Application of Electrochemical Biosensors for Determination of Food Spoilage
Abstract
:1. Introduction
2. Biosensors
2.1. Voltammetry
2.2. Amperometry
2.3. Conductometry
2.4. Electrochemical Impedance Spectroscopy
3. Monitoring of Spoilage in Meat, Fish, and Their Products
3.1. Enzyme-Based Biosensors for Histamine, Putrescine, and Tyramine
3.2. Enzyme-Based Biosensors for Xanthine
3.3. Enzyme-Based Biosensors for Volatile Nitrogen Compounds (Ammonia, Trimethylamine, and Dimethylamine)
3.4. Immunosensors Based on Enzyme Labelling
3.5. Selective Determination of Bacteria with Sensors
4. Milk and Dairy Products
4.1. Enzyme-Based Biosensors for Lactate Determination
4.2. Enzyme-Based Biosensors for Biogenic Amines
4.3. Selective Determination of Bacteria with Sensors in Dairy Products
5. Monitoring of Spoilage in Alcoholic and Non-Alcoholic Beverages
5.1. Enzyme-Based Sensors for Alcoholic and Non-Alcoholic Beverages
5.2. Selective Determination of Bacteria with Sensors in Alcoholic and Non-Alcoholic Beverages
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Motarjemi, Y.; Stadler, R.H.; Studer, A.; Damiano, V. Application of the Haccp Approach for the Management Of Processing Contaminants. In Process-Induced Food Toxicants; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2008; pp. 563–620. ISBN 978-0-470-43010-1. [Google Scholar]
- Pinu, F.R. Early Detection of Food Pathogens and Food Spoilage Microorganisms: Application of Metabolomics. Trends Food Sci. Technol. 2016, 54, 213–215. [Google Scholar] [CrossRef]
- Käferstein, F.; Abdussalam, M. Food Safety in the 21st Century. Bull. World Health Organ. 1999, 77, 347–351. [Google Scholar] [PubMed]
- Mishra, G.K.; Barfidokht, A.; Tehrani, F.; Mishra, R.K. Food Safety Analysis Using Electrochemical Biosensors. Foods 2018, 7, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thevenot, D.R.; Tóth, K.; Durst, R.A.; Wilson, G.S. Electrochemical Biosensors: Recommended Definitions and Classification. Pure Appl. Chem. 1999, 71, 2333–2348. [Google Scholar] [CrossRef] [Green Version]
- Scheller, F.W.; Wollenberger, U.; Warsinke, A.; Lisdat, F. Research and Development in Biosensors. Curr. Opin. Biotechnol. 2001, 12, 35–40. [Google Scholar] [CrossRef]
- Clark, L.C., Jr.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Silman, I.H.; Katchalski, E. Water-Insoluble Derivatives of Enzymes, Antigens, and Antibodies. Annu. Rev. Biochem. 1966, 35, 873–908. [Google Scholar] [CrossRef]
- Updike, S.J.; Hicks, G.P. The Enzyme Electrode. Nature 1967, 214, 986–988. [Google Scholar] [CrossRef]
- Morales, M.A.; Mark Halpern, J. Guide to Selecting a Biorecognition Element for Biosensors. Bioconjug. Chem. 2018, 29, 3231–3239. [Google Scholar] [CrossRef]
- Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Panjwani, M.; Singh, S.; Ahuja, C.; Selvaraj, S.K.; et al. Recent Progress and Growth in Biosensors Technology: A Critical Review. J. Ind. Eng. Chem. 2022, 109, 21–51. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Guo, C.; Zhang, X.; Wang, Y.; Lv, L.; Wang, X.; Wei, M. A Pattern-Free Paper Enzyme Biosensor for One-Step Detection of Fish Freshness Indicator Hypoxanthine with a Microfluidic Aggregation Effect. Food Chem. 2023, 405, 134811. [Google Scholar] [CrossRef]
- Peng, L.; Li, P.; Chen, J.; Deng, A.; Li, J. Recent Progress in Assembly Strategies of Nanomaterials-Based Ultrasensitive Electrochemiluminescence Biosensors for Food Safety and Disease Diagnosis. Talanta 2023, 253, 123906. [Google Scholar] [CrossRef]
- Pebdeni, A.B.; Roshani, A.; Mirsadoughi, E.; Behzadifar, S.; Hosseini, M. Recent Advances in Optical Biosensors for Specific Detection of E. Coli Bacteria in Food and Water. Food Control 2022, 135, 108822. [Google Scholar] [CrossRef]
- Khansili, N.; Rattu, G.; Krishna, P.M. Label-Free Optical Biosensors for Food and Biological Sensor Applications. Sens. Actuators B Chem. 2018, 265, 35–49. [Google Scholar] [CrossRef]
- Zhao, Y.; Tong, R.; Xia, F.; Peng, Y. Current Status of Optical Fiber Biosensor Based on Surface Plasmon Resonance. Biosens. Bioelectron. 2019, 142, 111505. [Google Scholar] [CrossRef]
- Silva, N.F.D.; Magalhães, J.M.C.S.; Freire, C.; Delerue-Matos, C. Electrochemical Biosensors for Salmonella: State of the Art and Challenges in Food Safety Assessment. Biosens. Bioelectron. 2018, 99, 667–682. [Google Scholar] [CrossRef] [Green Version]
- Kurbanoglu, S.; Erkmen, C.; Uslu, B. Frontiers in Electrochemical Enzyme Based Biosensors for Food and Drug Analysis. TrAC Trends Anal. Chem. 2020, 124, 115809. [Google Scholar] [CrossRef]
