Microbial Biofuel Cells: Fundamental Principles, Development and Recent Obstacles
Abstract
:1. Introduction
2. MFC Working Principles
3. Mediators Used in MFCs
- Electrochemical activity.
- Biocompatibility with microorganisms used in the MFCs.
- Cell membrane permeability.
- Redox potential should be suitable for mediated electron transfer.
- Stable and soluble in both oxidized and reduced forms.
4. Modification of Microorganisms by Conductive Polymers
5. Conclusions and Future Aspects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Slate, A.J.; Whitehead, K.A.; Brownson, D.A.C.; Banks, C.E. Microbial Fuel Cells: An Overview of Cur-rent Technology. Renew. Sustain. Energy Rev. 2019, 101, 60–81. [Google Scholar] [CrossRef]
- Dwivedi, K.A.; Huang, S.J.; Wang, C.T.; Kumar, S. Fundamental Understanding of Microbial Fuel Cell Technology: Recent Development and Challenges. Chemosphere 2022, 288, 132446. [Google Scholar] [CrossRef]
- Rewatkar, P.; Goel, S. Shewanella Putrefaciens Powered Microfluidic Microbial Fuel Cell with Printed Circuit Board Electrodes and Soft-Lithographic Microchannel. Chemosphere 2022, 286, 131855. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, H.S.; Hyun, M.S.; Chang, I.S.; Kim, M.; Kim, B.H. A Mediator-Less Microbial Fuel Cell Using a Metal Reducing Bacterium, Shewanella putrefaciens. Enzym. Microb. Technol. 2002, 30, 145–152. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, G.; Kuang, B.; Jia, J.; Liu, C.; Cai, G.; Li, C. Novel Insights into the Anaerobic Digestion of Propionate via Syntrophobacter fumaroxidans and Geobacter sulfurreducens: Process and Mechanism. Water Res. 2021, 200, 117270. [Google Scholar] [CrossRef]
- Yi, H.; Nevin, K.P.; Kim, B.C.; Franks, A.E.; Klimes, A.; Tender, L.M.; Lovley, D.R. Selection of a Variant of Geobacter sulfurreducens with Enhanced Capacity for Current Production in Microbial Fuel Cells. Biosens. Bioelectron. 2009, 24, 3498–3503. [Google Scholar] [CrossRef]
- Andriukonis, E.; Celiesiute-Germaniene, R.; Ramanavicius, S.; Viter, R.; Ramanavicius, A. From Microorganism-based Aperometric Biosensors towards Microbial Fuel Cells. Sensors 2021, 21, 2442. [Google Scholar] [CrossRef]
- Li, S.W.; He, H.; Zeng, R.J.; Sheng, G.P. Chitin Degradation and Electricity Generation by Aeromonas Hydrophila in Microbial Fuel Cells. Chemosphere 2017, 168, 293–299. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, M.; Guo, J.; Sun, G. Bacterial Extracellular Electron Transfer in Bioelectrochemical Systems. Process. Biochem. 2012, 47, 1707–1714. [Google Scholar] [CrossRef]
- Raghavulu, S.V.; Goud, R.K.; Sarma, P.N.; Mohan, S.V. Saccharomyces Cerevisiae as Anodic Biocatalyst for Power Generation in Biofuel Cell: Influence of Redox Condition and Substrate Load. Bioresour. Technol. 2011, 102, 2751–2757. [Google Scholar] [CrossRef]
- Rozene, J.; Morkvenaite-Vilkonciene, I.; Bruzaite, I.; Zinovicius, A.; Ramanavicius, A. Baker’s Yeast-Based Microbial Fuel Cell Mediated by 2-Methyl-1,4-Naphthoquinone. Membranes 2021, 11, 182. [Google Scholar] [CrossRef] [PubMed]
- Rozene, J.; Morkvenaite-Vilkonciene, I.; Bruzaite, I.; Dzedzickis, A.; Ramanavicius, A. Yeast-Based Microbial Biofuel Cell Mediated by 9,10-Phenantrenequinone. Electrochim. Acta 2021, 373, 137918. [Google Scholar] [CrossRef]
