Recent Advances in Field Effect Transistor Biosensors: Designing Strategies and Applications for Sensitive Assay
Abstract
:1. Introduction
2. Biosensor Designing
2.1. Device Structures
2.2. Device Functionalization Methods
2.2.1. Physical Functionalization Methods
2.2.2. Chemical Functionalization Methods
2.3. Semiconductor Materials forActive Layers
2.3.1. Two–Dimensional Materials (2D)
- Two–dimensional layered materials;
- Two–dimensional organic materials
2.3.2. Polymer and Small Organic Molecule Materials
3. Application
3.1. Immunoassay Based on Single Biosensor
3.2. Integrated into Array for Multiplexing
3.3. Integrated with Microfluidicsfor LAB–on–CHIP
3.4. Integrated with other Sensors for Multifunctional Applications
4. Summary and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, H.; Wang, X.; Guo, M.; Dai, C.; Chen, R.; Yang, L.; Wu, Y.; Ying, T.; Zhu, Z.; Wei, D.; et al. Ultrasensitive Detection of SARS–CoV–2 Antibody by Graphene Field–Effect Transistors. Nano Lett. 2021, 21, 7897–7904. [Google Scholar] [CrossRef]
- Li, P.; Lee, G.H.; Kim, S.Y.; Kwon, S.Y.; Kim, H.R.; Park, S. From Diagnosis to Treatment: Recent Advances in Patient–Friendly Biosensors and Implantable Devices. ACS Nano 2021, 15, 1960–2004. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.; Barbosa, A.I.; Rebelo, R.; Kwon, I.K.; Reis, R.L.; Correlo, V.M. Skin–Integrated Wearable Systems and Implantable Biosensors: A Comprehensive Review. Biosensors 2020, 10, 79. [Google Scholar] [CrossRef] [PubMed]
- Thriveni, G.; Ghosh, K. Advancement and Challenges of Biosensing Using Field Effect Transistors. Biosensors 2022, 12, 647. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.V. Conjugated Polymers–Based Biosensors for Virus Detection: Lessons from COVID–19. Biosensors 2022, 12, 748. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Liu, L.; Li, J.; Gao, L. Sensors Based on the Carbon Nanotube Field–Effect Transistors for Chemical and Biological Analyses. Biosensors 2022, 12, 776. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shi, W.; Song, J.; Jang, H.J.; Dailey, J.; Yu, J.; Katz, H.E. Chemical and Biomolecule Sensing with Organic Field–Effect Transistors. Chem. Rev. 2019, 119, 3–35. [Google Scholar] [PubMed]
- Shen, H.; Di, C.A.; Zhu, D. Organic transistor for bioelectronic applications. Sci. China–Chem. 2017, 60, 437–449. [Google Scholar] [CrossRef]
- Sun, C.; Wang, X.; Auwalu, M.A.; Cheng, S.; Hu, W. Organic thin film transistors-based biosensors. EcoMat 2021, 3, e12094. [Google Scholar] [CrossRef]
- Zaumseil, J.; Sirringhaus, H. Electron and ambipolar transport in organic field–effect transistors. Chem. Rev. 2007, 107, 1296–1323. [Google Scholar] [CrossRef]
- Zhang, Z.; Yates, J.T., Jr. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520–5551. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yates, J.T. Effect of Adsorbed Donor and Acceptor Molecules on Electron Stimulated Desorption: O2/TiO2(110). J. Phys. Chem. Lett. 2010, 1, 2185–2188. [Google Scholar] [CrossRef]
- Kergoat, L.; Herlogsson, L.; Braga, D.; Piro, B.; Pham, M.C.; Crispin, X.; Berggren, M.; Horowitz, G. A water–gate organic field–effect transistor. Adv. Mater. 2010, 22, 2565–2569. [Google Scholar] [CrossRef] [PubMed]
- Kergoat, L.; Piro, B.; Berggren, M.; Pham, M.C.; Yassar, A.; Horowitz, G. DNA detection with a water–gated organic field–effect transistor. Org. Electron. 2012, 13, 1–6. [Google Scholar] [CrossRef]
- Kim, J.W.; Jang, Y.H.; Ku, G.M.; Kim, S.; Lee, E.; Cho, K.; Lim, K.I.; Lee, W.H. Liquid coplanar–gate organic/graphene hybrid electronics for label–free detection of single and double–stranded DNA molecules. Org. Electron. 2018, 62, 163–167. [Google Scholar] [CrossRef]
