Advanced Urea Precursors Driven NiCo2O4 Nanostructures Based Non-Enzymatic Urea Sensor for Milk and Urine Real Sample Applications
Abstract
:1. Introduction
2. Materials and Methods Used
2.1. Chemical Reagents
2.2. Effect of Various Urea Concentrations on the Structure Orientation of NiCo2O4 Nanostructures during Hydrothermal Method
2.3. Crystal Quality and Morphology Investigations of Various NiCo2O4 Nanostructures
2.4. Different Urea Concentrations’ Role towards the Enhancement of Electrochemical Properties of NiCo2O4 Nanostructure for the Development of Advanced Non-Enzymatic Urea Sensors
3. Results and Discussion
3.1. Morphology and Crystalline Studies of as Prepared NiCo2O4 Nanostructures
3.2. Non-Enzymatic Urea Sensor Based on NiCo2O4 Nanomaterial
3.3. Real Sample Analytical Application of Proposed Non-Enzymatic Urea Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jonker, J.; Kohn, R.; Erdman, R. Using milk urea nitrogen to predict nitrogen excretion and utilization efficiency in lactating dairy cows. J. Dairy Sci. 1998, 81, 2681–2692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, B.; Brahma, B.; Ghosh, S.; Pankaj, P.; Mandal, G. Evaluation of milk urea concentration as useful indicator for dairy herd management: A review. Asian J. Anim. Vet. Adv. 2011, 6, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Francis, P.S.; Lewis, S.W.; Lim, K.F. Analytical methodology for the determination of urea: Current practice and future trends. TrAC Trends Anal. Chem. 2002, 21, 389–400. [Google Scholar] [CrossRef]
- Bisht, V.; Takashima, W.; Kaneto, K. An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film. Biomaterials 2005, 26, 3683–3690. [Google Scholar]
- Deng, H.-H.; Hong, G.-L.; Lin, F.-L.; Liu, A.-L.; Xia, X.-H.; Chen, W. Colorimetric detection of urea, urease, and urease inhibitor based on the peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta 2016, 915, 74–80. [Google Scholar] [CrossRef]
- Jha, S.N.; Jaiswal, P.; Borah, A.; Gautam, A.K.; Srivastava, N. Detection and quantification of urea in milk using attenuated total reflectance-Fourier transform infrared spectroscopy. Food Bioprocess Technol. 2015, 8, 926–933. [Google Scholar] [CrossRef]
- Childers, C.L.; Green, S.R.; Dawson, N.J.; Storey, K.B. Native denaturation differential scanning fluorimetry: Determining the effect of urea using a quantitative real-time thermocycler. Anal. Biochem. 2016, 508, 114–117. [Google Scholar] [CrossRef]
- Xie, W.-Q.; Yu, K.-X.; Gong, Y.-X. Rapid and quantitative determination of urea in milk by reaction headspace gas chromatography. Microchem. J. 2019, 147, 838–841. [Google Scholar] [CrossRef]
- Boggs, B.K.; King, R.L.; Botte, G.G. Urea electrolysis: Direct hydrogen production from urine. Chem. Commun. 2009, 32, 4859–4861. [Google Scholar] [CrossRef]
- Abernethy, G.; Higgs, K. Rapid detection of economic adulterants in fresh milk by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2013, 1288, 10–20. [Google Scholar] [CrossRef]
- Ma, W.-J.; Luo, C.-H.; Lin, J.-L.; Chou, S.-H.; Chen, P.-H.; Syu, M.-J.; Kuo, S.-H.; Lai, S.-C. A portable low-power acquisition system with a urease bioelectrochemical sensor for potentiometric detection of urea concentrations. Sensors 2016, 16, 474. [Google Scholar] [CrossRef] [Green Version]
