surveillance for avian influenza viruses. Transbound. Emerg. Dis. 2019, 66, 2537–2545. [Google Scholar] [CrossRef] [PubMed]
- Karunakaran, V.; Joseph, M.M.; Yadev, I.; Sharma, H.; Shamna, K.; Saurav, S.; Sreejith, R.P.; Anand, V.; Beegum, R.; David, S.R.; et al. A non-invasive ultrasensitive diagnostic approach for COVID-19 infection using salivary label-free SERS fingerprinting and artificial intelligence. J. Photochem. Photobiol. B Biol. 2022, 234, 112545. [Google Scholar] [CrossRef] [PubMed]
- Kokabi, M.; Sui, J.; Gandotra, N.; Khamseh, A.P.; Scharfe, C.; Javanmard, M. Nucleic Acid Quantification by Multi-Frequency Impedance Cytometry and Machine Learning. Biosensors 2023, 13, 316. [Google Scholar] [CrossRef] [PubMed]
- Trick, A.Y.; Chen, F.E.; Chen, L.; Lee, P.W.; Hasnain, A.C.; Mostafa, H.H.; Wang, T.H. Point-of-Care Platform for Rapid Multiplexed Detection of SARS-CoV-2 Variants and Respiratory Pathogens. Adv. Mater. Technol. 2022, 7, 2101013. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Bui, H.K.; Phan, V.M.; Seo, T.S. An internet of things-based point-of-care device for direct reverse-transcription-loop mediated isothermal amplification to identify SARS-CoV-2. Biosens. Bioelectron. 2022, 195, 113655. [Google Scholar] [CrossRef]
- Delgado-Diaz, D.J.; Sakthivel, D.; Nguyen, H.H.; Farrokzhad, K.; Hopper, W.; Narh, C.A.; Richards, J.S. Strategies That Facilitate Extraction-Free SARS-CoV-2 Nucleic Acid Amplification Tests. Viruses 2022, 14, 1311. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, S.; Chen, Y.; Qian, C.; Liu, Y.; Shen, H.; Wang, Z.; Ping, J.; Wu, J.; Zhang, Y.; et al. Progress in molecular detection with high-speed nucleic acids thermocyclers. J. Pharm. Biomed. Anal. 2020, 190, 113489. [Google Scholar] [CrossRef]
- Huang, P.; Jin, H.; Zhao, Y.; Li, E.; Yan, F.; Chi, H.; Wang, H. Nucleic acid visualization assay for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) by targeting the UpE and N gene. PLoS Negl. Trop. Dis. 2021, 15, e0009227. [Google Scholar] [CrossRef]
- Xu, C.; Wang, H.; Jin, H.; Feng, N.; Zheng, X.; Cao, Z.; Li, L.; Wang, J.; Yan, F.; Wang, L.; et al. Visual detection of Ebola virus using reverse transcription loop-mediated isothermal amplification combined with nucleic acid strip detection. Arch. Virol. 2016, 161, 1125–1133. [Google Scholar] [CrossRef]
- Wang, R.; Qian, C.; Pang, Y.; Li, M.; Yang, Y.; Ma, H.; Zhao, M.; Qian, F.; Yu, H.; Liu, Z.; et al. opvCRISPR: One-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection. Biosens. Bioelectron. 2020, 172, 112766. [Google Scholar] [CrossRef]
- Liu, T.; Choi, G.; Tang, Z.; Kshirsagar, A.; Politza, A.J.; Guan, W. Fingerpick Blood-Based Nucleic Acid Testing on A USB Interfaced Device towards HIV self-testing. Biosens. Bioelectron. 2022, 209, 114255. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.G.; Zhu, M.J.; He, R.; Shi, D.R.; Luo, R.; Ji, J.; Yao, H.P. Development of a multi-recombinase polymerase amplification assay for rapid identification of COVID-19, influenza A and B. J. Med. Virol. 2023, 95, e28139. [Google Scholar] [CrossRef]
- Jankelow, A.M.; Lee, H.; Wang, W.; Hoang, T.-H.; Bacon, A.; Sun, F.; Chae, S.; Kindratenko, V.; Koprowski, K.; Stavins, R.A.; et al. Smartphone clip-on instrument and microfluidic processor for rapid sample-to-answer detection of Zika virus in whole blood using spatial RT-LAMP. Analyst 2022, 147, 3838–3853. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, Y.; Zhou, J.; Li, M.; Chen, Y.; Liu, Y.; Liu, H.; Ding, P.; Liang, C.; Zhu, X.; et al. Rapid Visual Detection of Hepatitis C Virus Using Reverse Transcription Recombinase-Aided Amplification–Lateral Flow Dipstick. Front. Cell. Infect. Microbiol. 2022, 12, 816238. [Google Scholar] [CrossRef]
- Cui, W.Y.; Yoo, H.J.; Li, Y.G.; Baek, C.; Min, J. Facile and foldable point-of-care biochip for nucleic acid based-colorimetric detection of murine norovirus in fecal samples using G-quadruplex and graphene oxide coated microbeads. Biosens. Bioelectron. 2022, 199, 113878. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Ji, S.; Dong, Q.; Wang, J.; Han, D.; Gao, Z. Amplification-free detection of HBV DNA mediated by CRISPR-Cas12a using surface-enhanced Raman spectroscopy. Anal. Chim. Acta 2023, 1245, 340864. [Google Scholar] [CrossRef]
- Lang, A.L.S.; McNeil, S.A.; Hatchette, T.F.; Elsherif, M.; Martin, I.; Leblanc, J.J. Detection and prediction of Streptococcus pneumoniae serotypes directly from nasopharyngeal swabs using PCR. J. Med. Microbiol. 2015, 64, 836–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trieu, P.T.; Lee, N.Y. Paper-Based All-in-One Origami Microdevice for Nucleic Acid Amplification Testing for Rapid Colorimetric Identification of Live Cells for Point-of-Care Testing. Anal. Chem. 2019, 91, 11013–11022. [Google Scholar] [CrossRef] [PubMed]