- Yaman, B.; Terkesli, I.; Turksoy, K.M.; Sanyal, A.; Mutlu, S. Fabrication of a planar water gated organic field effect transistor using a hydrophilic polythiophene for improved digital inverter performance. Org. Electron. 2014, 15, 646–653. [Google Scholar] [CrossRef]
- Minamiki, T.; Minami, T.; Koutnik, P.; Anzenbacher, P., Jr.; Tokito, S. Antibody– and Label–Free Phosphoprotein Sensor Device Based on an Organic Transistor. Anal. Chem. 2016, 88, 1092–1095. [Google Scholar]
- Zhang, J.J.; Wang, S.Y.; Zhang, P.; Fan, S.C.; Dai, H.T.; Xiao, Y.; Wang, Y. Engineering a cationic supramolecular charge switch for facile amino acids enantiodiscrimination based on extended–gate field effect transistors. Chin. Chem. Lett. 2022, 33, 3873–3878. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, Q.; Miao, Q. Structured and functionalized organic semiconductors for chemical and biological sensors based on organic field effect transistors. Mater. Chem. Front. 2020, 4, 3505–3520. [Google Scholar] [CrossRef]
- Janasz, L.; Borkowski, M.; Blom, P.W.M.; Marszalek, T.; Pisula, W. Organic Semiconductor/Insulator Blends for Elastic Field-Effect Transistors and Sensors. Adv. Funct. Mater. 2022, 32, 2105456. [Google Scholar] [CrossRef]
- Sun, C.; Vinayak, M.V.; Cheng, S.; Hu, W. Facile Functionalization Strategy for Ultrasensitive Organic Protein Biochips in Multi–Biomarker Determination. Anal. Chem. 2021, 93, 11305–11311. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.U.; Roberts, M.E.; Johnson, O.; Forch, R.; Knoll, W.; Bao, Z. In situ, label–free DNA detection using organic transistor sensors. Adv. Mater. 2010, 22, 4452–4456. [Google Scholar] [CrossRef]
- Khan, H.U.; Jang, J.; Kim, J.J.; Knoll, W. In situ antibody detection and charge discrimination using aqueous stable pentacene transistor biosensors. J. Am. Chem. Soc. 2011, 133, 2170–2176. [Google Scholar] [CrossRef] [PubMed]
- Magliulo, M.; Pistillo, B.R.; Mulla, M.Y.; Cotrone, S.; Ditaranto, N.; Cioffi, N.; Favia, P.; Torsi, L. PE–CVD of Hydrophilic–COOH Functionalized Coatings on Electrolyte Gated Field–Effect Transistor Electronic Layers. Plasma Process. Polym. 2013, 10, 102–109. [Google Scholar] [CrossRef]
- Magliulo, M.; Mallardi, A.; Mulla, M.Y.; Cotrone, S.; Pistillo, B.R.; Favia, P.; Vikholm–Lundin, I.; Palazzo, G.; Torsi, L. Electrolyte–gated organic field–effect transistor sensors based on supported biotinylated phospholipid bilayer. Adv. Mater. 2013, 25, 2090–2094. [Google Scholar] [CrossRef] [PubMed]
- Mulla, M.Y.; Seshadri, P.; Torsi, L.; Manoli, K.; Mallardi, A.; Ditaranto, N.; Santacroce, M.V.; DiFranco, C.; Scamarcio, G.; Magliulo, M. UV crosslinked poly (acrylic acid): A simple method to bio–functionalize electrolyte–gated OFET biosensors. J. Mater. Chem. B 2015, 3, 5049–5057. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Li, R.; Song, Y.; Jiang, X.; Zhang, C.; Cheng, S.; Hu, W. Ultrasensitive and Reliable Organic Field–Effect Transistor–Based Biosensors in Early Liver Cancer Diagnosis. Anal. Chem. 2021, 93, 6188–6194. [Google Scholar] [CrossRef] [PubMed]
- Stoltenberg, R.M.; Liu, C.; Bao, Z. Selective surface chemistry using alumina nanoparticles generated from block copolymers. Langmuir 2011, 27, 445–451. [Google Scholar] [CrossRef]
- Hammock, M.L.; Sokolov, A.N.; Stoltenberg, R.M.; Naab, B.D.; Bao, Z. Organic transistors with ordered nanoparticle arrays as a tailorable platform for selective, in situ detection. ACS Nano 2012, 6, 3100–3108. [Google Scholar] [CrossRef]
- Hammock, M.L.; Knopfmacher, O.; Naab, B.D.; Tok, J.B.; Bao, Z. Investigation of protein detection parameters using nanofunctionalized organic field–effect transistors. ACS Nano 2013, 7, 3970–3980. [Google Scholar] [CrossRef] [PubMed]