- Ramanavicius, A.; Andriukonis, E.; Stirke, A.; Mikoliunaite, L.; Balevicius, Z.; Ramanaviciene, A. Synthesis of Polypyrrole within the Cell Wall of Yeast by Redox-Cycling of [Fe(CN)6]3−/[Fe(CN)6]4−. Enzym. Microb. Technol. 2016, 83, 40–47. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Ramanavicius, A. Conducting Polymers in the Design of Biosensors and Biofuel Cells. Polymers 2021, 13, 49. [Google Scholar] [CrossRef]
- Bruzaite, I.; Rozene, J.; Morkvenaite-Vilkonciene, I.; Ramanavicius, A. Towards Microorganism-Based Biofuel Cells: The Viability of Saccharomyces Cerevisiae Modified by Multiwalled Carbon Nanotubes. Nanomaterials 2020, 10, 954. [Google Scholar] [CrossRef]
- Gal, I.; Schlesinger, O.; Amir, L.; Alfonta, L. Yeast Surface Display of Dehydrogenases in Microbial Fuel-Cells. Bioelectrochemistry 2016, 112, 53–60. [Google Scholar] [CrossRef]
- Niu, J.; Lunn, D.J.; Pusuluri, A.; Yoo, J.I.; O’Malley, M.A.; Mitragotri, S.; Soh, H.T.; Hawker, C.J. Engi-neering Live Cell Surfaces with Functional Polymers via Cytocompatible Controlled Radical Polymerization. Nat. Chem. 2017, 9, 537–545. [Google Scholar] [CrossRef]
- de Oliveira, A.H.P.; Alcaraz-Espinoza, J.J.; da Costa, M.M.; Nascimento, M.L.F.; Swager, T.M.; de Oliveira, H.P. Improvement of Baker’s Yeast-Based Fuel Cell Power Output by Electrodes and Proton Exchange Membrane Modification. Mater. Sci. Eng. C 2019, 105, 110082. [Google Scholar] [CrossRef]
- Flimban, S.G.A.; Ismail, I.M.I.; Kim, T.; Oh, S.-E. Review Overview of Recent Advancements in the Microbial Fuel Cell from Fundamentals to Applications. Energies 2019, 12, 3390. [Google Scholar] [CrossRef]
- Duarte, K.D.Z.; Kwon, Y. Enhanced Extracellular Electron Transfer of Yeast-Based Microbial Fuel Cells via One Pot Substrate-Bound Growth Iron-Manganese Oxide Nanoflowers. J. Power Sources 2020, 474, 228496. [Google Scholar] [CrossRef]
- Duarte, K.D.Z.; Frattini, D.; Kwon, Y. High Performance Yeast-Based Microbial Fuel Cells by Surfactant-Mediated Gold Nanoparticles Grown atop a Carbon Felt Anode. Appl. Energy 2019, 256, 113912. [Google Scholar] [CrossRef]
- Mbokou, S.F.; Tonle, I.K.; Pontié, M. Development of a Novel Hybrid Biofuel Cell Type APAP/O2 Based on a Fungal Bioanode with a Scedosporium dehoogii Biofilm. J. Appl. Electrochem. 2017, 47, 273–280. [Google Scholar] [CrossRef]
- Pontié, M.; Jaspard, E.; Friant, C.; Kilani, J.; Fix-Tailler, A.; Innocent, C.; Chery, D.; Mbokou, S.F.; Som-rani, A.; Cagnon, B.; et al. A Sustainable Fungal Microbial Fuel Cell (FMFC) for the Bioremediation of Acetaminophen (APAP) and Its Main by-Product (PAP) and Energy Production from Biomass. BioCatal. Agric. Biotechnol. 2019, 22, 101376. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, B.; Liu, Q.; Du, P.; Liu, W.; He, Z. Biosynthesis of Palladium Nanoparticles Using: Shewanella loihica PV-4 for Excellent Catalytic Reduction of Chromium(VI). Environ. Sci. Nano 2018, 5, 730–739. [Google Scholar] [CrossRef]
- Wu, X.; Xiong, X.; Owens, G.; Brunetti, G.; Zhou, J.; Yong, X.; Xie, X.; Zhang, L.; Wei, P.; Jia, H. Anode Modification by Biogenic Gold Nanoparticles for the Improved Performance of Microbial Fuel Cells and Microbial Community Shift. Bioresour. Technol. 2018, 270, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Christwardana, M.; Kwon, Y. Yeast and Carbon Nanotube Based Biocatalyst Developed by Synergetic Effects of Covalent Bonding and Hydrophobic Interaction for Performance Enhancement of Membraneless Microbial Fuel Cell. Bioresour. Technol. 2017, 225, 175–182. [Google Scholar] [CrossRef]