- Gomes Müller, D.; Quadro Oreste, E.; Grazielle Heinemann, M.; Dias, D.; Kessler, F. Biogenic Amine Sensors and Its Building Materials: A Review. Eur. Polym. J. 2022, 175, 111221. [Google Scholar] [CrossRef]
- Putzbach, W.; Ronkainen, N.J. Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review. Sensors 2013, 13, 4811–4840. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors—Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef]
- Basozabal, I.; Guerreiro, A.; Gomez-Caballero, A.; Aranzazu Goicolea, M.; Barrio, R.J. Direct Potentiometric Quantification of Histamine Using Solid-Phase Imprinted Nanoparticles as Recognition Elements. Biosens. Bioelectron. 2014, 58, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Silva, N.F.D.; Magalhães, J.M.C.S.; Barroso, M.F.; Oliva-Teles, T.; Freire, C.; Delerue-Matos, C. In Situ Formation of Gold Nanoparticles in Polymer Inclusion Membrane: Application as Platform in a Label-Free Potentiometric Immunosensor for Salmonella typhimurium Detection. Talanta 2019, 194, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Fei, J.; Dou, W.; Zhao, G. A Sandwich Electrochemical Immunosensor for Salmonella pullorum and Salmonella gallinarum Based on a Screen-Printed Carbon Electrode Modified with an Ionic Liquid and Electrodeposited Gold Nanoparticles. Microchim. Acta 2015, 182, 2267–2275. [Google Scholar] [CrossRef]
- Herrera-Chacón, A.; Dinç-Zor, Ş.; del Valle, M. Integrating Molecularly Imprinted Polymer Beads in Graphite-Epoxy Electrodes for the Voltammetric Biosensing of Histamine in Wines. Talanta 2020, 208, 120348. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, S.; Rani, C.; Ho, J.A. Electrochemical Immunosensor for Multiplexed Detection of Food-Borne Pathogens Using Nanocrystal Bioconjugates and MWCNT Screen-Printed Electrode. Talanta 2012, 94, 315–319. [Google Scholar] [CrossRef] [Green Version]
- Pierini, G.D.; Robledo, S.N.; Zon, M.A.; Di Nezio, M.S.; Granero, A.M.; Fernández, H. Development of an Electroanalytical Method to Control Quality in Fish Samples Based on an Edge Plane Pyrolytic Graphite Electrode. Simultaneous Determination of Hypoxanthine, Xanthine and Uric Acid. Microchem. J. 2018, 138, 58–64. [Google Scholar] [CrossRef]
- Li, S.; Zhong, T.; Long, Q.; Huang, C.; Chen, L.; Lu, D.; Li, X.; Zhang, Z.; Shen, G.; Hou, X. A Gold Nanoparticles-Based Molecularly Imprinted Electrochemical Sensor for Histamine Specific-Recognition and Determination. Microchem. J. 2021, 171, 106844. [Google Scholar] [CrossRef]
- Gosser, D.K. Cyclic Voltammetry, Simulation and Analysis of Reaction Mechanisms; Wiley: Hoboken, NJ, USA, 1993; Volume 24, ISBN 0-471-18803-4. [Google Scholar]
- Borisova, B.; Sánchez, A.; Jiménez-Falcao, S.; Martín, M.; Salazar, P.; Parrado, C.; Pingarrón, J.M.; Villalonga, R. Reduced Graphene Oxide-Carboxymethylcellulose Layered with Platinum Nanoparticles/PAMAM Dendrimer/Magnetic Nanoparticles Hybrids. Application to the Preparation of Enzyme Electrochemical Biosensors. Sens. Actuators B Chem. 2016, 232, 84–90. [Google Scholar] [CrossRef]
- Devi, R.; Batra, B.; Lata, S.; Yadav, S.; Pundir, C.S. A Method for Determination of Xanthine in Meat by Amperometric Biosensor Based on Silver Nanoparticles/Cysteine Modified Au Electrode. Process Biochem. 2013, 48, 242–249. [Google Scholar] [CrossRef]
- Sadeghi, S.; Fooladi, E.; Malekaneh, M. A Nanocomposite/Crude Extract Enzyme-Based Xanthine Biosensor. Anal. Biochem. 2014, 464, 51–59. [Google Scholar] [CrossRef]
- Dalkıran, B.; Erden, P.E.; Kaçar, C.; Kılıç, E. Disposable Amperometric Biosensor Based on Poly-L-Lysine and Fe3O4 NPs-Chitosan Composite for the Detection of Tyramine in Cheese. Electroanalysis 2019, 31, 1324–1333. [Google Scholar] [CrossRef]
- Melo, A.M.A.; Furtado, R.F.; de Fatima Borges, M.; Biswas, A.; Cheng, H.N.; Alves, C.R. Performance of an Amperometric Immunosensor Assembled on Carboxymethylated Cashew Gum for Salmonella Detection. Microchem. J. 2021, 167, 106268. [Google Scholar] [CrossRef]
- Guan, D.; Li, P.; Cui, Y.; Zhang, Q.; Zhang, W. A Competitive Immunoassay with a Surrogate Calibrator Curve for Aflatoxin M1 in Milk. Anal. Chim. Acta 2011, 703, 64–69. [Google Scholar] [CrossRef]
- Uygun, Z.O.; Ertuğrul Uygun, H.D. A Short Footnote: Circuit Design for Faradaic Impedimetric Sensors and Biosensors. Sens. Actuators B Chem. 2014, 202, 448–453. [Google Scholar] [CrossRef]
- Vasconcelos, H.; Coelho, L.C.C.; Matias, A.; Saraiva, C.; Jorge, P.A.S.; de Almeida, J.M.M.M. Biosensors for Biogenic Amines: A Review. Biosensors 2021, 11, 82. [Google Scholar] [CrossRef]