- Suspene, C.; Piro, B.; Reisberg, S.; Pham, M.C.; Toss, H.; Berggren, M.; Yassar, A.; Horowitz, G. Copolythiophene–based water–gated organic field–effect transistors for biosensing. J. Mater. Chem. B 2013, 1, 2090–2097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zang, Y.; Huang, D.; Di, C.A.; Zhu, D. Device Engineered Organic Transistors for Flexible Sensing Applications. Adv. Mater. 2016, 28, 4549–4555. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Zou, Y.; Zang, Y.; Huang, D.; Jin, W.; Di, C.A.; Zhu, D. Molecular antenna tailored organic thin–film transistors for sensing application. Mater. Horizons 2018, 5, 240–247. [Google Scholar] [CrossRef]
- Buth, F.; Donner, A.; Sachsenhauser, M.; Stutzmann, M.; Garrido, J.A. Biofunctional electrolyte–gated organic field–effect transistors. Adv. Mater. 2012, 24, 4511–4517. [Google Scholar] [CrossRef] [PubMed]
- Minamiki, T.; Sasaki, Y.; Tokito, S.; Minami, T. Label–Free Direct Electrical Detection of a Histidine–Rich Protein with Sub–Femtomolar Sensitivity using an Organic Field–Effect Transistor. ChemistryOpen 2017, 6, 472–475. [Google Scholar] [CrossRef]
- Lee, H.W.; Kang, D.H.; Cho, J.H.; Lee, S.; Jun, D.H.; Park, J.H. Highly Sensitive and Reusable Membraneless Field–Effect Transistor (FET)–Type Tungsten Diselenide (WSe2) Biosensors. ACS Appl. Mater. Interfaces 2018, 10, 17639–17645. [Google Scholar] [CrossRef]
- Mulla, M.Y.; Tuccori, E.; Magliulo, M.; Lattanzi, G.; Palazzo, G.; Persaud, K.; Torsi, L. Capacitance–modulated transistor detects odorant binding protein chiral interactions. Nat. Commun. 2015, 6, 6010. [Google Scholar] [CrossRef] [Green Version]
- Sensi, M.; Berto, M.; Gentile, S.; Pinti, M.; Conti, A.; Pellacani, G.; Salvarani, C.; Cossarizza, A.; Bortolotti, C.A.; Biscarini, F. Anti–drug antibody detection with label–free electrolyte–gated organic field–effect transistors. Chem. Commun. 2021, 57, 367–370. [Google Scholar] [CrossRef]
- Macchia, E.; Manoli, K.; Holzer, B.; Di Franco, C.; Ghittorelli, M.; Torricelli, F.; Alberga, D.; Mangiatordi, G.F.; Palazzo, G.; Scamarcio, G.; et al. Single–molecule detection with a millimetre–sized transistor. Nat. Commun. 2018, 9, 3223. [Google Scholar] [CrossRef]
- Macchia, E.; Tiwari, A.; Manoli, K.; Holzer, B.; Ditaranto, N.; Picca, R.A.; Cioffi, N.; Di Franco, C.; Scamarcio, G.; Palazzo, G.; et al. Label–Free and Selective Single–Molecule Bioelectronic Sensing with a Millimeter–Wide Self–Assembled Monolayer of Anti–Immunoglobulins. Chem. Mater. 2019, 31, 6476–6483. [Google Scholar] [CrossRef]
- Zhou, W.; Dai, X.; Fu, T.M.; Xie, C.; Liu, J.; Lieber, C.M. Long term stability of nanowire nanoelectronics in physiological environments. Nano Lett. 2014, 14, 1614–1619. [Google Scholar] [CrossRef] [PubMed]
- Khanna, V.K. Remedial and adaptive solutions of ISFET non–ideal behaviour. Sens. Rev. 2013, 33, 228–237. [Google Scholar] [CrossRef]
- Eswaran, M.; Chokkiah, B.; Pandit, S.; Rahimi, S.; Dhanusuraman, R.; Aleem, M.; Mijakovic, I. A Road Map toward Field–Effect Transistor Biosensor Technology for Early Stage Cancer Detection. Small Methods 2022, 6, e2200809. [Google Scholar] [CrossRef] [PubMed]
- Ciampi, S.; Harper, J.B.; Gooding, J.J. Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si–C bonds: Surface preparation, passivation and functionalization. Chem. Soc. Rev. 2010, 39, 2158–2183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Lin, H.; Zhang, X.; Li, J.; Chen, X.; Wang, S.; Gong, W.; Yan, H.; Zhao, Q.; Lv, W.; et al. Revealing molecular conformation–induced stress at embedded interfaces of organic optoelectronic devices by sum frequency generation spectroscopy. Sci. Adv. 2021, 7, eabf8555. [Google Scholar] [CrossRef]