- Coman, V.; Gustavsson, T.; Finkelsteinas, A.; Von Wachenfeldt, C.; Hägerhäll, C.; Gorton, L. Electrical Wiring of Live, Metabolically Enhanced Bacillus Subtilis Cells with Flexible Osmium-Redox Polymers. J. Am. Chem. Soc. 2009, 131, 16171–16176. [Google Scholar] [CrossRef]
- Christwardana, M.; Frattini, D.; Duarte, K.D.Z.; Accardo, G.; Kwon, Y. Carbon Felt Molecular Modification and Biofilm Augmentation via Quorum Sensing Approach in Yeast-Based Microbial Fuel Cells. Appl. Energy 2019, 238, 239–248. [Google Scholar] [CrossRef]
- Ramanavicius, A.; Ramanaviciene, A. Hemoproteins in Design of Biofuel Cells. Fuel Cells 2009, 9, 25–36. [Google Scholar] [CrossRef]
- Sekrecka-Belniak, A.; Toczyłowska-Maminska, R. Fungi-Based Microbial Fuel Cells. Energies 2018, 11, 2827. [Google Scholar] [CrossRef] [Green Version]
- Davis, F.; Higson, S.P.J. Biofuel Cells-Recent Advances and Applications. Biosens. Bioelectron. 2007, 22, 1224–1235. [Google Scholar] [CrossRef] [PubMed]
- Kisieliute, A.; Popov, A.; Apetrei, R.M.; Cârâc, G.; Morkvenaite-Vilkonciene, I.; Ramanaviciene, A.; Ramanavicius, A. Towards Microbial Biofuel Cells: Improvement of Charge Transfer by Self-Modification of Microoganisms with Conducting Polymer—Polypyrrole. Chem. Eng. J. 2019, 356, 1014–1021. [Google Scholar] [CrossRef]
- Ramanaviciene, A.; Nastajute, G.; Snitka, V.; Kausaite, A.; German, N.; Barauskas-Memenas, D.; Ra-manavicius, A. Spectrophotometric Evaluation of Gold Nanoparticles as Red-Ox Mediator for Glucose Oxidase. Sens. Actuators B-Chem. 2009, 137, 483–489. [Google Scholar] [CrossRef]
- Li, M.; Zhou, M.; Tian, X.; Tan, C.; McDaniel, C.T.; Hassett, D.J.; Gu, T. Microbial Fuel Cell (MFC) Power Performance Improvement through Enhanced Microbial Electrogenicity. Biotechnol. Adv. 2018, 36, 1316–1327. [Google Scholar] [CrossRef] [PubMed]
- Higham, T.E. Author’s Personal Copy Automatica Author’s Personal Copy. Encycl. Toxicol. 2014, 50, 952–961. [Google Scholar]
- Rudra, R. Conducting Polymer-Based Microbial Fuel Cells. In Enzymatic Fuel Cells: Materials and Applications; Chapter 8; Materials Research Forum LLC: Millersville, PA, USA, 2019; Volume 44, pp. 173–186. ISBN 9781644900079. [Google Scholar]
- Babanova, S.; Hubenova, Y.; Mitov, M. Influence of Artificial Mediators on Yeast-Based Fuel Cell Performance. J. Biosci. Bioeng. 2011, 112, 379–387. [Google Scholar] [CrossRef]
- Rawson, F.J.; Downard, A.J.; Baronian, K.H. Electrochemical Detection of Intracellular and Cell Membrane Redox Systems in Saccharomyces Cerevisiae. Sci. Rep. 2014, 4, 5216. [Google Scholar] [CrossRef]
- Holmes, D.E.; Ueki, T.; Tang, H.; Zhou, J.; Smith, J.A.; Chaput, G.; Lovley, D.R. A Membrane-Bound Cytochrome Enables from Extracellular Electron Transfer. Am. Soc. Microbiol. 2019, 10, 1–12. [Google Scholar]
- Okamoto, A.; Kalathil, S.; Deng, X.; Hashimoto, K.; Nakamura, R.; Nealson, K.H. Cell-Secreted Flavins Bound to Membrane Cytochromes Dictate Electron Transfer Reactions to Surfaces with Diverse Charge and PH. Sci. Rep. 2014, 4, 5628. [Google Scholar] [CrossRef]