- Nouwairi, R.L.; Cunha, L.L.; Turiello, R.; Scott, O.; Hickey, J.; Thompson, S.; Knowles, S.; Chapman, J.D.; Landers, J.P. Ultra-rapid real-time microfluidic RT-PCR instrument for nucleic acid analysis. Lab Chip 2022, 22, 3424–3435. [Google Scholar] [CrossRef]
- Choi, G.; Guan, W. Sample-to-Answer Microfluidic Nucleic Acid Testing (NAT) on Lab-on-a-Disc for Malaria Detection at Point of Need. Methods Mol. Biol. 2021, 2393, 297–313. [Google Scholar] [CrossRef]
- An, Y.-Q.; Huang, S.-L.; Xi, B.-C.; Gong, X.-L.; Ji, J.-H.; Hu, Y.; Ding, Y.-J.; Zhang, D.-X.; Ge, S.-X.; Zhang, J.; et al. Ultrafast Microfluidic PCR Thermocycler for Nucleic Acid Amplification. Micromachines 2023, 14, 658. [Google Scholar] [CrossRef]
- Salman, A.; Carney, H.; Bateson, S.; Ali, Z. Shunting microfluidic PCR device for rapid bacterial detection. Talanta 2019, 207, 120303. [Google Scholar] [CrossRef]
- Dong, X.; Liu, L.; Tu, Y.; Zhang, J.; Miao, G.; Zhang, L.; Ge, S.; Xia, N.; Yu, D.; Qiu, X. Rapid PCR powered by microfluidics: A quick review under the background of COVID-19 pandemic. Trends Anal. Chem. 2021, 143, 116377. [Google Scholar] [CrossRef]
- Jiang, Y.; Manz, A.; Wu, W. Fully automatic integrated continuous-flow digital PCR device for absolute DNA quantification. Anal. Chim. Acta 2020, 1125, 50–56. [Google Scholar] [CrossRef]
- Zhang, J.; Su, X.; Xu, J.; Wang, J.; Zeng, J.; Li, C.; Xia, N. A point of care platform based on microfluidic chip for nucleic acid extraction in less than 1 minute. Biomicrofluidics 2019, 13, 034102. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Gao, Z.; Sekine, S.; You, Q.; Zhuang, S.; Zhang, D.; Feng, S.; Yamaguchi, Y. Lower fluidic resistance of double-layer droplet continuous flow PCR microfluidic chip for rapid detection of bacteria. Anal. Chim. Acta 2023, 1251, 340995. [Google Scholar] [CrossRef]
- Yang, B.; Wang, P.; Li, Z.; Tao, C.; You, Q.; Sekine, S.; Zhuang, S.; Zhang, D.; Yamaguchi, Y. A continuous flow PCR array microfluidic chip applied for simultaneous amplification of target genes of periodontal pathogens. Lab Chip 2021, 22, 733–737. [Google Scholar] [CrossRef]
- Nikdoost, A.; Doostmohammadi, A.; Romanick, K.; Thomas, M.; Rezai, P. Integration of microfluidic sample preparation with PCR detection to investigate the effects of simultaneous DNA-Inhibitor separation and DNA solution exchange. Anal. Chim. Acta 2021, 1160, 338449. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.B.; Goyal, S.; Dhar, A.; Sriram, D.; Goel, S. Miniaturized and IoT Enabled Continuous-Flow-Based Microfluidic PCR Device for DNA Amplification. IEEE Trans. NanoBiosci. 2021, 21, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, J.; Wang, P.; Tao, C.; Zheng, L.; Sekine, S.; Zhuang, S.; Zhang, D.; Yamaguchi, Y. Multiplex amplification of target genes of periodontal pathogens in continuous flow PCR microfluidic chip. Lab Chip 2021, 21, 3159–3164. [Google Scholar] [CrossRef] [PubMed]
- Miao, G.; Zhang, L.; Zhang, J.; Ge, S.; Xia, N.; Qian, S.; Yu, D.; Qiu, X. Free convective PCR: From principle study to commercial applications—A critical review. Anal. Chim. Acta 2020, 1108, 177–197. [Google Scholar] [CrossRef]
- Zhuo, Z.; Wang, J.; Chen, W.; Su, X.; Chen, M.; Fang, M.; He, S.; Zhang, S.; Ge, S.; Zhang, J.; et al. A Rapid On-Site Assay for the Detection of Influenza A by Capillary Convective PCR. Mol. Diagn. Ther. 2018, 22, 225–234. [Google Scholar] [CrossRef]
- Hsieh, Y.-F.; Lee, D.-S.; Chen, P.-H.; Liao, S.-K.; Yeh, S.-H.; Chen, P.-J.; Yang, A.-S. A real-time convective PCR machine in a capillary tube instrumented with a CCD-based fluorometer. Sens. Actuators B Chem. 2013, 183, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Song, K.-Y.; Hwang, H.J.; Kim, J.H.; Hwang, I. Development of fast and sensitive protocols for the detection of viral pathogens using a small portable convection PCR platform. Mol. Biol. Rep. 2019, 46, 5073–5077. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Chen, Z.; Wang, J.; Lu, X.; Si, J.; Xia, N. A novel point-of-care test of respiratory syncytial viral RNA based on cellulose-based purification and convective PCR. Clin. Chim. Acta 2020, 511, 154–159. [Google Scholar] [CrossRef]