- Mutreja, R.; Jariyal, M.; Pathania, P.; Sharma, A.; Sahoo, D.K.; Suri, C.R. Novel Surface Antigen Based Impedimetric Immunosensor for Detection of Salmonella typhimurium in Water and Juice Samples. Biosens. Bioelectron. 2016, 85, 707–713. [Google Scholar] [CrossRef]
- Pinto, J.; Boavida-Dias, R.; Matos, H.A.; Azevedo, J. Analysis of the Food Loss and Waste Valorisation of Animal By-Products from the Retail Sector. Sustainability 2022, 14, 2830. [Google Scholar] [CrossRef]
- Caldeira, C.; De Laurentiis, V.; Corrado, S.; van Holsteijn, F.; Sala, S. Quantification of Food Waste per Product Group along the Food Supply Chain in the European Union: A Mass Flow Analysis. Resour. Conserv. Recycl. 2019, 149, 479–488. [Google Scholar] [CrossRef]
- Iulietto, M.F.; Sechi, P.; Borgogni, E.; Cenci-Goga, B.T. Meat Spoilage: A Critical Review of a Neglected Alteration Due to Ropy Slime Producing Bacteria. Ital. J. Anim. Sci. 2015, 14, 4011. [Google Scholar] [CrossRef]
- Erna, K.H.; Rovina, K.; Mantihal, S. Current Detection Techniques for Monitoring the Freshness of Meat-Based Products: A Review. J. Packag. Technol. Res. 2021, 5, 127–141. [Google Scholar] [CrossRef]
- Alonso-Lomillo, M.A.; Domínguez-Renedo, O.; Matos, P.; Arcos-Martínez, M.J. Disposable Biosensors for Determination of Biogenic Amines. Anal. Chim. Acta 2010, 665, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Bóka, B.; Adányi, N.; Szamos, J.; Virág, D.; Kiss, A. Putrescine Biosensor Based on Putrescine Oxidase from Kocuria rosea. Enzyme Microb. Technol. 2012, 51, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Bóka, B.; Adányi, N.; Virág, D.; Sebela, M.; Kiss, A. Spoilage Detection with Biogenic Amine Biosensors, Comparison of Different Enzyme Electrodes. Electroanalysis 2012, 24, 181–186. [Google Scholar] [CrossRef]
- Calvo-Pérez, A.; Domínguez-Renedo, O.; Alonso-Lomillo, M.A.; Arcos-Martínez, M.J. Disposable Amperometric Biosensor for the Determination of Tyramine Using Plasma Amino Oxidase. Microchim. Acta 2013, 180, 253–259. [Google Scholar] [CrossRef]
- Telsnig, D.; Kalcher, K.; Leitner, A.; Ortner, A. Design of an Amperometric Biosensor for the Determination of Biogenic Amines Using Screen Printed Carbon Working Electrodes. Electroanalysis 2013, 25, 47–50. [Google Scholar] [CrossRef]
- Torre, R.; Costa-Rama, E.; Lopes, P.; Nouws, H.P.A.; Delerue-Matos, C. Amperometric Enzyme Sensor for the Rapid Determination of Histamine. Anal. Methods 2019, 11, 1264–1269. [Google Scholar] [CrossRef]
- Torre, R.; Costa-Rama, E.; Nouws, H.P.A.; Delerue-Matos, C. Diamine Oxidase-Modified Screen-Printed Electrode for the Redox-Mediated Determination of Histamine. J. Anal. Sci. Technol. 2020, 11, 5. [Google Scholar] [CrossRef]
- Apetrei, I.M.; Apetrei, C. Amperometric Biosensor Based on Diamine Oxidase/Platinum Nanoparticles/Graphene/Chitosan Modified Screen-Printed Carbon Electrode for Histamine Detection. Sensors 2016, 16, 422. [Google Scholar] [CrossRef] [Green Version]
- Henao-Escobar, W.; Domínguez-Renedo, O.; Alonso-Lomillo, M.A.; Arcos-Martínez, M.J. A Screen-Printed Disposable Biosensor for Selective Determination of Putrescine. Microchim. Acta 2013, 180, 687–693. [Google Scholar] [CrossRef]
- Henao-Escobar, W.; Domínguez-Renedo, O.; Asunción Alonso-Lomillo, M.; Julia Arcos-Martínez, M. Simultaneous Determination of Cadaverine and Putrescine Using a Disposable Monoamine Oxidase Based Biosensor. Talanta 2013, 117, 405–411. [Google Scholar] [CrossRef]
- Pérez, S.; Bartrolí, J.; Fàbregas, E. Amperometric Biosensor for the Determination of Histamine in Fish Samples. Food Chem. 2013, 141, 4066–4072. [Google Scholar] [CrossRef]
- Lange, J.; Wittmann, C. Enzyme Sensor Array for the Determination of Biogenic Amines in Food Samples. Anal. Bioanal. Chem. 2002, 372, 276–283. [Google Scholar] [CrossRef]
- Boffi, A.; Favero, G.; Federico, R.; Macone, A.; Antiochia, R.; Tortolini, C.; Sanzó, G.; Mazzei, F. Amine Oxidase-Based Biosensors for Spermine and Spermidine Determination. Anal. Bioanal. Chem. 2015, 407, 1131–1137. [Google Scholar] [CrossRef]
- Leonardo, S.; Campàs, M. Electrochemical Enzyme Sensor Arrays for the Detection of the Biogenic Amines Histamine, Putrescine and Cadaverine Using Magnetic Beads as Immobilisation Supports. Microchim. Acta 2016, 183, 1881–1890. [Google Scholar] [CrossRef]
- Gumpu, M.B.; Nesakumar, N.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. Determination of Putrescine in Tiger Prawn Using an Amperometric Biosensor Based on Immobilization of Diamine Oxidase onto Ceria Nanospheres. Food Bioprocess Technol. 2016, 9, 717–724. [Google Scholar] [CrossRef]