- Hideshima, S.; Hayashi, H.; Takeuchi, R.; Wustoni, S.; Kuroiwa, S.; Nakanishi, T.; Momma, T.; Osaka, T. Improvement in long–term stability of field effect transistor biosensor in aqueous environments using a combination of silane and reduced graphene oxide coating. Microelectron. Eng. 2022, 264, 111859. [Google Scholar] [CrossRef]
- Li, T.; Ciampi, S.; Darwish, N. The Surface Potential of Zero Charge Controls the Kinetics of Diazonium Salts Electropolymerization. ChemElectroChem 2022, 9, e202200255. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Dai, C.; Liu, Y.; Wei, D. Two–Dimensional Field–Effect Transistor Sensors: The Road toward Commercialization. Chem. Rev. 2022, 122, 10319–10392. [Google Scholar] [CrossRef]
- Gao, J.; Gao, Y.; Han, Y.; Pang, J.; Wang, C.; Wang, Y.; Liu, H.; Zhang, Y.; Han, L. Ultrasensitive Label–free MiRNA Sensing Based on a Flexible Graphene Field–Effect Transistor without Functionalization. ACS Appl. Electron. Mater. 2020, 2, 1090–1098. [Google Scholar] [CrossRef]
- Tian, M.; Qiao, M.; Shen, C.; Meng, F.; Frank, L.A.; Krasitskaya, V.V.; Wang, T.; Zhang, X.; Song, R.; Li, Y.; et al. Highly–sensitive graphene field effect transistor biosensor using PNA and DNA probes for RNA detection. Appl. Surf. Sci. 2020, 527, 146839. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, C.; Chen, D.; Wang, J.; Ji, Y.; Liang, N.; Gao, H.; Cheng, S.; Liu, H. Ultrasensitive and stable all graphene field-effect transistor-based Hg2+ sensor constructed by using different covalently bonded RGO films assembled by different conjugate linking molecules. SmartMat 2021, 2, 213–225. [Google Scholar] [CrossRef]
- Roberts, A.; Chauhan, N.; Islam, S.; Mahari, S.; Ghawri, B.; Gandham, R.K.; Majumdar, S.S.; Ghosh, A.; Gandhi, S. Graphene functionalized field–effect transistors for ultrasensitive detection of Japanese encephalitis and Avian influenza virus. Sci. Rep. 2020, 10, 14546. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, X.; Liu, Y.; Huang, B.; Wu, R.; Zhang, Z.; Zhao, B.; Ma, H.; Dang, W.; Wei, Z.; et al. General synthesis of two–dimensional van der Waals heterostructure arrays. Nature 2020, 579, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Qiao, J.; Yu, Z.; Yu, P.; Xu, K.; Lau, S.P.; Zhou, W.; Liu, Z.; Wang, X.; Ji, W.; et al. High–Electron–Mobility and Air–Stable 2D Layered PtSe2 FETs. Adv. Mater. 2017, 29, 1604230. [Google Scholar] [CrossRef]
- Park, H.; Han, G.; Lee, S.W.; Lee, H.; Jeong, S.H.; Naqi, M.; AlMutairi, A.; Kim, Y.J.; Lee, J.; Kim, W.J.; et al. Label–Free and Recalibrated Multilayer MoS2 Biosensor for Point–of–Care Diagnostics. ACS Appl. Mater. Interfaces 2017, 9, 43490–43497. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, C.; Shaw, J.C.; Cheng, R.; Chen, Y.; Huang, X.; Liu, Y.; Weiss, N.O.; Lin, Z.; Huang, Y.; et al. Large area growth and electrical properties of p–type WSe2 atomic layers. Nano Lett. 2015, 15, 709–713. [Google Scholar] [CrossRef]
- Hossain, M.M.; Shabbir, B.; Wu, Y.; Yu, W.; Krishnamurthi, V.; Uddin, H.; Mahmood, N.; Walia, S.; Bao, Q.; Alan, T.; et al. Ultrasensitive WSe2 field–effect transistor–based biosensor for label–free detection of cancer in point–of–care applications. 2D Mater. 2021, 8, 045005. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, D.; Xu, Y.; Yin, Z.; Dou, W.; Habiba, U.E.; Pan, C.; Zhang, Z.; Mou, H.; Deng, H.; et al. DNA–based functionalization of two–dimensional MoS2 FET biosensor for ultrasensitive detection of PSA. Appl. Surf. Sci. 2021, 548, 149169. [Google Scholar] [CrossRef]
- Esrafili, A.; Wagner, A.; Inamdar, S.; Acharya, A.P. Covalent Organic Frameworks for Biomedical Applications. Adv. Healthc. Mater. 2021, 10, e2002090. [Google Scholar] [CrossRef]