- Chen, J.-J.; Lin, Z.-H. Fabrication of an Oscillating Thermocycler to Analyze the Canine Distemper Virus by Utilizing Reverse Transcription Polymerase Chain Reaction. Micromachines 2022, 13, 600. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Sekine, S.; Xi, H.; Amano, A.; Zhang, D.; Yamaguchi, Y. Design and fabrication of portable continuous flow PCR microfluidic chip for DNA replication. Biomed. Microdevices 2019, 22, 5. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ju, R.; Sekine, S.; Zhang, D.; Zhuang, S.; Yamaguchi, Y. All-in-one microfluidic device for on-site diagnosis of pathogens based on an integrated continuous flow PCR and electrophoresis biochip. Lab Chip 2019, 19, 2663–2668. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Shi, B.; Li, B.; Wu, W. A Novel Self-Activated Mechanism for Stable Liquid Transportation Capable of Continuous-Flow and Real-time Microfluidic PCRs. Micromachines 2019, 10, 350. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Qi, W.; Wang, L.; Lin, J.; Liu, Y. Magnetic Bead Chain-Based Continuous-Flow DNA Extraction for Microfluidic PCR Detection of Salmonella. Micromachines 2021, 12, 384. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Liao, X.-J.; Chang, W.; Chiou, C.-C. Ultrafast DNA Amplification Using Microchannel Flow-Through PCR Device. Biosensors 2022, 12, 303. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Li, Y.; Wu, D.; Wu, W. A handheld continuous-flow real-time fluorescence qPCR system with a PVC microreactor. Analyst 2020, 145, 2767–2773. [Google Scholar] [CrossRef] [PubMed]
- Khodakov, D.; Li, J.; Zhang, J.X.; Zhang, D.Y. Highly multiplexed rapid DNA detection with single-nucleotide specificity via convective PCR in a portable device. Nat. Biomed. Eng. 2021, 5, 702–712. [Google Scholar] [CrossRef]
- Rajendran, V.K.; Bakthavathsalam, P.; Bergquist, P.L.; Sunna, A. A portable nucleic acid detection system using natural convection combined with a smartphone. Biosens. Bioelectron. 2019, 134, 68–75. [Google Scholar] [CrossRef]
- Chou, W.P.; Chen, P.H.; Miao, J.M.; Kuo, L.S.; Yeh, S.H.; Chen, P.J.; Marciniak, J.Y.; Kummel, A.C.; Esener, S.C.; Heller, M.J.; et al. Rapid DNA amplification in a capillary tube by natural convection with a single isothermal heater. Biotechniques 2011, 50, 52–57. [Google Scholar] [CrossRef]
- Xu, D.; Jiang, X.; Zou, T.; Miao, G.; Fu, Q.; Xiang, F.; Feng, L.; Ye, X.; Zhang, L.; Qiu, X. A microfluidic system for rapid nucleic acid analysis based on real-time convective PCR at point-of-care testing. Microfluid. Nanofluidics 2022, 26, 69. [Google Scholar] [CrossRef]
- Kopparthy, V.L.; Crews, N.D. A versatile oscillating-flow microfluidic PCR system utilizing a thermal gradient for nucleic acid analysis. Biotechnol. Bioeng. 2020, 117, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Choi, S.J.; Park, B.H.; Choi, Y.K.; Seo, T.S. Ultrafast Rotary PCR system for multiple influenza viral RNA detection. Lab Chip 2012, 12, 1598–1600. [Google Scholar] [CrossRef]
- Bartsch, M.; Edwards, H.S.; Lee, D.; Moseley, C.E.; Tew, K.E.; Renzi, R.F.; Van De Vreugde, J.L.; Kim, H.; Knight, D.L.; Sinha, A.; et al. The Rotary Zone Thermal Cycler: A Low-Power System Enabling Automated Rapid PCR. PLoS ONE 2015, 10, e0118182. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Miao, B.; Li, Z.; Sun, Z.; Peng, N. Sample-to-Answer Hepatitis B Virus DNA Detection from Whole Blood on a Centrifugal Microfluidic Platform with Double Rotation Axes. ACS Sens. 2019, 4, 2738–2745. [Google Scholar] [CrossRef] [PubMed]
- Takahara, H.; Matsushita, H.; Inui, E.; Ochiai, M.; Hashimoto, M. Convenient microfluidic cartridge for single-molecule droplet PCR using common laboratory equipment. Anal. Methods 2021, 13, 974–985. [Google Scholar] [CrossRef]
- Lee, S.H.; Song, J.; Cho, B.; Hong, S.; Hoxha, O.; Kang, T.; Kim, D.; Lee, L.P. Bubble-free rapid microfluidic PCR. Biosens. Bioelectron. 2019, 126, 725–733. [Google Scholar] [CrossRef]
- Xu, G.; Si, H.; Jing, F.; Sun, P.; Zhao, D.; Wu, D. A Double-Deck Self-Digitization Microfluidic Chip for Digital PCR. Micromachines 2020, 11, 1025. [Google Scholar] [CrossRef] [PubMed]
- Nasser, G.A.; El-Bab, A.M.F.; Abdel-Mawgood, A.L.; Mohamed, H.; Saleh, A.M. CO2 Laser Fabrication of PMMA Microfluidic Double T-Junction Device with Modified Inlet-Angle for Cost-Effective PCR Application. Micromachines 2019, 10, 678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, B.-J.; Kim, J.; Kim, J.-A.; Jang, H.; Seo, S.; Lee, W. PDMS-Parylene Hybrid, Flexible Microfluidics for Real-Time Modulation of 3D Helical Inertial Microfluidics. Micromachines 2018, 9, 255. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Chu, X.; Zhao, C.; Wang, N.; Yu, J.; Jin, Y.; Sun, L.; Ma, S. A Glass–Ultra-Thin PDMS Film–Glass Microfluidic Device for Digital PCR Application Based on Flexible Mold Peel-Off Process. Micromachines 2022, 13, 1667. [Google Scholar] [CrossRef] [PubMed]
- Rein, C.; Toner, M.; Sevenler, D. Rapid prototyping for high-pressure microfluidics. Sci. Rep. 2023, 13, 1232. [Google Scholar] [CrossRef]
- Warden, A.R.; Liu, W.; Chen, H.; Ding, X. Portable Infrared Isothermal PCR Platform for Multiple Sexually Transmitted Diseases Strand Detection. Anal. Chem. 2018, 90, 11760–11763. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Gallegos, R.A.; Rios, A.; Garcia-Cordero, J.L. An Affordable and Portable Thermocycler for Real-Time PCR Made of 3D-Printed Parts and Off-the-Shelf Electronics. Anal. Chem. 2018, 90, 5563–5568. [Google Scholar] [CrossRef]