- Draz, M.E.; Darwish, H.W.; Darwish, I.A.; Saad, A.S. Solid-State Potentiometric Sensor for the Rapid Assay of the Biologically Active Biogenic Amine (Tyramine) as a Marker of Food Spoilage. Food Chem. 2021, 346, 128911. [Google Scholar] [CrossRef]
- Nakatani, H.S.; dos Santos, L.V.; Pelegrine, C.P.; Gomes, S.T.M.; Matsushita, M.; de Souza, N.E.; Visentaine, J.V. Biosensor Based on Xanthine Oxidase for Monitoring Hypoxanthine in Fish Meat. Am. J. Biochem. Biotechnol. 2005, 1, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Thandavan, K.; Gandhi, S.; Sethuraman, S.; Rayappan, J.B.B.; Krishnan, U.M. Development of Electrochemical Biosensor with Nano-Interface for Xanthine Sensing—A Novel Approach for Fish Freshness Estimation. Food Chem. 2013, 139, 963–969. [Google Scholar] [CrossRef]
- Dolmacı, N.; Çete, S.; Arslan, F.; Yaşar, A. An Amperometric Biosensor for Fish Freshness Detection from Xanthine Oxidase Immobilized in Polypyrrole-Polyvinylsulphonate Film. Artif. Cells Blood Substit. Biotechnol. 2012, 40, 275–279. [Google Scholar] [CrossRef]
- Devi, R.; Thakur, M.; Pundir, C.S. Construction and Application of an Amperometric Xanthine Biosensor Based on Zinc Oxide Nanoparticles–Polypyrrole Composite Film. Biosens. Bioelectron. 2011, 26, 3420–3426. [Google Scholar] [CrossRef]
- Devi, R.; Yadav, S.; Pundir, C.S. Electrochemical Detection of Xanthine in Fish Meat by Xanthine Oxidase Immobilized on Carboxylated Multiwalled Carbon Nanotubes/Polyaniline Composite Film. Biochem. Eng. J. 2011, 58–59, 148–153. [Google Scholar] [CrossRef]
- Devi, R.; Yadav, S.; Pundir, C.S. Amperometric Determination of Xanthine in Fish Meat by Zinc Oxide Nanoparticle/Chitosan/Multiwalled Carbon Nanotube/Polyaniline Composite Film Bound Xanthine Oxidase. Analyst 2012, 137, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Devi, R.; Yadav, S.; Pundir, C.S. Au-Colloids–Polypyrrole Nanocomposite Film Based Xanthine Biosensor. Colloids Surf. Physicochem. Eng. Asp. 2012, 394, 38–45. [Google Scholar] [CrossRef]
- Dervisevic, M.; Custiuc, E.; Çevik, E.; Şenel, M. Construction of Novel Xanthine Biosensor by Using Polymeric Mediator/MWCNT Nanocomposite Layer for Fish Freshness Detection. Food Chem. 2015, 181, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Dervisevic, M.; Custiuc, E.; Çevik, E.; Durmus, Z.; Şenel, M.; Durmus, A. Electrochemical Biosensor Based on REGO/Fe3O4 Bionanocomposite Interface for Xanthine Detection in Fish Sample. Food Control 2015, 57, 402–410. [Google Scholar] [CrossRef]
- Dervisevic, M.; Dervisevic, E.; Azak, H.; Çevik, E.; Şenel, M.; Yildiz, H.B. Novel Amperometric Xanthine Biosensor Based on Xanthine Oxidase Immobilized on Electrochemically Polymerized 10-[4H-Dithieno(3,2-b:2′,3′-d)Pyrrole-4-Yl]Decane-1-Amine Film. Sens. Actuators B Chem. 2016, 225, 181–187. [Google Scholar] [CrossRef]
- Dervisevic, M.; Dervisevic, E.; Çevik, E.; Şenel, M. Novel Electrochemical Xanthine Biosensor Based on Chitosan–Polypyrrole–Gold Nanoparticles Hybrid Bio-Nanocomposite Platform. J. Food Drug Anal. 2017, 25, 510–519. [Google Scholar] [CrossRef] [Green Version]
- Yazdanparast, S.; Benvidi, A.; Abbasi, S.; Rezaeinasab, M. Enzyme-Based Ultrasensitive Electrochemical Biosensor Using Poly(l-Aspartic Acid)/MWCNT Bio-Nanocomposite for Xanthine Detection: A Meat Freshness Marker. Microchem. J. 2019, 149, 104000. [Google Scholar] [CrossRef]
- Narang, J.; Malhotra, N.; Singhal, C.; Pundir, C.S. Evaluation of Freshness of Fishes Using MWCNT/TiO2 Nanobiocomposites Based Biosensor. Food Anal. Methods 2017, 10, 522–528. [Google Scholar] [CrossRef]
- Khan, M.Z.H.; Ahommed, M.S.; Daizy, M. Detection of Xanthine in Food Samples with an Electrochemical Biosensor Based on PEDOT:PSS and Functionalized Gold Nanoparticles. RSC Adv. 2020, 10, 36147–36154. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, B.; Shen, C.; Lai, O.-M.; Tan, C.-P.; Cheong, L.-Z. Electrochemical Biosensing of Chilled Seafood Freshness by Xanthine Oxidase Immobilized on Copper-Based Metal–Organic Framework Nanofiber Film. Food Anal. Methods 2019, 12, 1715–1724. [Google Scholar] [CrossRef]
- Muzaddadi, A.U.; Devatkal, S.; Oberoi, H.S. Chapter 9—Seafood Enzymes and Their Application in Food Processing. In Agro-Industrial Wastes as Feedstock for Enzyme Production; Dhillon, G.S., Kaur, S., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 201–232. ISBN 978-0-12-802392-1. [Google Scholar]