- Ishioka, T.; Uchida, T.; Teramae, N. Analysis of the Redox Reaction of 9,10-Phenanthrenequinone on a Gold Electrode Surface by Cyclic Voltammetry and Time-Resolved Fourier Transform Surface-Enhanced Raman Scattering Spectroscopy. Anal. Chim. Acta 2001, 449, 253–260. [Google Scholar] [CrossRef]
- Le Comte, A.; Chhin, D.; Gagnon, A.; Retoux, R.; Brousse, T.; Bélanger, D. Spontaneous Grafting of 9,10-Phenanthrenequinone on Porous Carbon as an Active Electrode Material in an Electrochemical Capacitor in an Alkaline Electrolyte. J. Mater. Chem. A Mater. 2015, 3, 6146–6156. [Google Scholar] [CrossRef]
- Genys, P.; Aksun, E.; Tereshchenko, A.; Valiūnienė, A.; Ramanaviciene, A.; Ramanavicius, A. Electro-chemical Deposition and Investigation of Poly-9,10-Phenanthrenequinone Layer. Nanomaterials 2019, 9, 702. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.S.; Tryk, D.; Yeager, E. The Electrochemistry of Graphite and Modified Graphite Surfaces: The Reduction of O2. Electrochim. Acta 1989, 34, 1733–1737. [Google Scholar] [CrossRef]
- Brousse, T.; Cougnon, C.; Bélanger, D. Grafting of Quinones on Carbons as Active Electrode Materials in Electrochemical Capacitors. J. Braz. Chem. Soc. 2018, 29, 989–997. [Google Scholar] [CrossRef]
- Zinovicius, A.; Rozene, J.; Merkelis, T.; Bruzaitė, I.; Ramanavicius, A.; Morkvenaite-Vilkonciene, I. Evaluation of a Yeast–Polypyrrole Biocomposite Used in Microbial Fuel Cells. Sensors 2022, 22, 327. [Google Scholar] [CrossRef]
- Jiang, X.; Hu, J.; Lieber, A.M.; Jackan, C.S.; Biffinger, J.C.; Fitzgerald, L.A.; Ringeisen, B.R.; Lieber, C.M. Nanoparticle Facilitated Extracellular Electron Transfer in Microbial Fuel Cells. Nano Lett. 2014, 14, 6737–6742. [Google Scholar] [CrossRef]
- Sharma, T.; Mohana Reddy, A.L.; Chandra, T.S.; Ramaprabhu, S. Development of Carbon Nanotubes and Nanofluids Based Microbial Fuel Cell. Int. J. Hydrogen Energy 2008, 33, 6749–6754. [Google Scholar] [CrossRef]
- Zhao, C.E.; Chen, J.; Ding, Y.; Wang, V.B.; Bao, B.; Kjelleberg, S.; Cao, B.; Loo, S.C.J.; Wang, L.; Huang, W.; et al. Chemically Functionalized Conjugated Oligoelectrolyte Nanoparticles for Enhancement of Current Generation in Microbial Fuel Cells. ACS Appl. Mater. Interfaces 2015, 7, 14501–14505. [Google Scholar] [CrossRef]
- Cui, Q.; Wang, X.; Yang, Y.; Li, S.; Li, L.; Wang, S. Binding-Directed Energy Transfer of Conjugated Polymer Materials for Dual-Color Imaging of Cell Membrane. Chem. Mater. 2016, 28, 4661–4669. [Google Scholar] [CrossRef]
- Mammari, N.; Lamouroux, E.; Boudier, A.; Duval, R.E. Current Knowledge on the Oxidative-Stress-Mediated Antimicrobial Properties of Metal-Based Nanoparticles. Microorganisms 2022, 10, 437. [Google Scholar] [CrossRef]
- Guo, W.; Pi, Y.; Song, H.; Tang, W.; Sun, J. Layer-by-Layer Assembled Gold Nanoparticles Modified Anode and Its Application in Microbial Fuel Cells. Colloids Surf. A Phys. Eng. Asp. 2012, 415, 105–111. [Google Scholar] [CrossRef]
- Hindatu, Y.; Annuar, M.S.M.; Gumel, A.M. Mini-Review: Anode Modification for Improved Performance of Microbial Fuel Cell. Renew. Sustain. Energy Rev. 2017, 73, 236–248. [Google Scholar] [CrossRef]
- Bennetto, H.P.; Stirling, J.L.; Vega, C.A. Anodic Reactions in Microbial Fuel Cells. Biotechnol. Bioeng. 1983, 25, 559–568. [Google Scholar] [CrossRef]