- Xing, C.; Mei, P.; Mu, Z.; Li, B.; Feng, X.; Zhang, Y.; Wang, B. Enhancing Enzyme Activity by the Modulation of Covalent Interactions in the Confined Channels of Covalent Organic Frameworks. Angew. Chem.–Int. Edit. 2022, 61, e202201378. [Google Scholar]
- Li, W.; Yang, C.X.; Yan, X.P. A versatile covalent organic framework–based platform for sensing biomolecules. Chem. Commun. 2017, 53, 11469–11471. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Kang, M.; Sun, S.; Liu, Q.; Zhang, Z.; Fang, S. Imine–Linked Covalent Organic Framework on Surface for Biosensor. Chin. J. Chem. 2014, 32, 838–843. [Google Scholar] [CrossRef]
- Lu, J.; Wang, M.; Han, Y.; Deng, Y.; Zeng, Y.; Li, C.; Yang, J.; Li, G. Functionalization of Covalent Organic Frameworks with DNA via Covalent Modification and the Application to Exosomes Detection. Anal. Chem. 2022, 94, 5055–5061. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Luo, Y.; Liu, B.; Duan, G. Field–Effect Transistor Based on an in Situ Grown Metal–Organic Framework Film as a Liquid–Gated Sensing Device. ACS Appl. Mater. Interfaces 2019, 11, 35935–35940. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Dailey, J.; Li, H.; Jang, H.J.; Zhang, P.; Wang, J.T.; Everett, A.D.; Katz, H.E. Extended Solution Gate OFET–based Biosensor for Label–free Glial Fibrillary Acidic Protein Detection with Polyethylene Glycol–Containing Bioreceptor Layer. Adv. Funct. Mater. 2017, 27, 1606506. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhang, J.; Li, Z.; Zhang, W.; Wong, M.S.; Yu, G. Water–stable organic field–effect transistors based on naphthodithieno[3,2–b] thiophene derivatives. J. Mater. Chem. C 2019, 7, 297–301. [Google Scholar] [CrossRef]
- Lauro, M.D.; Berto, M.; Giordani, M.; Benaglia, S.; Schweicher, G.; Vuillaume, D.; Bortolotti, C.A.; Geerts, Y.H.; Biscarini, F. Liquid-Gated Organic Electronic Devices Based on High-Performance Solution-Processed Molecular Semiconductor. Adv. Electron. Mater. 2017, 3, 1700159. [Google Scholar] [CrossRef]
- Ko, J.; Ng, C.K.; Arramel; Wee, A.T.S.; Tam, T.L.D.; Leong, W.L. Water robustness of organic thin–film transistors based on pyrazino[2,3–g] quinoxaline–dione conjugated polymer. J. Mater. Chem. C 2020, 8, 4157–4163. [Google Scholar] [CrossRef]
- Doumbia, A.; Tong, J.; Wilson, R.J.; Turner, M.L. Investigation of the Performance of Donor–Acceptor Conjugated Polymers in Electrolyte-Gated Organic Field-Effect Transistors. Adv. Electron. Mater. 2021, 7, 2100071. [Google Scholar] [CrossRef]
- Sun, C.; Wang, Y.X.; Sun, M.; Zou, Y.; Zhang, C.; Cheng, S.; Hu, W. Facile and cost–effective liver cancer diagnosis by water–gated organic field–effect transistors. Biosens. Bioelectron. 2020, 164, 112251. [Google Scholar] [CrossRef] [PubMed]
- Viola, F.A.; Melloni, F.; Molazemhosseini, A.; Modena, F.; Sassi, M.; Beverina, L.; Caironi, M. A n-type, Stable Electrolyte Gated Organic Transistor Based on a Printed Polymer. Adv. Electron. Mater. 2022, 9, 2200573. [Google Scholar] [CrossRef]
- Yuan, X.; Yang, C.; He, Q.; Chen, J.; Yu, D.; Li, J.; Zhai, S.; Qin, Z.; Du, K.; Chu, Z.; et al. Current and Perspective Diagnostic Techniques for COVID–19. ACS Infect. Dis. 2020, 6, 1998–2016. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.K.W.; Pan, Y.; Cheng, S.M.S.; Hui, K.P.Y.; Krishnan, P.; Liu, Y.; Ng, D.Y.M.; Wan, C.K.C.; Yang, P.; Wang, Q.; et al. Molecular Diagnosis of a Novel Coronavirus (2019–nCoV) Causing an Outbreak of Pneumonia. Clin. Chem. 2020, 66, 549–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Abudayyeh, O.O.; Jonathan, S.G. A Protocol for Detection of COVID-19 Using CRISPR Diagnostics. Available online: https://www.broadinstitute.org/files/publications/special/COVID-19%20detection%20(updated).pdf (accessed on 1 May 2020).