- Bourigua, S.; El Ichi, S.; Korri-Youssoufi, H.; Maaref, A.; Dzyadevych, S.; Jaffrezic Renault, N. Electrochemical Sensing of Trimethylamine Based on Polypyrrole–Flavin-Containing Monooxygenase (FMO3) and Ferrocene as Redox Probe for Evaluation of Fish Freshness. Biosens. Bioelectron. 2011, 28, 105–111. [Google Scholar] [CrossRef]
- Mitsubayashi, K.; Kubotera, Y.; Yano, K.; Hashimoto, Y.; Kon, T.; Nakakura, S.; Nishi, Y.; Endo, H. Trimethylamine Biosensor with Flavin-Containing Monooxygenase Type 3 (FMO3) for Fish-Freshness Analysis. Sens. Actuators B Chem. 2004, 103, 463–467. [Google Scholar] [CrossRef]
- Saito, H.; Shirai, T.; Kudo, H.; Mitsubayashi, K. Electrochemical Sensor with Flavin-Containing Monooxygenase for Triethylamine Solution. Anal. Bioanal. Chem. 2008, 391, 1263–1268. [Google Scholar] [CrossRef]
- Mitrova, B.; Waffo, A.F.T.; Kaufmann, P.; Iobbi-Nivol, C.; Leimkühler, S.; Wollenberger, U. Trimethylamine N-Oxide Electrochemical Biosensor with a Chimeric Enzyme. ChemElectroChem 2019, 6, 1732–1737. [Google Scholar] [CrossRef] [Green Version]
- Shkodra, B.; Demelash Abera, B.; Cantarella, G.; Douaki, A.; Avancini, E.; Petti, L.; Lugli, P. Flexible and Printed Electrochemical Immunosensor Coated with Oxygen Plasma Treated SWCNTs for Histamine Detection. Biosensors 2020, 10, 35. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.-X.; Yang, J.-Y.; Luo, L.; Zhang, Y.-F.; Mao, C.; Sun, Y.-M.; Lei, H.-T.; Shen, Y.-D.; Beier, R.C.; Xu, Z.-L. Portable Amperometric Immunosensor for Histamine Detection Using Prussian Blue-Chitosan-Gold Nanoparticle Nanocomposite Films. Biosens. Bioelectron. 2017, 98, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Lin, C.-W.; Wang, J.; Oh, D.H. Advances in Rapid Detection Methods for Foodborne Pathogens. J. Microbiol. Biotechnol. 2014, 24, 297–312. [Google Scholar] [CrossRef] [Green Version]
- Sionek, B.; Przybylski, W.; Tambor, K. Biosensors in Evaluation of Quality of Meat and Meat Products—A Review. Ann. Anim. Sci. 2020, 20, 1151–1168. [Google Scholar] [CrossRef]
- Che, Y.; Li, Y.; Slavik, M. Detection of Campylobacter Jejuni in Poultry Samples Using an Enzyme-Linked Immunoassay Coupled with an Enzyme Electrode. Biosens. Bioelectron. 2001, 16, 791–797. [Google Scholar] [CrossRef]
- Ma, X.; Jiang, Y.; Jia, F.; Yu, Y.; Chen, J.; Wang, Z. An Aptamer-Based Electrochemical Biosensor for the Detection of Salmonella. J. Microbiol. Methods 2014, 98, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Sheikhzadeh, E.; Chamsaz, M.; Turner, A.P.F.; Jager, E.W.H.; Beni, V. Label-Free Impedimetric Biosensor for Salmonella typhimurium Detection Based on Poly [Pyrrole-Co-3-Carboxyl-Pyrrole] Copolymer Supported Aptamer. Biosens. Bioelectron. 2016, 80, 194–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Huarng, M.C.; Alocilja, E.C. A Multiplex Nanoparticle-Based Bio-Barcoded DNA Sensor for the Simultaneous Detection of Multiple Pathogens. Biosens. Bioelectron. 2010, 26, 1736–1742. [Google Scholar] [CrossRef] [PubMed]
- Morant-Miñana, M.C.; Elizalde, J. Microscale Electrodes Integrated on COP for Real Sample Campylobacter spp. Detection. Biosens. Bioelectron. 2015, 70, 491–497. [Google Scholar] [CrossRef]
- Zelada-Guillén, G.A.; Sebastián-Avila, J.L.; Blondeau, P.; Riu, J.; Rius, F.X. Label-Free Detection of Staphylococcus aureus in Skin Using Real-Time Potentiometric Biosensors Based on Carbon Nanotubes and Aptamers. Biosens. Bioelectron. 2012, 31, 226–232. [Google Scholar] [CrossRef]
- Dou, W.; Tang, W.; Zhao, G. A Disposable Electrochemical Immunosensor Arrays Using 4-Channel Screen-Printed Carbon Electrode for Simultaneous Detection of Escherichia coli O157:H7 and Enterobacter sakazakii. Electrochim. Acta 2013, 97, 79–85. [Google Scholar] [CrossRef]
- Erkmen, O.; Bozoglu, T.F. Spoilage of Milk and Milk Products. In Food Microbiology: Principles into Practice; Erkmen, O., Bozoglu, T.F., Eds.; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2016; pp. 307–336. ISBN 978-1-119-23786-0. [Google Scholar]
- Lu, M.; Shiau, Y.; Wong, J.; Lin, R.; Kravis, H.; Blackmon, T.; Pakzad, T.; Jen, T.; Cheng, A.; Chang, J.; et al. Milk Spoilage: Methods and Practices of Detecting Milk Quality. Food Nutr. Sci. 2013, 4, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Priyadharshini, P.; Amalnath, V.; Perumal, A.B.; Moses, J.A.; Anandharamakrishnan, C. Chapter 15—Nanodevices for the Detection of Pathogens in Milk. In Nanotechnology in the Beverage Industry; Amrane, A., Rajendran, S., Nguyen, T.A., Assadi, A.A., Sharoba, A.M., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 435–469. ISBN 978-0-12-819941-1. [Google Scholar]