- Gunawardena, A.; Fernando, S.; To, F. Performance of a Yeast-Mediated Biological Fuel Cell. Int. J. Mol. Sci. 2008, 9, 1893–1907. [Google Scholar] [CrossRef]
- Rahimnejad, M.; Najafpour, G.D.; Ghoreyshi, A.A.; Talebnia, F.; Premier, G.C.; Bakeri, G.; Kim, J.R.; Oh, S.E. Thionine Increases Electricity Generation from Microbial Fuel Cell Using Saccharomyces Cerevisiae and Exoelectrogenic Mixed Culture. J. Microbiol. 2012, 50, 575–580. [Google Scholar] [CrossRef]
- Rahimnejad, M.; Najafpour, G.D.; Ghoreyshi, A.A.; Shakeri, M.; Zare, H. Methylene Blue as Electron Promoters in Microbial Fuel Cell. Int. J. Hydrogen Energy 2011, 36, 13335–13341. [Google Scholar] [CrossRef]
- Walker, A.L.; Walker, C.W. Biological Fuel Cell and an Application as a Reserve Power Source. J. Power Sources 2006, 160, 123–129. [Google Scholar] [CrossRef]
- Permana, D.; Rosdianti, D.; Ishmayana, S.; Rachman, S.D.; Putra, H.E.; Rahayuningwulan, D.; Hari-yadi, H.R. Preliminary Investigation of Electricity Production Using Dual Chamber Microbial Fuel Cell (DCMFC) with Saccharomyces Cerevisiae as Biocatalyst and Methylene Blue as an Electron Mediator. Procedia Chem. 2015, 17, 36–43. [Google Scholar] [CrossRef]
- Wilkinson, S.; Klar, J.; Applegarth, S. Optimizing Biofuel Cell Performance Using a Targeted Mixed Mediator Combination. Electroanalysis 2006, 18, 2001–2007. [Google Scholar] [CrossRef]
- Ganguli, R.; Dunn, B.S. Kinetics of Anode Reactions for a Yeast-Catalysed Microbial Fuel Cell. Fuel Cells 2009, 9, 44–52. [Google Scholar] [CrossRef]
- Christwardana, M.; Frattini, D.; Accardo, G.; Yoon, S.P.; Kwon, Y. Effects of Methylene Blue and Methyl Red Mediators on Performance of Yeast Based Microbial Fuel Cells Adopting Polyethylenimine Coated Carbon Felt as Anode. J. Power Sources 2018, 396, 1–11. [Google Scholar] [CrossRef]
- Hubenova, Y.; Mitov, M. Potential Application of Candida Melibiosica in Biofuel Cells. Bioelectrochemistry 2010, 78, 57–61. [Google Scholar] [CrossRef]
- Moradian, J.M.; Xu, Z.A.; Shi, Y.T.; Fang, Z.; Yong, Y.C. Efficient Biohydrogen and Bioelectricity Production from Xylose by Microbial Fuel Cell with Newly Isolated Yeast of Cystobasidium slooffiae. Int. J. Energy Res. 2020, 44, 325–333. [Google Scholar] [CrossRef]
- Pal, M.; Sharma, R.K. Exoelectrogenic Response of Pichia fermentans Influenced by Mediator and Reactor Design. J. Biosci. Bioeng. 2019, 127, 714–720. [Google Scholar] [CrossRef]
- Haslett, N.D.; Rawson, F.J.; Barriëre, F.; Kunze, G.; Pasco, N.; Gooneratne, R.; Baronian, K.H.R. Characterisation of Yeast Microbial Fuel Cell with the Yeast Arxula adeninivorans as the Biocatalyst. Biosens. Bioelectron. 2011, 26, 3742–3747. [Google Scholar] [CrossRef]
- Emir, G.; Dilgin, Y.; Ramanaviciene, A.; Ramanavicius, A. Amperometric Nonenzymatic Glucose Biosensor Based on Graphite Rod Electrode Modified by Ni-Nanoparticle/Polypyrrole Composite. Microchem. J. 2021, 161, 105751. [Google Scholar] [CrossRef]
- Ramanavicius, A.; Oztekin, Y.; Ramanaviciene, A. Electrochemical Formation of Polypyrrole-Based Layer for Immunosensor Design. Sens. Actuators B Chem. 2014, 197, 237–243. [Google Scholar] [CrossRef]
- Long, Y.Z.; Li, M.M.; Gu, C.; Wan, M.; Duvail, J.L.; Liu, Z.; Fan, Z. Recent Advances in Synthesis, Physical Properties and Applications of Conducting Polymer Nanotubes and Nanofibers. Prog. Polym. Sci. 2011, 36, 1415–1442. [Google Scholar] [CrossRef]