- Nie, F.; Wang, N.; Xu, P.; Zheng, J. Determination of urea in milk based on N-bromosuccinimide–dichlorofluorescein postchemiluminescence method. J. Food Drug Anal. 2017, 25, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.S.; Tahira, A.; Chang, F.; Solangi, A.G.; Bhatti, M.A.; Vigolo, B.; Nafady, A.; Ibupoto, Z.H. Highly Heterogeneous Morphology of Cobalt Oxide Nanostructures for the Development of Sensitive and Selective Ascorbic Acid Non-Enzymatic Sensor. Biosensors 2023, 13, 147. [Google Scholar] [CrossRef]
- Chang, A.S.; Tahira, A.; Solangi, Z.A.; Solangi, A.G.; Ibupoto, M.H.; Chang, F.; Medany, S.S.; Nafady, A.; Kasry, A.; Willander, M. Pd-Co3O4-based nanostructures for the development of enzyme-free glucose sensor. Bull. Mater. Sci. 2022, 45, 62. [Google Scholar] [CrossRef]
- Ansari, S.; Fouad, H.; Shin, H.-S.; Ansari, Z. Electrochemical enzyme-less urea sensor based on nano-tin oxide synthesized by hydrothermal technique. Chem. Biol. Interact. 2015, 242, 45–49. [Google Scholar] [CrossRef]
- Amin, S.; Tahira, A.; Solangi, A.; Beni, V.; Morante, J.; Liu, X.; Falhman, M.; Mazzaro, R.; Ibupoto, Z.H.; Vomiero, A. A practical non-enzymatic urea sensor based on NiCo2O4 nanoneedles. RSC Adv. 2019, 9, 14443–14451. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.S.; Das, G.; Yoon, H.H. Nickel/cobalt oxide-decorated 3D graphene nanocomposite electrode for enhanced electrochemical detection of urea. Biosens. Bioelectron. 2016, 77, 372–377. [Google Scholar] [CrossRef]
- Mondal, S.; Sangaranarayanan, M. A novel non-enzymatic sensor for urea using a polypyrrole-coated platinum electrode. Sens. Actuators B Chem. 2013, 177, 478–486. [Google Scholar] [CrossRef]
- Ding, R.; Qi, L.; Jia, M.; Wang, H. Porous NiCo2O4 nanostructures as bi-functional electrocatalysts for CH3OH oxidation reaction and H2O2 reduction reaction. Electrochim. Acta 2013, 113, 290–301. [Google Scholar] [CrossRef]
- Hassanpoor, S.; Aghely, F. Hierarchically self-assembled NiCo2O4 nanopins as a high-performance supercapacitor cathodic material: A morphology controlled study. RSC Adv. 2020, 10, 35235–35244. [Google Scholar] [CrossRef]
- Yu, Z.; Li, H.; Zhang, X.; Liu, N.; Tan, W.; Zhang, X.; Zhang, L. Facile synthesis of NiCo2O4@ Polyaniline core–shell nanocomposite for sensitive determination of glucose. Biosens. Bioelectron. 2016, 75, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Cai, M.; Zhang, C.; Wang, C. Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxidation of ethanol in alkaline media. Electrochim. Acta 2015, 154, 70–76. [Google Scholar] [CrossRef]
- Yu, H.; Jin, J.; Jian, X.; Wang, Y.; Qi, G.C. Preparation of cobalt oxide nanoclusters/overoxidized polypyrrole composite film modified electrode and its application in nonenzymatic glucose sensing. Electroanalysis 2013, 25, 1665–1674. [Google Scholar] [CrossRef]
- Pasta, M.; La Mantia, F.; Cui, Y. Mechanism of glucose electrochemical oxidation on gold surface. Electrochim. Acta 2010, 55, 5561–5568. [Google Scholar] [CrossRef]