- Poghossian, A.; Geissler, H.; Schöning, M.J. Rapid Methods and Sensors for Milk Quality Monitoring and Spoilage Detection. Biosens. Bioelectron. 2019, 140, 111272. [Google Scholar] [CrossRef]
- Phamonpon, W.; Promphet, N.; Ummartyotin, S.; Rodthongkum, N. A Dual-Lactate Sensor for Milk Spoilage Based on Modified Recycled UHT Milk Carton Cellulose Surface. J. Clean. Prod. 2022, 363, 132519. [Google Scholar] [CrossRef]
- Zanini, V.P.; López de Mishima, B.; Solís, V. An Amperometric Biosensor Based on Lactate Oxidase Immobilized in Laponite–Chitosan Hydrogel on a Glassy Carbon Electrode. Application to the Analysis of l-Lactate in Food Samples. Sens. Actuators B Chem. 2011, 155, 75–80. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shiddiky, M.J.A.; Rahman, M.A.; Shim, Y.-B. A Lactate Biosensor Based on Lactate Dehydrogenase/Nictotinamide Adenine Dinucleotide (Oxidized Form) Immobilized on a Conducting Polymer/Multiwall Carbon Nanotube Composite Film. Anal. Biochem. 2009, 384, 159–165. [Google Scholar] [CrossRef]
- Kalač, P.; Krausová, P. A Review of Dietary Polyamines: Formation, Implications for Growth and Health and Occurrence in Foods. Food Chem. 2005, 90, 219–230. [Google Scholar] [CrossRef]
- Kalač, P. Health Effects and Occurrence of Dietary Polyamines: A Review for the Period 2005–Mid 2013. Food Chem. 2014, 161, 27–39. [Google Scholar] [CrossRef]
- Samková, E.; Dadáková, E.; Pelikánová, T. Changes in Biogenic Amine and Polyamine Contents in Smear-Ripened Cheeses during Storage. Eur. Food Res. Technol. 2013, 237, 309–314. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Menichini, F.; Picci, N.; Puoci, F.; Spizzirri, U.G.; Restuccia, D. Technological Aspects and Analytical Determination of Biogenic Amines in Cheese. Trends Food Sci. Technol. 2013, 30, 38–55. [Google Scholar] [CrossRef]
- Carelli, D.; Centonze, D.; Palermo, C.; Quinto, M.; Rotunno, T. An Interference Free Amperometric Biosensor for the Detection of Biogenic Amines in Food Products. Biosens. Bioelectron. 2007, 23, 640–647. [Google Scholar] [CrossRef]
- Kaçar, C.; Erden, P.E.; Dalkiran, B.; İnal, E.K.; Kiliç, E. Amperometric Biogenic Amine Biosensors Based on Prussian Blue, Indium Tin Oxide Nanoparticles and Diamine Oxidase–or Monoamine Oxidase–Modified Electrodes. Anal. Bioanal. Chem. 2020, 412, 1933–1946. [Google Scholar] [CrossRef]
- Erden, P.E.; Erdoğan, Z.Ö.; Öztürk, F.; Koçoğlu, İ.O.; Kılıç, E. Amperometric Biosensors for Tyramine Determination Based on Graphene Oxide and Polyvinylferrocene Modified Screen-Printed Electrodes. Electroanalysis 2019, 31, 2368–2378. [Google Scholar] [CrossRef]
- Pundir, C.S.; Devi, R.; Narang, J.; Singh, S.; Nehra, J.; Chaudhry, S. Fabrication of an Amperometric Xanthine Biosensor Based on Polyvinylchloride Membrane. J. Food Biochem. 2012, 36, 21–27. [Google Scholar] [CrossRef]
- Afonso, A.S.; Pérez-López, B.; Faria, R.C.; Mattoso, L.H.C.; Hernández-Herrero, M.; Roig-Sagués, A.X.; Maltez-da Costa, M.; Merkoçi, A. Electrochemical Detection of Salmonella Using Gold Nanoparticles. Biosens. Bioelectron. 2013, 40, 121–126. [Google Scholar] [CrossRef]
- Xiang, C.; Li, R.; Adhikari, B.; She, Z.; Li, Y.; Kraatz, H.-B. Sensitive Electrochemical Detection of Salmonella with Chitosan–Gold Nanoparticles Composite Film. Talanta 2015, 140, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, J.; Devarakonda, S.; Kumar, S.; Jang, J. Development of a Paper-Based Electrochemical Immunosensor Using an Antibody-Single Walled Carbon Nanotubes Bio-Conjugate Modified Electrode for Label-Free Detection of Foodborne Pathogens. Sens. Actuators B Chem. 2017, 253, 115–123. [Google Scholar] [CrossRef]
- Wu, Y.; Chai, H. Development of an Electrochemical Biosensor for Rapid Detection of Foodborne Pathogenic Bacteria. Int. J. Electrochem. Sci. 2017, 12, 4291–4300. [Google Scholar] [CrossRef]
- Esteban-Fernández de Ávila, B.; Pedrero, M.; Campuzano, S.; Escamilla-Gómez, V.; Pingarrón, J.M. Sensitive and Rapid Amperometric Magnetoimmunosensor for the Determination of Staphylococcus aureus. Anal. Bioanal. Chem. 2012, 403, 917–925. [Google Scholar] [CrossRef]
- Majumdar, T.; Chakraborty, R.; Raychaudhuri, U. Development of PEI-GA Modified Antibody Based Sensor for the Detection of S. Aureus in Food Samples. Food Biosci. 2013, 4, 38–45. [Google Scholar] [CrossRef]
- Izadi, Z.; Sheikh-Zeinoddin, M.; Ensafi, A.A.; Soleimanian-Zad, S. Fabrication of an Electrochemical DNA-Based Biosensor for Bacillus Cereus Detection in Milk and Infant Formula. Biosens. Bioelectron. 2016, 80, 582–589. [Google Scholar] [CrossRef]