- Rahman, M.A.; Kumar, P.; Park, D.S.; Shim, Y.B. Electrochemical Sensors Based on Organic Conjugated Polymers. Sensors 2008, 8, 118–141. [Google Scholar] [CrossRef]
- Bredas, J.L.; Street, G.B. Polarons, Bipolarons, and Solitons in Conducting Polymers. Acc. Chem. Res. 1985, 18, 309–315. [Google Scholar] [CrossRef]
- Le, T.-H.H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9, 150. [Google Scholar] [CrossRef]
- Ratautaite, V.; Topkaya, S.N.; Mikoliunaite, L.; Ozsoz, M.; Oztekin, Y.; Ramanaviciene, A.; Ramanavicius, A. Molecularly Imprinted Polypyrrole for DNA Determination. Electroanalysis 2013, 25, 1169–1177. [Google Scholar] [CrossRef]
- Ramanaviciene, A.; Ramanavicius, A. Pulsed Amperometric Detection of DNA with an ssDNA/Polypyrrole-Modified Electrode. Anal. Bioanal. Chem. 2004, 379, 287–293. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Ramanavicius, A. Charge Transfer and Biocompatibility Aspects in Conducting Polymer-Based Enzymatic Biosensors and Biofuel Cells. Nanomaterials 2021, 11, 371. [Google Scholar] [CrossRef]
- Patois, T.; Lakard, B.; Martin, N.; Fievet, P. Effect of Various Parameters on the Conductivity of Free Standing Electrosynthesized Polypyrrole Films. Synth. Met. 2010, 160, 2180–2185. [Google Scholar] [CrossRef]
- Lete, C.; Lakard, B.; Hihn, J.-Y.; del Campo, F.J.; Lupu, S. Use of Sinusoidal Voltages with Fixed Frequency in the Preparation of Tyrosinase Based Electrochemical Biosensors for Dopamine Electroanalysis. Sens. Actuators B Chem. 2017, 240, 801–809. [Google Scholar] [CrossRef]
- Leonavicius, K.; Ramanaviciene, A.; Ramanavicius, A. Polymerization Model for Hydrogen Peroxide Initiated Synthesis of Polypyrrole Nanoparticles. Langmuir 2011, 27, 10970–10976. [Google Scholar] [CrossRef]
- Ramanavicius, A.; Kausaite, A.; Ramanaviciene, A. Self-Encapsulation of Oxidases as a Basic Approach to Tune the Upper Detection Limit of Amperometric Biosensors. Analyst 2008, 133, 1083. [Google Scholar] [CrossRef]
- Bai, S.; Hu, Q.; Zeng, Q.; Wang, M.; Wang, L. Variations in Surface Morphologies, Properties, and Electrochemical Responses to Nitro-Analyte by Controlled Electropolymerization of Thiophene Derivatives. ACS Appl. Mater. Interfaces 2018, 10, 11319–11327. [Google Scholar] [CrossRef] [PubMed]
- Stewart, S.; Ivy, M.A.; Anslyn, E.V. The Use of Principal Component Analysis and Discriminant Analysis in Differential Sensing Routines. Chem. Soc. Rev. 2014, 43, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.-X.; Su, F.; Trewin, A.; Wood, C.D.; Campbell, N.L.; Niu, H.; Dickinson, C.; Ganin, A.Y.; Rosseinsky, M.J.; Khimyak, Y.Z.; et al. Conjugated Microporous Poly(Aryleneethynylene) Networks. Angew. Chem. 2007, 119, 8728–8732. [Google Scholar] [CrossRef]
- Apetrei, R.M.; Carac, G.; Bahrim, G.; Ramanaviciene, A.; Ramanavicius, A. Modification of Aspergillus Niger by Conducting Polymer, Polypyrrole, and the Evaluation of Electrochemical Properties of Modified Cells. Bioelectrochemistry 2018, 121, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Stirke, A.; Apetrei, R.M.; Kirsnyte, M.; Dedelaite, L.; Bondarenka, V.; Jasulaitiene, V.; Pucetaite, M.; Selskis, A.; Carac, G.; Bahrim, G.; et al. Synthesis of Polypyrrole Microspheres by Streptomyces spp. Polymer 2016, 84, 99–106. [Google Scholar] [CrossRef]