- Mase, A.; Kogi, Y.; Maruyama, T.; Tokuzawa, T.; Sakai, F.; Kunugita, M.; Koike, T.; Hasegawa, H. Non-contact and real-time measurement of heart rate and heart rate variability using microwave reflectometry. Rev. Sci. Instrum. 2020, 91, 014704. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Mauk, M.G.; Chen, D.; Liu, C.; Bau, H.H. A large volume, portable, real-time PCR reactor. Lab Chip 2010, 10, 3170–3177. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Xu, B.; Fu, R.; Li, D. Real Time PCR on Disposable PDMS Chip with a Miniaturized Thermal Cycler. Biomed. Microdevices 2005, 7, 273–279. [Google Scholar] [CrossRef]
- Neuzil, P. Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes. Nucleic Acids Res. 2006, 34, e77. [Google Scholar] [CrossRef]
- Lim, J.; Jeong, S.; Kim, M.; Lee, J.-H. Battery-operated portable PCR system with enhanced stability of Pt RTD. PLoS ONE 2019, 14, e0218571. [Google Scholar] [CrossRef]
- Prakash, R.; Pabbaraju, K.; Wong, S.; Wong, A.; Tellier, R.; Kaler, K.V.I.S. Droplet Microfluidic Chip Based Nucleic Acid Amplification and Real-Time Detection of Influenza Viruses. J. Electrochem. Soc. 2013, 161, B3083–B3093. [Google Scholar] [CrossRef]
- Roper, M.G.; Easley, C.J.; Legendre, L.A.; Humphrey, J.A.C.; Landers, J.P. Infrared Temperature Control System for a Completely Noncontact Polymerase Chain Reaction in Microfluidic Chips. Anal. Chem. 2007, 79, 1294–1300. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Duarte, G.R.; Poe, B.L.; Riehl, P.S.; dos Santos, F.M.; Martin-Didonet, C.C.; Carrilho, E.; Landers, J.P. A disposable laser print-cut-laminate polyester microchip for multiplexed PCR via infra-red-mediated thermal control. Anal. Chim. Acta 2015, 901, 59–67. [Google Scholar] [CrossRef]
- Tanaka, Y.; Slyadnev, M.N.; Hibara, A.; Tokeshi, M.; Kitamori, T. Non-contact photothermal control of enzyme reactions on a microchip by using a compact diode laser. J. Chromatogr. A 2000, 894, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Easley, C.J.; Legendre, L.A.; Roper, M.G.; Wavering, T.A.; Ferrance, J.P.; Landers, J.P. Extrinsic Fabry−Perot Interferometry for Noncontact Temperature Control of Nanoliter-Volume Enzymatic Reactions in Glass Microchips. Anal. Chem. 2005, 77, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Slyadnev, M.N.; Tanaka, Y.; Tokeshi, M.; Kitamori, T. Photothermal Temperature Control of a Chemical Reaction on a Microchip Using an Infrared Diode Laser. Anal. Chem. 2001, 73, 4037–4044. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Warden, A.; Sun, J.; Shen, G.; Ding, X. Simultaneous detection of multiple HPV DNA via bottom-well microfluidic chip within an infra-red PCR platform. Biomicrofluidics 2018, 12, 024109. [Google Scholar] [CrossRef] [PubMed]
- Fermér, C.; Nilsson, P.; Larhed, M. Microwave-assisted high-speed PCR. Eur. J. Pharm. Sci. 2003, 18, 129–132. [Google Scholar] [CrossRef]
- Yoshimura, T.; Suzuki, T.; Mineki, S.; Ohuchi, S. Controlled Microwave Heating Accelerates Rolling Circle Amplification. PLoS ONE 2015, 10, e0136532. [Google Scholar] [CrossRef] [Green Version]
- Parker, H.E.; Sengupta, S.; Harish, A.V.; Soares, R.R.; Joensson, H.N.; Margulis, W.; Laurell, F. A Lab-in-a-Fiber optofluidic device using droplet microfluidics and laser-induced fluorescence for virus detection. Sci. Rep. 2022, 12, 3539. [Google Scholar] [CrossRef]
- Ko, J.; Yoo, J.-C. Non-Contact Temperature Control System Applicable to Polymerase Chain Reaction on a Lab-on-a-Disc. Sensors 2019, 19, 2621. [Google Scholar] [CrossRef] [Green Version]
- Seo, M.-J.; Yoo, J.-C. Fully Automated Lab-On-A-Disc Platform for Loop-Mediated Isothermal Amplification Using Micro-Carbon-Activated Cell Lysis. Sensors 2020, 20, 4746. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, X.; Yang, M. Methods for enrichment and nucleic acid detection of SARS-CoV-2 in sewage. Zhonghua Yu Fang Yi Xue Za Zhi 2022, 56, 891–896. [Google Scholar]
- Lai, X.; Lu, B.; Zhang, P.; Zhang, X.; Pu, Z.; Yu, H.; Li, D. Sticker Microfluidics: A Method for Fabrication of Customized Monolithic Microfluidics. ACS Biomater. Sci. Eng. 2019, 5, 6801–6810. [Google Scholar] [CrossRef]
- Ding, X.; Yin, K.; Li, Z.; Lalla, R.V.; Ballesteros, E.; Sfeir, M.M.; Liu, C. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nat. Commun. 2020, 11, 4711. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Li, S.; Wei, C.; Dai, S.; Liang, X.; Li, J. A Cost-Effective Nucleic Acid Detection System Using a Portable Microscopic Device. Micromachines 2022, 13, 869. [Google Scholar] [CrossRef] [PubMed]
- Semenov, K.; Taraskin, A.; Yurchenko, A.; Baranovskaya, I.; Purvinsh, L.; Gyulikhandanova, N.; Vasin, A. Uncertainty Estimation for Quantitative Agarose Gel Electrophoresis of Nucleic Acids. Sensors 2023, 23, 1999. [Google Scholar] [CrossRef]
- Sharma, V.; Mohan, V. Detection of DNA Double-Strand Breaks Using Pulsed-Field Gel Electrophoresis. Methods Mol. Biol. 2019, 2031, 301–311. [Google Scholar] [CrossRef]