- Seo, G.; Lee, G.; Kim, M.J.; Baek, S.H.; Choi, M.; Ku, K.B.; Lee, C.S.; Jun, S.; Park, D.; Kim, H.G.; et al. Rapid Detection of COVID–19 Causative Virus (SARS–CoV–2) in Human Nasopharyngeal Swab Specimens Using Field–Effect Transistor–Based Biosensor. ACS Nano 2020, 14, 5135–5142. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.; Wang, X.; Gu, C.; Guo, M.; Wang, Y.; Ai, Z.; Zhang, S.; Chen, Y.; Liu, W.; Wu, Y.; et al. Direct SARS–CoV–2 Nucleic Acid Detection by Y–Shaped DNA Dual–Probe Transistor Assay. J. Am. Chem. Soc. 2021, 143, 17004–17014. [Google Scholar] [CrossRef]
- Dai, C.; Guo, M.; Wu, Y.; Cao, B.P.; Wang, X.; Wu, Y.; Kang, H.; Kong, D.; Zhu, Z.; Ying, T.; et al. Ultraprecise Antigen 10–in–1 Pool Testing by Multiantibodies Transistor Assay. J. Am. Chem. Soc. 2021, 143, 19794–19801. [Google Scholar] [CrossRef]
- Gao, J.; Wang, C.; Chu, Y.; Han, Y.; Gao, Y.; Wang, Y.; Wang, C.; Liu, H.; Han, L.; Zhang, Y. Graphene oxide–graphene Van der Waals heterostructure transistor biosensor for SARS–CoV–2 protein detection. Talanta 2022, 240, 123197. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Chen, H.; Fan, K.; Labunov, V.; Lazarouk, S.; Yue, X.; Liu, C.; Yang, X.; Dong, L.; Wang, G. A supersensitive silicon nanowire array biosensor for quantitating tumor marker ctDNA. Biosens. Bioelectron. 2021, 181, 113147. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, B.; Li, Y.; Liang, H.; Yang, Y.; Yuan, Q. Construction of MoS2 field effect transistor sensor array for the detection of bladder cancer biomarkers. Sci. China-Chem. 2020, 63, 997–1003. [Google Scholar] [CrossRef]
- Sun, C.; Feng, G.; Song, Y.; Cheng, S.; Lei, S.; Hu, W. Single Molecule Level and Label–Free Determination of Multibiomarkers with an Organic Field–Effect Transistor Platform in Early Cancer Diagnosis. Anal. Chem. 2022, 94, 6615–6620. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Mackin, C.; Weng, W.H.; Zhu, J.; Luo, Y.; Luo, S.L.; Lu, A.Y.; Hempel, M.; McVay, E.; Kong, J.; et al. Integrated biosensor platform based on graphene transistor arrays for real–time high–accuracy ion sensing. Nat. Commun. 2022, 13, 5064. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.S.; Song, H.S.; Park, S.J.; Lee, S.H.; An, J.H.; Park, J.W.; Yang, H.; Yoon, H.; Bae, J.; Park, T.H.; et al. An Ultrasensitive, Selective, Multiplexed Superbioelectronic Nose That Mimics the Human Sense of Smell. Nano Lett. 2015, 15, 6559–6567. [Google Scholar] [CrossRef]
- Ahn, S.R.; An, J.H.; Song, H.S.; Park, J.W.; Lee, S.H.; Kim, J.H.; Jang, J.; Park, T.H. Duplex Bioelectronic Tongue for Sensing Umami and Sweet Tastes Based on Human Taste Receptor Nanovesicles. ACS Nano 2016, 10, 7287–7296. [Google Scholar] [CrossRef]
- Papamatthaiou, S.; Estrela, P.; Moschou, D. Printable graphene BioFETs for DNA quantification in Lab–on–PCB microsystems. Sci. Rep. 2021, 11, 9815. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Vo, R.; Hsu, H.-H.; Deng, P.; Zhang, Y.; Jiang, X. Modularized Field–Effect Transistor Biosensors. Nano Lett. 2019, 19, 6658–6664. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Park, S.J.; Park, C.S.; Seo, S.E.; Lee, J.; Kim, J.; Lee, S.H.; Lee, S.; Kim, J.S.; Ryu, C.M.; et al. High–performance portable graphene field–effect transistor device for detecting Gram–positive and –negative bacteria. Biosens. Bioelectron. 2020, 167, 112514. [Google Scholar] [CrossRef]