- Pankratova, G.; Hederstedt, L.; Gorton, L. Extracellular Electron Transfer Features of Gram-Positive Bacteria. Anal. Chim Acta 2019, 1076, 32–47. [Google Scholar] [CrossRef]
- Pankratova, G.; Pankratov, D.; Milton, R.D.; Minteer, S.D.; Gorton, L. Following Nature: Bioinspired Mediation Strategy for Gram-Positive Bacterial Cells. Adv. Energy Mater. 2019, 9, 1900215. [Google Scholar] [CrossRef]
- Güven, G.; Lozano-Sanchez, P.; Güven, A. Power Generation from Human Leukocytes/Lymphocytes in Mammalian Biofuel Cell. Int. J. Electrochem. 2013, 2013, 706792. [Google Scholar] [CrossRef]
- Ayato, Y.; Sakurai, K.; Fukunaga, S.; Suganuma, T.; Yamagiwa, K.; Shiroishi, H.; Kuwano, J. A Simple Biofuel Cell Cathode with Human Red Blood Cells as Electrocatalysts for Oxygen Reduction Reaction. Biosens. Bioelectron. 2014, 55, 14–18. [Google Scholar] [CrossRef]
- Apetrei, R.M.; Carac, G.; Ramanaviciene, A.; Bahrim, G.; Tanase, C.; Ramanavicius, A. Cell-Assisted Synthesis of Conducting Polymer—Polypyrrole—For the Improvement of Electric Charge Transfer through Fungal Cell Wall. Colloids Surf. B Biointerfaces 2019, 175, 671–679. [Google Scholar] [CrossRef]
- Vaitkuviene, A.; Kaseta, V.; Voronovic, J.; Ramanauskaite, G.; Biziuleviciene, G.; Ramanaviciene, A.; Ramanavicius, A. Evaluation of Cytotoxicity of Polypyrrole Nanoparticles Synthesized by Oxidative Polymerization. J. Hazard. Mater. 2013, 250–251, 167–174. [Google Scholar] [CrossRef]
- Vaitkuviene, A.; Ratautaite, V.; Mikoliunaite, L.; Kaseta, V.; Ramanauskaite, G.; Biziuleviciene, G.; Ramanaviciene, A.; Ramanavicius, A. Some Biocompatibility Aspects of Conducting Polymer Polypyrrole Evaluated with Bone Marrow-Derived Stem Cells. Colloids Surf. A Phys. Eng. Asp. 2014, 442, 152–156. [Google Scholar] [CrossRef]
- German, N.; Ramanaviciene, A.; Ramanavicius, A. Formation and Electrochemical Evaluation of Polyaniline and Polypyrrole Nanocomposites Based on Glucose Oxidase and Gold Nanostructures. Polymers 2020, 12, 3026. [Google Scholar] [CrossRef]
- Van der Zee, F.P.; Cervantes, F.J. Impact and Application of Electron Shuttles on the Redox (Bio)Transformation of Contaminants: A Review. Biotechnol. Adv. 2009, 27, 256–277. [Google Scholar] [CrossRef] [Green Version]
- Magennis, E.P.; Fernandez-Trillo, F.; Sui, C.; Spain, S.G.; Bradshaw, D.J.; Churchley, D.; Mantovani, G.; Winzer, K.; Alexander, C. Bacteria-Instructed Synthesis of Polymers for Self-Selective Microbial Binding and Labelling. Nat. Mater. 2014, 13, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Andriukonis, E.; Stirke, A.; Garbaras, A.; Mikoliunaite, L.; Ramanaviciene, A.; Remeikis, V.; Thornton, B.; Ramanavicius, A. Yeast-Assisted Synthesis of Polypyrrole: Quantification and Influence on the Mechanical Properties of the Cell Wall. Colloids Surf. B Biointerfaces 2018, 164, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.-B.; Wu, Y.; Lin, Z.-Q.; Xie, J.; Tan, C.H.; Loo, J.S.C.; Cao, B.; Zhang, J.-R.; Zhu, J.-J.; Zhang, Q. Living and Conducting: Coating Individual Bacterial Cells with In Situ Formed Polypyrrole. Angew. Chem. 2017, 129, 10652–10656. [Google Scholar] [CrossRef]
- Apetrei, R.M.; Cârâc, G.; Bahrim, G.; Camurlu, P. Sensitivity Enhancement for Microbial Biosensors through Cell Self-Coating with Polypyrrole. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 1058–1067. [Google Scholar] [CrossRef]