- Saraf, M.; Natarajan, K.; Mobin, S.M. Multifunctional porous NiCo2O4 nanorods: Sensitive enzymeless glucose detection and supercapacitor properties with impedance spectroscopic investigations. New J. Chem. 2017, 41, 9299–9313. [Google Scholar] [CrossRef]
- Amin, B.G.; Masud, J.; Nath, M. A non-enzymatic glucose sensor based on a CoNi2Se4/rGO nanocomposite with ultrahigh sensitivity at low working potential. J. Mater. Chem. B 2019, 7, 2338–2348. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Mao, Y.; Wen, C.; Zhao, P. A simple electrochemical route to access amorphous Co-Ni hydroxide for non-enzymatic glucose sensing. Nanoscale Res. Lett. 2019, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Solangi, A.G.; Pirzada, T.; Shah, A.A.; Halepoto, I.A.; Chang, A.S.; Solangi, Z.A.; Solangi, M.Y.; Aftab, U.; Tonezzer, M.; Tahira, A. Phytochemicals of mustard (Brassica Campestris) leaves tuned the nickel-cobalt bimetallic oxide properties for enzyme-free sensing of glucose. J. Chin. Chem. Soc. 2022, 69, 1608–1618. [Google Scholar] [CrossRef]
- Li, J.; Chen, Z.; Li, Y. A strategy for constructing sensitive and renewable molecularly imprinted electrochemical sensors for melamine detection. Anal. Chim. Acta 2011, 706, 255–260. [Google Scholar] [CrossRef]
- Kumar, T.V.; Sundramoorthy, A.K. Non-enzymatic electrochemical detection of urea on silver nanoparticles anchored nitrogen-doped single-walled carbon nanotube modified electrode. J. Electrochem. Soc. 2018, 165, B3006. [Google Scholar] [CrossRef] [Green Version]
- Vedharathinam, V.; Botte, G.G. Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium. Electrochim. Acta 2012, 81, 292–300. [Google Scholar] [CrossRef]
- Daramola, D.A.; Singh, D.; Botte, G.G. Dissociation rates of urea in the presence of NiOOH catalyst: A DFT analysis. J. Phys. Chem. A 2010, 114, 11513–11521. [Google Scholar] [CrossRef]
- Vedharathinam, V.; Botte, G.G. Direct evidence of the mechanism for the electro-oxidation of urea on Ni(OH)2 catalyst in alkaline medium. Electrochim. Acta 2013, 108, 660–665. [Google Scholar] [CrossRef]
- Guo, F.; Ye, K.; Du, M.; Huang, X.; Cheng, K.; Wang, G.; Cao, D. Electrochemical impedance analysis of urea electro-oxidation mechanism on nickel catalyst in alkaline medium. Electrochim. Acta 2016, 210, 474–482. [Google Scholar] [CrossRef]
- Chang, A.S.; Tahira, A.; Chang, F.; Memon, N.N.; Nafady, A.; Kasry, A.; Ibupoto, Z.H. Silky Co3O4 nanostructures for the selective and sensitive enzyme free sensing of uric acid. RSC Adv. 2021, 11, 5156–5162. [Google Scholar] [CrossRef]
- Salarizadeh, N.; Habibi-Rezaei, M.; Zargar, S.J. NiO–MoO3 nanocomposite: A sensitive non-enzymatic sensor for glucose and urea monitoring. Mater. Chem. Phys. 2022, 281, 125870. [Google Scholar] [CrossRef]
- Naik, T.S.K.; Saravanan, S.; Saravana, K.S.; Pratiush, U.; Ramamurthy, P.C. A non-enzymatic urea sensor based on the nickel sulfide/graphene oxide modified glassy carbon electrode. Mater. Chem. Phys. 2020, 245, 122798. [Google Scholar] [CrossRef]
- Sumana, G.; Das, M.; Srivastava, S.; Malhotra, B.D. A novel urea biosensor based on zirconia. Thin Solid Film. 2010, 519, 1187–1191. [Google Scholar] [CrossRef] [Green Version]