- Zhou, F.; Pan, W.; Chang, Y.; Su, X.; Duan, X.; Xue, Q. A Supported Lipid Bilayer–Based Lab–on–a–Chip Biosensor for the Rapid Electrical Screening of Coronavirus Drugs. ACS Sens. 2022, 7, 2084–2092. [Google Scholar] [CrossRef]
- Hajian, R.; Balderston, S.; Tran, T.; DeBoer, T.; Etienne, J.; Sandhu, M.; Wauford, N.A.; Chung, J.Y.; Nokes, J.; Athaiya, M.; et al. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field–effect transistor. Nat. Biomed. Eng. 2019, 3, 427–437. [Google Scholar] [CrossRef]
- Parkula, V.; Berto, M.; Diacci, C.; Patrahau, B.; Lauro, M.D.; Kovtun, A.; Liscio, A.; Sensi, M.; Samori, P.; Greco, P.; et al. Harnessing Selectivity and Sensitivity in Electronic Biosensing: A Novel Lab–on–Chip Multigate Organic Transistor. Anal. Chem. 2020, 92, 9330–9337. [Google Scholar] [CrossRef]
- Yoo, G.; Park, H.; Kim, M.; Song, W.G.; Jeong, S.; Kim, M.H.; Lee, H.; Lee, S.W.; Hong, Y.K.; Lee, M.G.; et al. Real–time electrical detection of epidermal skin MoS2 biosensor for point–of–care diagnostics. Nano Res. 2016, 10, 767–775. [Google Scholar] [CrossRef]
- Guo, S.; Wu, K.; Li, C.; Wang, H.; Sun, Z.; Xi, D.; Zhang, S.; Ding, W.; Zaghloul, M.E.; Wang, C.; et al. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter 2021, 4, 969–985. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Wang, H.; Zhou, Z.; Wu, Z.; Tao, K.; Gui, X.; Liu, C.; Shi, W.; Wu, J. Stretchable, self-healable, and breathable biomimetic iontronics with superior humidity-sensing performance for wireless respiration monitoring. SmartMat 2023, 4, e1147. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Xu, L.; Wang, L.; Hu, Z.; Liu, L.; Huang, Y.; Kotov, N.A. Biomimetic nanoporous aerogels from branched aramid nanofibers combining high heat insulation and compressive strength. SmartMat 2021, 2, 76–87. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, Z.; Wang, X.; Huang, C.; Lin, Q.; Zhao, X.; Pan, Y. A Flexible and Regenerative Aptameric Graphene–Nafion Biosensor for Cytokine Storm Biomarker Monitoring in Undiluted Biofluids toward Wearable Applications. Adv. Funct. Mater. 2020, 31, 2005958. [Google Scholar] [CrossRef]
- Novodchuk, I.; Bajcsy, M.; Yavuz, M. Graphene–based field effect transistor biosensors for breast cancer detection: A review on biosensing strategies. Carbon 2021, 172, 431–453. [Google Scholar] [CrossRef]
- Wadhera, T.; Kakkar, D.; Wadhwa, G.; Raj, B. Recent Advances and Progress in Development of the Field Effect Transistor Biosensor: A Review. J. Electron. Mater. 2019, 48, 7635–7646. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Semiconductor | Mobility (cm2V−1s−1) | Ion/off | Analyte | Detection Limit | Times (min) | Sensitivity | Ref |
---|---|---|---|---|---|---|---|---|
① High surface–volume ratio, high theoretical carrier velocity (~106 m/s) and mobility; ② Zero band gap, large leakage current, reducing the dynamic range of the sensor, sensitive to external conditions, such as electric field and foreign doping impurities. | Graphene | SARS–CoV–2 antibody | 10−18 M | <2 | 4% | 1 | ||
DNA | 1 nM | minutes | N/A | 15 | ||||
miRNA | 10−15 M | 20 | 5.99 mV/decade | 50 | ||||
RNA | 0.1 aM | minutes | 14.8 | 51 | ||||
3.79 (hole) | 3100 | Hg2+ | 16 pM/L | minutes | N/A | 52 | ||
3.78 (electron) | JEV/AIV | 1 fM/10 fM | minutes | N/A | 53 | |||
N/A | SARS–CoV–2 antigen | 2.42 × 102 copies/mL | >1 | N/A | 76 | |||
>10,000 * (Room temperature) | SARS–CoV–2 Nucleic acid | 0.03 copy/μL | ~1 | N/A | 77 | |||
SARS–CoV–2 protein | ~8 fg/mL | minutes | 12.8mV/decade | 79 | ||||