- Yamada, T.; Murakami, H.; Ohta, K. Pulsed-Field Gel Electrophoresis for Detecting Chromosomal DNA Breakage in Fission Yeast. Methods Mol. Biol. 2020, 2119, 135–143. [Google Scholar] [CrossRef]
- Sato, R.; Tomioka, Y.; Sakuma, C.; Nakagawa, M.; Kurosawa, Y.; Shiba, K.; Akuta, T. Detection of concentration-dependent conformational changes in SARS-CoV-2 nucleoprotein by agarose native gel electrophoresis. Anal. Biochem. 2023, 662, 114995. [Google Scholar] [CrossRef]
- Ammanath, G.; Yeasmin, S.; Srinivasulu, Y.; Vats, M.; Cheema, J.A.; Nabilah, F.; Srivastava, R.; Yildiz, U.H.; Alagappan, P.; Liedberg, B. Flow-through colorimetric assay for detection of nucleic acids in plasma. Anal. Chim. Acta 2019, 1066, 102–111. [Google Scholar] [CrossRef]
- He, M.; Xu, X.; Wang, H.; Wu, Q.; Zhang, L.; Zhou, D.; Liu, H. Nanozyme-Based Colorimetric SARS-CoV-2 Nucleic Acid Detection by Naked Eye. Small 2023, 19, e2208167. [Google Scholar] [CrossRef]
- Sheikh, H.K.; Arshad, T.; Habib, U.; Mohammad, Z.S.; Siddiqui MU, A.; Hassan, M. Colorimetric chromophoric rapid detection of SARS-CoV-2 through breath analysis. Pak. J. Pharm. Sci. 2022, 35, 157–160. [Google Scholar]
- Wei, S.; Su, Z.; Bu, X.; Shi, X.; Pang, B.; Zhang, L.; Li, J.; Zhao, C. On-site colorimetric detection of Salmonella typhimurium. Npj Sci. Food 2022, 6, 48. [Google Scholar] [CrossRef]
- Wang, D.; Yu, J.; Wang, Y.; Zhang, M.; Li, P.; Liu, M.; Liu, Y. Development of a real-time loop-mediated isothermal amplification (LAMP) assay and visual LAMP assay for detection of African swine fever virus (ASFV). J. Virol. Methods 2019, 276, 113775. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, K.; He, Z.; Luo, X.; Qin, Z.; Tan, Y.; Zheng, X.; Wu, Z.; Deng, Y.; Chen, H.; et al. Development and evaluation of a thermostatic nucleic acid testing device based on magnesium pyrophosphate precipitation for detecting Enterocytozoon hepatopenaei. Chin. Chem. Lett. 2022, 33, 4053–4056. [Google Scholar] [CrossRef]
- Gong, S.; Zhang, S.; Wang, X.; Li, J.; Pan, W.; Li, N.; Tang, B. Strand Displacement Amplification Assisted CRISPR-Cas12a Strategy for Colorimetric Analysis of Viral Nucleic Acid. Anal. Chem. 2021, 93, 15216–15223. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Kim, H.; Kim, H.Y.; Park, K.S.; Park, H.G. Fluorescent S1 nuclease assay utilizing exponential strand displacement amplification. Analyst 2019, 144, 3364–3368. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Y.; Li, Y.; Zhao, H.; Zhang, S.; Zhang, Y.; Kang, X. An integrated rapid nucleic acid detection assay based on recombinant polymerase amplification for SARS-CoV-2. Virol. Sin. 2022, 37, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Wang, S.; Wang, L.; Lv, C.; Li, Y.; Feng, T.; Qin, Z.; Xu, J. Laboratory Evaluation of a Basic Recombinase Polymerase Amplification (RPA) Assay for Early Detection of Schistosoma japonicum. Pathogens 2022, 11, 319. [Google Scholar] [CrossRef] [PubMed]
- Lacharoje, S.; Techangamsuwan, S.; Chaichanawongsaroj, N. Rapid characterization of feline leukemia virus infective stages by a novel nested recombinase polymerase amplification (RPA) and reverse transcriptase-RPA. Sci. Rep. 2021, 11, 22023. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Wang, D.; Zhang, Y.; Wu, D.; Cui, J.; Gan, M.; Liu, P. Portable Paper-Based Nucleic Acid Enrichment for Field Testing. Adv. Sci. 2023, 10, e2205217. [Google Scholar] [CrossRef]
- Bialy, R.M.; Mainguy, A.; Li, Y.; Brennan, J.D. Functional nucleic acid biosensors utilizing rolling circle amplification. Chem. Soc. Rev. 2022, 51, 9009–9067. [Google Scholar] [CrossRef]
- Ju, Y.; Kim, H.Y.; Ahn, J.K.; Park, H.G. Ultrasensitive version of nucleic acid sequence-based amplification (NASBA) utilizing a nicking and extension chain reaction system. Nanoscale 2021, 13, 10785–10791. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, H.; Wang, Y.; Su, X.; Jin, L.; Wu, Y.; Deng, Y.; Li, S.; Chen, Z.; Chen, H.; et al. Fast and Accurate Control Strategy for Portable Nucleic Acid Detection (PNAD) System Based on Magnetic Nanoparticles. J. Biomed. Nanotechnol. 2021, 17, 407–415. [Google Scholar] [CrossRef]
- Huang, E.; Wang, Y.; Yang, N.; Shu, B.; Zhang, G.; Liu, D. A fully automated microfluidic PCR-array system for rapid detection of multiple respiratory tract infection pathogens. Anal. Bioanal. Chem. 2021, 413, 1787–1798. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Ji, Y.; Wang, A.; Tang, J.; Liu, S.; Zhang, X.; Xu, L.; He, Y. Correction: An integrated nucleic acid detection method based on a microfluidic chip for collection and culture of rice false smut spores. Lab Chip 2022, 23, 203. [Google Scholar] [CrossRef]
- Huang, L.; Su, E.; Liu, Y.; He, N.; Deng, Y.; Jin, L.; Li, S. A microfluidic device for accurate detection of hs-cTnI. Chin. Chem. Lett. 2021, 32, 1555–1558. [Google Scholar] [CrossRef]