- Gonçalves da Silva, A.; Franco, D.L.; Santos, L.D. A Simple, Fast, and Direct Electrochemical Determination of Tyramine in Brazilian Wines Using Low-Cost Electrodes. Food Control 2021, 130, 108369. [Google Scholar] [CrossRef]
- Soares, I.P.; da Silva, A.G.; da Fonseca Alves, R.; de Souza Corrêa, R.A.M.; Ferreira, L.F.; Franco, D.L. Electrochemical Enzymatic Biosensor for Tyramine Based on Polymeric Matrix Derived from 4-Mercaptophenylacetic Acid. J. Solid State Electrochem. 2019, 23, 985–995. [Google Scholar] [CrossRef]
- Loaiza, O.A.; Lamas-Ardisana, P.J.; Añorga, L.; Jubete, E.; Ruiz, V.; Borghei, M.; Cabañero, G.; Grande, H.J. Graphitized Carbon Nanofiber–Pt Nanoparticle Hybrids as Sensitive Tool for Preparation of Screen Printing Biosensors. Detection of Lactate in Wines and Ciders. Bioelectrochemistry 2015, 101, 58–65. [Google Scholar] [CrossRef]
- Anik, U.; Çubukçu, M. Application of Bismuth(III)-Entrapped XO Biosensing System for Xanthine Determination in Beverages. Food Anal. Methods 2012, 5, 716–722. [Google Scholar] [CrossRef]
- Borisova, B.; Villalonga, M.L.; Arévalo-Villena, M.; Boujakhrout, A.; Sánchez, A.; Parrado, C.; Pingarrón, J.M.; Briones-Pérez, A.; Villalonga, R. Disposable Electrochemical Immunosensor for Brettanomyces Bruxellensis Based on Nanogold-Reduced Graphene Oxide Hybrid Nanomaterial. Anal. Bioanal. Chem. 2017, 409, 5667–5674. [Google Scholar] [CrossRef]
- Das, R.; Chaterjee, B.; Kapil, A.; Sharma, T.K. Aptamer-NanoZyme Mediated Sensing Platform for the Rapid Detection of Escherichia Coli in Fruit Juice. Sens. Bio-Sens. Res. 2020, 27, 100313. [Google Scholar] [CrossRef]
- Bollella, P. Enzyme-Based Amperometric Biosensors: 60 Years Later … Quo Vadis? Anal. Chim. Acta 2022, 1234, 340517. [Google Scholar] [CrossRef]
- Jackson, C.; Anderson, A.; Alexandrov, K. The Present and the Future of Protein Biosensor Engineering. Curr. Opin. Struct. Biol. 2022, 75, 102424. [Google Scholar] [CrossRef]
Analyte | Biorecognition Element | Electrode Material | Method | Linear Range | LOD | Sample | Reference |
---|---|---|---|---|---|---|---|
Cad, Put, Tra, His | Amine oxidase | MnO2/SPCE | Amperometry | 1–50 µM 10–300 µM | 0.3 µM 3.0 µM | Chicken | [47] |
His | DAO | SPCE | Chrono-amperometry | 1–75 mg/L | 0.5 mg/L | Fish | [48] |
His | DAO | SPCE | Chrono-amperometry | 5–75 mg/mL | 0.97 mg/L | Tuna, mackerel | [49] |
His | DAO | GPH/PtNPs/Chitosan/SPCE | Amperometry | 0.1–300 μM | 2.54 × 10−8 M | Fish | [50] |
Put | MAO | TTF/SPCE | Amperometry | 16–101 μM | 17.2 ± 4.6 μM | Anchovy | [51] |
Cad Put | MAO | TTF/AuNPs/SPCE | Amperometry | 19.6–107.1 mM 9.9–74.1 μM | 19.9 ± 0.9 µM 9.9 μM | Octopus | [52] |
His | DAO/HRP | PS/MWCNTs/Fc/SPCE | Amperometry | 3 × 10−7–2 × 10−5 M | 1.7 × 10−7 M | Fish | [53] |
His, Tra, Put | MAO, TAO, DAO | Screen-printed thick-film electrode | Chrono-amperometry | 200 mg/kg 200 mg/kg 100 mg/kg | 10 mg/kg 10 mg/kg 5 mg/kg | Fish, meat, beer, dairy products | [54] |
Spm, Spd | PAO, SPMO | PB/SPCE | Amperometry | 0.003–0.3 mM 0.01–0.4 mM | Blood | [55] | |
Put | DAO | CeO₂NPs/GCE | Amperometry | Tiger prawn | [56] |
Analyte | Biorecognition Element | Electrode Material | Method | Linear Range | LOD | Sample | Reference |
---|---|---|---|---|---|---|---|
Xa | XOD | Fe3O4 NP/Au | Amperometry | 0.4–2.4 nM | 0.4 nM | Fish | [60] |
Hx | XOD | PPy/PVS/Pt | Amperometry | 1.0 × 10−7–1.0 × 10−3 M | 1.0 × 10−7 M | Fish | [61] |
Xa | XOD | ZnO-NPs/PPy/Pt | Amperometry | 0.8–40 μM | 0.8 μM | Fish | [62] |
Xa | XOD | c-MWCNTs/PANI/Pt | Amperometry | 0.6–58 μM | 0.6 μM | Fish | [63] |
Xa | XOD | ZnO-NP/Chitosan/c-MWCNTs/PANI/Pt | Amperometry | 0.1–100 μM | 0.1 μM | Fish | [64] |
Xa | XOD | Au-colloids/PPy/Pt | Amperometry | 0.4–100 μM | 0.4 μM | Fish, chicken, pork, beef | [65] |
Xa | XOD | AgNPs/l-Cys/Au | Amperometry | 2 to 16 μM | 0.15 μM | Fish, chicken, pork, beef | [31] |
Xa | XOD | Poly(GMA-co-VFc)/MWCNTs/PGE | Amperometry | 2–28 μM, 28–46 μM, 46–86 μM | 0.12 μM | Fish | [66] |
Xa | XOD | Poly(GMA-co-VFc)/REGO-Fe3O4/PGE | Amperometry | 2–36 μM | 0.17 μM | Fish | [67] |
Xa | XOD | DTP-alkyl-NH2/PGE | Amperometry | 0.3–25 μM | 0.074 μM | Chicken | [68] |
Xa | XOD | Chitosan/Ppy/Au-NPs/GCE | Amperometry | 1–200 μM | 0.25 μM | Fish, beef, chicken | [69] |
Xa | XOD | Poly(l-Asp)/MWCNTs/GCE | DPV | 0.001–0.004 μM, 0.005–50.0 μM | 3.5 × 10−4 μM | Fish | [70] |
Xa | XOD | TiO2/MWCNTs/Au | Amperometry | 0.5–500 μM | 0.5 μM | Fish | [71] |