- Nia, S.M.; Kheiri, F.; Jannatdoust, E.; Sirousazar, M.; Chianeh, V.A.; Kheiri, G. A Highly Sensitive Non-Enzymatic Urea Sensor Based on Ni (OH)2/Mn3O4/rGO/PANi Nanocomposites Using Screen-Printed Electrodes. J. Electrochem. Soc. 2021, 168, 067504. [Google Scholar]
- Bao, C.; Niu, Q.; Chen, Z.-A.; Cao, X.; Wang, H.; Lu, W. Ultrathin nickel-metal–organic framework nanobelt based electrochemical sensor for the determination of urea in human body fluids. RSC Adv. 2019, 9, 29474–29481. [Google Scholar] [CrossRef] [Green Version]
- Soni, A.; Surana, R.K.; Jha, S.K. Smartphone based optical biosensor for the detection of urea in saliva. Sens. Actuators B Chem. 2018, 269, 346–353. [Google Scholar] [CrossRef]
Sensing Material | Linear Range (mM) | Limit of Detection (LOD) (μM) | Method of Detection | Reference |
---|---|---|---|---|
NiO–MoO3 | 0.2–1 | 0.86 | Non-enzymatic | [36] |
NiCo2O4 | 0.01–5 | 1 | Non-enzymatic | [16] |
NiS/GO/MGCE | 0.1–1.0 | 3.79 | Non-enzymatic sensor | [37] |
Urease/ZrO2 thin film/Au | 0.8–16.6 | 442 | Enzymatic | [38] |
Ni(OH)2/Mn3O4/ rGO/PANi | 0.03–3.3 | 16.3 | Non-enzymatic | [39] |
(Ni-MOF) nanobelts | 0.01–7.0 | 2.23 | Non-enzymatic | [40] |
nano-PANI:PSS | 0.2–0.9 | 919.3 | Enzymatic | [41] |
NiCo2O4 nanorods | 0.1–10 0.1–8 | 6 | Non-enzymatic (CV) (chronoamperometry | This work |
Sample | Added (mM) | Found (mM) | (%) Recovery | (%) RSD |
---|---|---|---|---|
Urine | - | 2.3 | - | |
- | 0.5 | 2.81 ± 0.002 | 100.35 | 0.42 |
- | 1 | 3.32 ± 0.003 | 100 | 0.37 |
Milk 1 | - | 1.95 | - | |
- | 1 | 2.94 ± 0.005 | 99 | 0.30 |
- | 1.5 | 3.46 ± 0.007 | 100 | 0.34 |
Milk 2 | 2.4 | - | ||
- | 1.5 | 3.91 ± 0.004 | 100.25 | 0.27 |
- | 2.5 | 4.89 ± 0.002 | 99.79 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangrio, S.; Tahira, A.; Chang, A.S.; Mahar, I.A.; Markhand, M.; Shah, A.A.; Medany, S.S.; Nafady, A.; Dawi, E.A.; Saleem, L.M.A.; et al. Advanced Urea Precursors Driven NiCo2O4 Nanostructures Based Non-Enzymatic Urea Sensor for Milk and Urine Real Sample Applications. Biosensors 2023, 13, 444. https://doi.org/10.3390/bios13040444
Mangrio S, Tahira A, Chang AS, Mahar IA, Markhand M, Shah AA, Medany SS, Nafady A, Dawi EA, Saleem LMA, et al. Advanced Urea Precursors Driven NiCo2O4 Nanostructures Based Non-Enzymatic Urea Sensor for Milk and Urine Real Sample Applications. Biosensors. 2023; 13(4):444. https://doi.org/10.3390/bios13040444
Chicago/Turabian StyleMangrio, Sanjha, Aneela Tahira, Abdul Sattar Chang, Ihsan Ali Mahar, Mehnaz Markhand, Aqeel Ahmed Shah, Shymaa S. Medany, Ayman Nafady, Elmuez A. Dawi, Lama M. A. Saleem, and et al. 2023. "Advanced Urea Precursors Driven NiCo2O4 Nanostructures Based Non-Enzymatic Urea Sensor for Milk and Urine Real Sample Applications" Biosensors 13, no. 4: 444. https://doi.org/10.3390/bios13040444
APA StyleMangrio, S., Tahira, A., Chang, A. S., Mahar, I. A., Markhand, M., Shah, A. A., Medany, S. S., Nafady, A., Dawi, E. A., Saleem, L. M. A., Mustafa, E. M., Vigolo, B., & Ibupoto, Z. H. (2023). Advanced Urea Precursors Driven NiCo2O4 Nanostructures Based Non-Enzymatic Urea Sensor for Milk and Urine Real Sample Applications. Biosensors, 13(4), 444. https://doi.org/10.3390/bios13040444