- Xu, X.; He, N. Application of adaptive pressure-driven microfluidic chip in thyroid function measurement. Chin. Chem. Lett. 2021, 32, 1747–1750. [Google Scholar] [CrossRef]
- Choi, G.; Prince, T.; Miao, J.; Cui, L.; Guan, W. Sample-to-answer palm-sized nucleic acid testing device towards low-cost malaria mass screening. Biosens. Bioelectron. 2018, 115, 83–90. [Google Scholar] [CrossRef]
- Homann, A.R.; Niebling, L.; Zehnle, S.; Beutler, M.; Delamotte, L.; Rothmund, M.-C.; Czurratis, D.; Beller, K.-D.; Zengerle, R.; Hoffmann, H.; et al. A microfluidic cartridge for fast and accurate diagnosis of Mycobacterium tuberculosis infections on standard laboratory equipment. Lab Chip 2021, 21, 1540–1548. [Google Scholar] [CrossRef] [PubMed]
- Kshirsagar, A.; Choi, G.; Santosh, V.; Harvey, T.; Bernhards, R.C.; Guan, W. Handheld Purification-Free Nucleic Acid Testing Device for Point-of-Need Detection of Malaria from Whole Blood. ACS Sens. 2023, 8, 673–683. [Google Scholar] [CrossRef]
- Liu, W.; Das, J.; Mepham, A.H.; Nemr, C.R.; Sargent, E.H.; Kelley, S.O. A fully-integrated and automated testing device for PCR-free viral nucleic acid detection in whole blood. Lab Chip 2018, 18, 1928–1935. [Google Scholar] [CrossRef]
- Woolf, M.S.; Dignan, L.; Lewis, H.M.; Tomley, C.J.; Nauman, A.Q.; Landers, J.P. Optically-controlled closable microvalves for polymeric centrifugal microfluidic devices. Lab Chip 2020, 20, 1426–1440. [Google Scholar] [CrossRef] [PubMed]
- Bußmann, A.; Thalhofer, T.; Hoffmann, S.; Daum, L.; Surendran, N.; Hayden, O.; Hubbuch, J.; Richter, M. Microfluidic Cell Transport with Piezoelectric Micro Diaphragm Pumps. Micromachines 2021, 12, 1459. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.J.; Lee, J.H.; Jeong, O.C. Pneumatically Driven Microfluidic Platform for Micro-Particle Concentration. J. Vis. Exp. 2022, 180, e63301. [Google Scholar]
- Xu, Y.; Wang, T.; Chen, Z.; Jin, L.; Wu, Z.; Yan, J.; Zhao, X.; Cai, L.; Deng, Y.; Guo, Y.; et al. The point-of-care-testing of nucleic acids by chip, cartridge and paper sensors. Chin. Chem. Lett. 2021, 32, 3675–3686. [Google Scholar] [CrossRef]
- Li, X.; Zhao, X.; Yang, W.; Xu, F.; Chen, B.; Peng, J.; Huang, J.; Mi, S. Stretch-driven microfluidic chip for nucleic acid detection. Biotechnol. Bioeng. 2021, 118, 3559–3568. [Google Scholar] [CrossRef]
- Li, W.; Sheng, W.; Wegener, E.; Du, Y.; Li, B.; Zhang, T.; Jordan, R. Capillary Microfluidic-Assisted Surface Structuring. ACS Macro Lett. 2020, 9, 328–333. [Google Scholar] [CrossRef]
- Tian, F.; Liu, C.; Deng, J.; Han, Z.; Zhang, L.; Chen, Q.; Sun, J. A fully automated centrifugal microfluidic system for sample-to-answer viral nucleic acid testing. Sci. China Chem. 2020, 63, 1498–1506. [Google Scholar] [CrossRef]
- Wu, X.; Pan, J.; Zhu, X.; Hong, C.; Hu, A.; Zhu, C.; Liu, Y.; Yang, K.; Zhu, L. MS2 device: Smartphone-facilitated mobile nucleic acid analysis on microfluidic device. Analyst 2021, 146, 3823–3833. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Z.; Liu, L.; Zhang, T.; Hu, L.; Hu, C.; Chen, H.; Ding, R.; Liu, B.; Chen, C. Ultrafast Nucleic Acid Detection Equipment with Silicon-Based Microfluidic Chip. Biosensors 2023, 13, 234. [Google Scholar] [CrossRef]
- Tsai, Y.-S.; Wang, C.-H.; Tsai, H.-P.; Shan, Y.-S.; Lee, G.-B. Electromagnetically-driven integrated microfluidic platform using reverse transcription loop-mediated isothermal amplification for detection of severe acute respiratory syndrome coronavirus. Anal. Chim. Acta 2022, 1219, 340036. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ding, X.; Yin, K.; Avery, L.; Ballesteros, E.; Liu, C. Instrument-free, CRISPR-based diagnostics of SARS-CoV-2 using self-contained microfluidic system. Biosens. Bioelectron. 2022, 199, 113865. [Google Scholar] [CrossRef] [PubMed]
- Malic, L.; Brassard, D.; Da Fonte, D.; Nassif, C.; Mounier, M.; Ponton, A.; Veres, T. Automated sample-to-answer centrifugal microfluidic system for rapid molecular diagnostics of SARS-CoV-2. Lab Chip 2022, 22, 3157–3171. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Shen, M.; Liu, J.; Zhang, L.; Wang, H.; Xu, Y.; Cheng, J. Multiplexed detection of respiratory pathogens with a portable analyzer in a “raw-sample-in and answer-out” manner. Microsyst. Nanoeng. 2021, 7, 94. [Google Scholar] [CrossRef]
- Lin, H.; Yu, W.; Sabet, K.A.; Bogumil, M.; Zhao, Y.; Hambalek, J.; Lin, S.; Chandrasekaran, S.; Garner, O.; Di Carlo, D.; et al. Ferrobotic swarms enable accessible and adaptable automated viral testing. Nature 2022, 611, 570–577. [Google Scholar] [CrossRef]
- Jhou, Y.-R.; Wang, C.-H.; Tsai, H.-P.; Shan, Y.-S.; Lee, G.-B. An integrated microfluidic platform featuring real-time reverse transcription loop-mediated isothermal amplification for detection of COVID-19. Sens. Actuators B Chem. 2022, 358, 131447. [Google Scholar] [CrossRef]