Xa | XOD | GCE/PEDOT:PSS-AuNPs | DPV | 5.0 × 10−8–1.0 × 10−5 M | 3.0 × 10−8 M | Fish, meat | [72] |
Hx Xa | XOD | GCE/Cu-MOF | DPV | 0.01–10 μM | 0.0023 μM, 0.0064 μM | Squid, fish | [73] |
Analyte | Biorecognition Element | Electrode Material | Method | Linear Range | LOD | Sample | Reference |
---|---|---|---|---|---|---|---|
S. pullorum, S. gallinarum | Anti-S. pullorum, S. gallinarum | SPCE/AuNPs | CV | 104–109 CFU /mL | 3.0 × 103 CFU/mL | Egg, chicken | [24] |
C. jejuni | Anti-C. jejuni/MBs | TYR/CPE | Amperometry | 102–107 CFU/ml | 2.1 × 104 CFU/mL | Chicken carcass washed with water | [83] |
S. typhimurium | Salmonella aptamer ssDNA | GCE/GO/AuNPs | EIS | 2.4–2.4 × 103 CFU/mL | 3 CFU/mL | Pork | [84] |
S. typhimurium | Amino-modified aptamer | AuDE/Ppy | EIS | 102–108 CFU/mL | 3 CFU/mL | Spiked apple juice | [85] |
S. enteritidis, B. anthracis | AuNPs/1pDNA/bDNA-NT MNP-2pDNA | SPCE electrode | SWASV | – | 0.5 ng/mL | – | [86] |
Analyte | Biorecognition Element | Electrode Material | Method | Linear Range | LOD | Sample | Reference |
---|---|---|---|---|---|---|---|
Lactate | LOx | Aluminium-coated cellulose electrode | Amperometry | 0.125–2 M | 0.23 M | Milk | [94] |
L-Lactate | LOx | GCE/laponite/chitosan | Amperometry | 4.1 × 10−6 M, 3.2 × 10−6 M, 9.0 × 10−6 M, | 3.8 × 10−6 M | Wine, beer fermented milk | [95] |
L-Lactate | LDH/NAD+ | pTTCA/MWCNTs/Au | Amperometry | 5 to 90 μM | 1 μM | Milk, human serum | [96] |
BA | DAO | Pt/PPYox-PβNAP | Amperometry | 6–100 μM | 6 μM | Cheese, anchovy | [101] |
Cad His | DAO | ITONP/PB/SPCE | Amperometry | 3.0 × 10−6–1.0 × 10−3 M, 6.0 × 10−6–6.9 × 10−4 M | 8.9 × 10−7 M | Cheese | [102] |
Tra | DAO | PVF/GO/SPCE | Amperometry | 9.9 × 10−7–1.2 × 10−4 M | 4.1 × 10−7 M | Cheese | [103] |
Tra | TYR | Fe3O4−Chitosan/PLL/SPCE | Amperometry | 4.9 × 10−7–6.3 × 10−5 M | 7.5 × 10−8 M | Cheese | [33] |
Tra | PAO | SPCE | Amperometry | 2–164 μM | 2.0 μM | Cheese | [46] |
Xa | XOD | Pt electrode | Amperometry | 0.025 M– 0.4 × 10−6 M | 2.5 × 10−8 M | Fish, milk | [104] |
Analyte | Biorecognition Element | Electrode Material | Method | Linear Range | LOD | Sample | Reference |
---|---|---|---|---|---|---|---|
S. typhimurium | MBs-pSAb, sSAb-AuNPs | SPCE | DPV | 103 to 106 cells/mL | 143 cells/mL | Skimmed milk | [105] |
Salmonella | SAb1, HRP-Ab2 | GCE/chitosan/AuNPs | DPV | 10 to 105 CFU/mL | 5 CFU/mL | Milk | [106] |
S. aureus | Ab-SWCNTs | Paper-based CPE | DPV | 10 to 107 CFU/mL | 13 CFU/mL | Milk | [107] |
S. aureus | EcAb | rGO-Cu(II)/Au | EIS | 10–108 CFU/mL | 4.4 CFU/mL | – | [108] |
S. aureus | Staphylococcal ProtA-MBs, ProtA-HRP | TTF-Au/SPEs | Amperometry | 1 CFU/mL | Milk | [109] | |
S. aureus | Human IgG, a-ProtA-Ab, a-rabbit IgG-AP | Pt/PEI | Amperometry | 101–108 CFU/mL | 10 CFU/mL | Milk, cheese | [110] |
B, cereus | nhe A-ssDNA | AuNPs/PGE | EIS | 0.02–10 nmol/L, 0.01–10 μmol/L | 1 CFU/mL | Milk, formula | [111] |
E. coli, | a-E. coli -mAb, a-Campylobacter-mAb, a-Salmonella-mAb a-E. coli-CdS, a-Campylobacter-PbS, a-Salmonella-CuS | α-MWCNT-PAH/SPE | SWASV | 1 × 103–5 × 105 cells/mL | 800 cells/mL, | Milk | [26] |
Campylobacter | 400 cells/mL, | ||||||
Salmonella | 400 cells/mL |
Analyte | Biorecognition Element | Electrode Material | Method | Linear Range | LOD | Sample | Reference |
---|---|---|---|---|---|---|---|
S. typhimurium | a-OmpD-mAb | SPCEs/G–GO | Impedimetry | – | 101 CFU/mL | Apple juice | [38] |
B. bruxellensis | a-Bab ConA-HRP | Au-rGO/SPE | Amperometry | 102–106 CFU/mL | 56 CFU/mL | Red wine | [116] |
E. coli | AuNPs-EC 12-31 | SPE | Amperometry | 10–109 CFU/mL | 10 CFU | Apple juice | [117] |
S. typhimurium | a-SAb | AuNPs/PIM | Potentiometry | 13–1.3 × 106 cells/mL | 6 cells/mL | Apple juice | [23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majer-Baranyi, K.; Székács, A.; Adányi, N. Application of Electrochemical Biosensors for Determination of Food Spoilage. Biosensors 2023, 13, 456. https://doi.org/10.3390/bios13040456
Majer-Baranyi K, Székács A, Adányi N. Application of Electrochemical Biosensors for Determination of Food Spoilage. Biosensors. 2023; 13(4):456. https://doi.org/10.3390/bios13040456
Chicago/Turabian StyleMajer-Baranyi, Krisztina, András Székács, and Nóra Adányi. 2023. "Application of Electrochemical Biosensors for Determination of Food Spoilage" Biosensors 13, no. 4: 456. https://doi.org/10.3390/bios13040456
APA StyleMajer-Baranyi, K., Székács, A., & Adányi, N. (2023). Application of Electrochemical Biosensors for Determination of Food Spoilage. Biosensors, 13(4), 456. https://doi.org/10.3390/bios13040456