K+ Na+ Ca+ | ~100 μM | N/A | −54.7 ± 2.90 −56.8 ± 5.87 −30.1 ± 1.90 mV/decade | 83 | ||||
DNA | 1 nM | N/A | 30.1mV/decade | 86 | ||||
Nucleic acid | 1.7 fM | ~2.5 | N/A | 90 | ||||
IFN–γ | 880 fM | minutes | N/A | 97 | ||||
① Adjustable intrinsic band gap, high carrier mobility, large switching ratio, low leakage current; ②Sensitive toexternal conditions; | WSe2 | 133 | ~105 | PSA | 10 fg/mL | minutes | 2.6 | 58 |
WSe2 | N/A | N/A | Glucose | 10 mM | N/A | 2.87 × 105 A/A | 36 | |
MoS2 | N/A | ~106 | PSA | 100 fg/mL | minutes | N/A | 56 | |
MoS2 | N/A | N/A | PSA | 1 fg/mL | ~4 | 0.05% | 59 | |
MoS2 | 19.4 | ~102 | NMP22/CK8 | 0.027/0.019 aM | N/A | N/A | 81 | |
MoS2 | 83.5 | ~106 | PSA | 1 pg/mL | 2~3 | N/A | 92 | |
MoS2 | 9.18 | ~107 | Glucose | N/A | N/A | N/A | 93 | |
① Easy modification, adjustable energy band, high flexibility, easy solution processing, good hydrophobicity; ② Polymerization generally takes place at high temperature and consumes energy, low carrier mobility. | P3HT–COOH | 0.5 ± 0.12 | ~103 | DNA | N/A | minutes | N/A | 14 |
DDFTTF | ~0.35 | 2 × 03 | DNA | N/A | minutes | N/A | 22 | |
P3HT | 0.006 | N/A | D–Phe | 10−13 mol/L | N/A | N/A | 18 | |
P3HT | 10−3 | 204 ± 91 | SA | 10 nM | 45s | N/A | 25 | |
PBTTT | N/A | N/A | α–casein | 0.22 ppm | N/A | N/A | 17 | |
PBTTT | N/A | N/A | BSA | 6 × 10−13 M | <15 | N/A | 35 | |
PBTTT | ~0.02 | 102−103 | SA | 10−11 M | minutes | N/A | 26 | |
PBTTT–C14 | (1.1 ± 0.2) × 10−1 | N/A | pOBP protein | 50 pM | N/A | N/A | 37 | |
PDVT–8 | 0.18 | ~105 | AFP | 4.5 fM | 40 | 2.7% | 27 | |
DDFTTF | 0.25 | 2 × 103 | Hg2+ | 100 μM | N/A | N/A | 29 | |
P3HT–biotin | ~10−4 | ~80 | Streptavidin | N/A | minutes | 2% | 31 | |
PDPP3T | 0.3~0.6 | ~103 | ATP | 0.1 nM | minutes | N/A | 33 | |
PDBT–co–TT | 0.22 | 5.13 × 103 | AFP | 0.15 ng/mL | 45 | N/A | 71 | |
PDBT–co–TT | 2.07 | ~106 | AFP/ CEA | 0.176 pM/ 65 fM | minutes | N/A | 21 | |
PDBT–co–TT | ~0.1 | ~103 | AFP/CEA/ PSA | 4.75 aM | N/A | N/A | 82 | |
① Clear structure, easy to purify, ② Poor film formation, not conducive to large area preparation. Sensitive to external conditions; | α 6T | 4 × 10−2 | 102−103 | Penicillin | 5 μM | minutes | 50 μV/μM | 34 |
Pentacene | 0.116 | ~106 | BSA | N/A | N/A | N/A | 23 | |
Pentacene | 0.69 ± 0.07 | 26.0 ± 5.7 | GFPA | 1.0 ng/mL | minutes | N/A | 66 | |
Pentacene | N/A | N/A | TNF α | 3 pM | N/A | N/A | 91 | |
TIPS–pentacene | N/A | N/A | ADAs | 10−13 M | minutes | 1011 M−1 | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, R.; Liu, L.; Yuan, J.; Wu, L.; Lei, S. Recent Advances in Field Effect Transistor Biosensors: Designing Strategies and Applications for Sensitive Assay. Biosensors 2023, 13, 426. https://doi.org/10.3390/bios13040426
Hao R, Liu L, Yuan J, Wu L, Lei S. Recent Advances in Field Effect Transistor Biosensors: Designing Strategies and Applications for Sensitive Assay. Biosensors. 2023; 13(4):426. https://doi.org/10.3390/bios13040426
Chicago/Turabian StyleHao, Ruisha, Lei Liu, Jiangyan Yuan, Lingli Wu, and Shengbin Lei. 2023. "Recent Advances in Field Effect Transistor Biosensors: Designing Strategies and Applications for Sensitive Assay" Biosensors 13, no. 4: 426. https://doi.org/10.3390/bios13040426
APA StyleHao, R., Liu, L., Yuan, J., Wu, L., & Lei, S. (2023). Recent Advances in Field Effect Transistor Biosensors: Designing Strategies and Applications for Sensitive Assay. Biosensors, 13(4), 426. https://doi.org/10.3390/bios13040426