- Ganguli, A.; Mostafa, A.; Berger, J.; Aydin, M.Y.; Sun, F.; Ramirez, S.A.S.D.; Bashir, R. Rapid Isothermal Amplification and Portable Detection System for SARS-CoV-2. bioRxiv 2020. [Google Scholar] [CrossRef]
- Li, S.; Liu, H.; Deng, Y.; Lin, L.; He, N. Development of a Magnetic Nanoparticles Microarray for Simultaneous and Simple Detection of Foodborne Pathogens. J. Biomed. Nanotechnol. 2013, 9, 1254–1260. [Google Scholar] [CrossRef]
- Ling, Y.; Zhu, Y.; Fan, H.; Zha, H.; Yang, M.; Wu, L.; Chen, H.; Li, W.; Wu, Y.; Chen, H. Rapid Method for Detection of Staphylococcus aureus in Feces. J. Biomed. Nanotechnol. 2019, 15, 1290–1298. [Google Scholar] [CrossRef]
- Liu, S.; He, X.; Zhang, T.; Zhao, K.; Xiao, C.; Tong, Z.; Jin, L.; He, N.; Deng, Y.; Li, S.; et al. Highly sensitive smartphone-based detection of Listeria monocytogenes using SYTO9. Chin. Chem. Lett. 2021, 33, 1933–1935. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Zhang, Y.; Dai, L.; Li, L.; Liu, J.; Kang, X. Development of an automatic integrated gene detection system for novel severe acute respiratory syndrome-related coronavirus (SARS-CoV2). Emerg. Microbes Infect. 2020, 9, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Vinayaka, A.C.; Linh, Q.T.; Andreasen, S.Z.; Golabi, M.; Bang, D.D.; Wolff, A. PATHPOD—A loop-mediated isothermal amplification (LAMP)-based point-of-care system for rapid clinical detection of SARS-CoV-2 in hospitals in Denmark. Sens. Actuators B Chem. 2023, 392, 134085. [Google Scholar] [CrossRef]
- Yang, J.; Kidd, M.; Nordquist, A.R.; Smith, S.D.; Hurth, C.; Modlin, I.M.; Zenhausern, F. A Sensitive, Portable Microfluidic Device for SARS-CoV-2 Detection from Self-Collected Saliva. Infect. Dis. Rep. 2021, 13, 1061–1077. [Google Scholar] [CrossRef] [PubMed]
- Miao, G.; Guo, M.; Li, K.; Ye, X.; Mauk, M.G.; Ge, S.; Xia, N.; Yu, D.; Qiu, X. An Integrated, Real-Time Convective PCR System for Isolation, Amplification, and Detection of Nucleic Acids. Chemosensors 2022, 10, 271. [Google Scholar] [CrossRef]
- Yoo, H.J.; Baek, C.; Lee, M.-H.; Min, J. Integrated microsystems for the in situ genetic detection of dengue virus in whole blood using direct sample preparation and isothermal amplification. Analyst 2020, 145, 2405–2411. [Google Scholar] [CrossRef]
- Hu, S.; Jie, Y.; Jin, K.; Zhang, Y.; Guo, T.; Huang, Q.; Mei, Q.; Ma, F.; Ma, H. All-in-One Digital Microfluidics System for Molecular Diagnosis with Loop-Mediated Isothermal Amplification. Biosensors 2022, 12, 324. [Google Scholar] [CrossRef]
- Yi, J.; Han, X.; Wang, Z.; Chen, Y.; Xu, Y.; Wu, J. Analytical Performance Evaluation of Three Commercial Rapid Nucleic Acid Assays for SARS-CoV-2. Infect. Drug Resist. 2021, 14, 3169–3174. [Google Scholar] [CrossRef]
- Boujnan, M.; Duits, A.J.; Koppelman, M.H. Zika virus RNA polymerase chain reaction on the utility channel of a commercial nucleic acid testing system. Transfusion 2018, 58, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Rashed, M.Z.; Kopechek, J.A.; Priddy, M.C.; Hamorsky, K.T.; Palmer, K.E.; Mittal, N.; Williams, S.J. Rapid detection of SARS-CoV-2 antibodies using electrochemical impedance-based detector. Biosens. Bioelectron. 2021, 171, 112709. [Google Scholar] [CrossRef]
- Wang, J.; Dextre, A.; Pascual-Garrigos, A.; Davidson, J.L.; Maruthamuthu, M.K.; McChesney, D.; Verma, M.S. Fabrication of a paper-based colorimetric molecular test for SARS-CoV-2. MethodsX 2021, 8, 101586. [Google Scholar] [CrossRef]
- Dawkins, M.P.; Bishop, L.D.; Walker, P.M.; Otmaskin, D.B.; Ying, J.M.; Schmidt, R.M.; Harnett, G.; Abraham, T.; Gaydos, C.A.M.; Schoolnik, G.; et al. Clinical Integration of a Highly Accurate Polymerase Chain Reaction Point-of-Care Test Can Inform Immediate Treatment Decisions for Chlamydia, Gonorrhea, and Trichomonas. Sex. Transm. Dis. 2021, 49, 262–267. [Google Scholar] [CrossRef]
- Addeo, A.; Shah, P.K.; Bordry, N.; Hudson, R.D.; Albracht, B.; Di Marco, M.; Shah, D.P. Immunogenicity of SARS-CoV-2 messenger RNA vaccines in patients with cancer. Cancer Cell 2021, 39, 1091–1098.e2. [Google Scholar] [CrossRef]
- Conte, J.; Ruddy, A.; Domonoski, L.; Shanahan, A.; Daley, N.; McDevitt, C.; Roca, G. Recovery of DNA from SERATEC® mmunochromatographic PSA and saliva test strips. J. Forensic Sci. 2022, 67, 1176–1183. [Google Scholar] [CrossRef]
- Cichońska, A.; Ravikumar, B.; Allaway, R.J.; Wan, F.; Park, S.; Isayev, O.; Li, S.; Mason, M.; Lamb, A.; Tanoli, Z.; et al. Crowdsourced mapping of unexplored target space of kinase inhibitors. Nat. Commun. 2021, 12, 3307. [Google Scholar] [CrossRef] [PubMed]
- DeMuri, G.; Wald, E.R. Detection of Group A Streptococcus in the Saliva of Children Presenting with Pharyngitis Using the cobas Liat PCR System. Clin. Pediatr. 2020, 59, 856–858. [Google Scholar] [CrossRef]
- Faria MG BF, D.; Andrade RL, D.P.; Camillo AJ, G.; Leite KF, D.S.; Saita, N.M.; Bollela, V.R.; Monroe, A.A. Effectiveness of GeneXpert® in the diagnosis of tuberculosis in people living with HIV/AIDS. Rev. Saude Publica 2021, 55, 89. [Google Scholar]
- Tansarli, G.; Chapin, K. Diagnostic test accuracy of the BioFire® FilmArray® meningitis/encephalitis panel: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2019, 26, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Han, M.; Xu, S.; Yan, K.; Nigal, G.; Zhang, T.; Song, B. Paper-based microfluidic chip for rapid detection of SARS-CoV-2 N protein. Bioengineered 2022, 13, 876–883. [Google Scholar] [CrossRef]
Pathogens | Genetic Material | Principle of Detection | Detection Time(min) | Detection Method | Authenticity of the Sample | References |
---|---|---|---|---|---|---|
MERS | RNA | RT-RPA | >30 | Immunochromatography | Simulated samples | [92] |
EBOV | RNA | RT-LAMP | 40 | Immunochromatography | Simulated samples | [93] |
SARS-CoV-2 | RNA | RT-LAMP-CRISPR | 45 | Fluorescence detection | Clinical samples | [94] |
HIV | RNA | RT-LAMP | 60 | Fluorescence detection | Simulated samples | [95] |
H1N1 | RNA | RPA | Amplification time of 25 | Fluorescence detection | Clinical samples | [96] |
ZIKV | RNA | RT-LAMP | 32 | Fluorescence detection | Simulated samples | [97] |
HCV | RNA | RT-RAA | 30 | Immunochromatography | Clinical samples | [98] |
NV | RNA | Biosensing | 30 | Colorimetric detection | Simulated samples | [99] |
HBV | DNA | CRISPR/Cas12a | 50 | Raman scattering | Simulated samples | [100] |
Pneumococcus | DNA | RT-PCR | 45 | Electrophoretic detection | Clinical samples | [101] |
Salmonella | DNA | LAMP | 40 | Colorimetric detection | Simulated samples | [102] |
Classification | Temperature(°C) | Number of Primers | Number of Enzymes | Advantages | Disadvantages |
---|---|---|---|---|---|
LAMP | 60–65 | 4–6 | 1 | Short reaction time, higher specificity | Primer complexity |
RPA | 30–42 | 4 | 3 | Rapid reaction time, 5–30 min to reach detection level | Long primers and probes |
RCA | 37 | 1 or more | 1 | High efficiency, single molecule detection levels can be achieved | Requires circular DNA template |
SDA | 37 | 4 | 2 | High amplification efficiency, short reaction time, high specificity, no special equipment required | Heterogeneous products |
CPA | 63 | 5–6 | 1 | Fewer enzymes involved, high sensitivity and specificity | Primers are more complex |
HAD | 37 | 2 | 2 | Simple primers | Suitable for amplifying short sequences |
NASBA | 42 | 2 | 3 | Reverse transcription is incorporated into the amplification, reducing reaction time | Reaction components are more complex |
Company | Time (min) | Amplification Method | Study Content | Automation |
---|---|---|---|---|
Visby Medical Inc. | ≥30 | Continuous flow PCR | for detection of neocoronavirus | Fully automated |
Mesa Biotech | ≥30 | Asymmetric PCR | for detection of neocoronavirus | Fully automated |
Beijing Zhongke Biotech | ≥40 | PCR | for detection of neocoronavirus | Fully automated |
MicroGEM US Inc. | ≥27 | PCR | for detection of neocoronavirus | Fully automated |
Detect, Inc. | ≥60 | RT-LAMP | for detection of neocoronavirus | Fully automated |
Tsinghua University | ≥30 | data ITA | for detection of neocoronavirus | Fully automated |
Hong Kong Polytechnic University | 25–40 | RT-LAMP | for detection of neocoronavirus | Fully automated |
Atas Genetics io | 30 | Asymmetric PCR | for STI detection | Fully automated |
GeneXpert | targets/60 min | PCR | for routine infectious diseases | Fully automated |
Filmarray | 24 targets/60 min | Nested PCR + multiplex PCR | for early stage sexually transmitted diseases | Fully automated |
Cobas Liat PCR system | 1 target/20 min | PCR | for influenza virus | Fully automated |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, C.; Zhou, Z.; Si, J.; Li, S.; Zeng, Y.; Deng, Y.; Chen, Z. Advances in Simple, Rapid, and Contamination-Free Instantaneous Nucleic Acid Devices for Pathogen Detection. Biosensors 2023, 13, 732. https://doi.org/10.3390/bios13070732
Wang Y, Wang C, Zhou Z, Si J, Li S, Zeng Y, Deng Y, Chen Z. Advances in Simple, Rapid, and Contamination-Free Instantaneous Nucleic Acid Devices for Pathogen Detection. Biosensors. 2023; 13(7):732. https://doi.org/10.3390/bios13070732
Chicago/Turabian StyleWang, Yue, Chengming Wang, Zepeng Zhou, Jiajia Si, Song Li, Yezhan Zeng, Yan Deng, and Zhu Chen. 2023. "Advances in Simple, Rapid, and Contamination-Free Instantaneous Nucleic Acid Devices for Pathogen Detection" Biosensors 13, no. 7: 732. https://doi.org/10.3390/bios13070732
APA StyleWang, Y., Wang, C., Zhou, Z., Si, J., Li, S., Zeng, Y., Deng, Y., & Chen, Z. (2023). Advances in Simple, Rapid, and Contamination-Free Instantaneous Nucleic Acid Devices for Pathogen Detection. Biosensors, 13(7), 732. https://doi.org/10.3390/bios13070732