- Ramanavičius, A.; Kaušaite, A.; Ramanavičiene, A. Polypyrrole-Coated Glucose Oxidase Nanoparticles for Biosensor Design. Sens. Actuators B Chem. 2005, 111–112, 532–539. [Google Scholar] [CrossRef]
- Olea, D.; Viratelle, O.; Faure, C. Polypyrrole-Glucose Oxidase Biosensor. Effect of Enzyme Encapsulation in Multilamellar Vesicles on Analytical Properties. Biosens. Bioelectron. 2008, 23, 788–794. [Google Scholar] [CrossRef]
- Mazur, M.; Krywko-Cendrowska, A.; Krysiński, P.; Rogalski, J. Encapsulation of Laccase in a Conducting Polymer Matrix: A Simple Route towards Polypyrrole Microcontainers. Synth. Met. 2009, 159, 1731–1738. [Google Scholar] [CrossRef]
- Ramanavicius, A.; Kausaite, A.; Ramanaviciene, A.; Acaite, J.; Malinauskas, A. Redox Enzyme—Glu-cose Oxidase—Initiated Synthesis of Polypyrrole. Synth. Met. 2006, 156, 409–413. [Google Scholar] [CrossRef]
- Apetrei, R.M.; Cârâc, G.; Bahrim, G.; Camurlu, P. Utilization of Enzyme Extract Self-Encapsulated within Polypyrrole in Sensitive Detection of Catechol. Enzym. Microb. Technol. 2019, 128, 34–39. [Google Scholar] [CrossRef]
- Liu, S.; Cai, L.; Wang, L.; Yi, X.; Peng, Y. Polydopamine Nanocoating on Individual Cells for Enhanced Extracellular Electron Transfer. Chem. Commun. 2019, 55, 10535–10538. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.Y.; Wang, Y.Z.; Fang, Z.; Shi, Y.T.; Cheng, Q.W.; Chen, Y.X.; Shi, W.; Yong, Y.C. Single Cell Elec-tron Collectors for Highly Efficient Wiring-up Electronic Abiotic/Biotic Interfaces. Nat. Commun. 2020, 11, 4087. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Aslan, H.; Zhang, P.; Zhu, S.; Xiao, Y.; Chen, L.; Khan, N.; Boesen, T.; Wang, Y.; Liu, Y.; et al. Carbon Dots-Fed Shewanella Oneidensis MR-1 for Bioelectricity Enhancement. Nat. Commun. 2020, 11, 1379. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yi, X.; Wu, X.; Li, Q.; Wang, Y. Internalized Carbon Dots for Enhanced Extracellular Electron Transfer in the Dark and Light. Small 2020, 16, e2004194. [Google Scholar] [CrossRef] [PubMed]
- Aslan, S.; Conghaile, P.; Leech, D.; Gorton, L.; Timur, S.; Anik, U. Development of an Osmium Redox Polymer Mediated Bioanode and Examination of Its Performance in Gluconobacter oxydans Based Microbial Fuel Cell. Electroanalysis 2017, 29, 1651–1657. [Google Scholar] [CrossRef]
- Yuan, Y.; Shin, H.; Kang, C.; Kim, S. Wiring Microbial Biofilms to the Electrode by Osmium Redox Polymer for the Performance Enhancement of Microbial Fuel Cells. Bioelectrochemistry 2016, 108, 8–12. [Google Scholar] [CrossRef]
- Timur, S.; Haghighi, B.; Tkac, J.; Pazarlioǧlu, N.; Telefoncu, A.; Gorton, L. Electrical Wiring of Pseudomonas putida and Pseudomonas fluorescens with Osmium Redox Polymers. Bioelectrochemistry 2007, 71, 38–45. [Google Scholar] [CrossRef]
- Hasan, K.; Çevik, E.; Sperling, E.; Packer, M.A.; Leech, D.; Gorton, L. Photoelectrochemical Wiring of Paulschulzia Pseudovolvox (Algae) to Osmium Polymer Modified Electrodes for Harnessing Solar Energy. Adv. Energy Mater. 2015, 5. [Google Scholar] [CrossRef]
- Sayed, E.T.; Tsujiguchi, T.; Nakagawa, N. Catalytic Activity of Baker’s Yeast in a Mediatorless Microbial Fuel Cell. Bioelectrochemistry 2012, 86, 97–101. [Google Scholar] [CrossRef]
- Wu, W.; Niu, H.; Yang, D.; Wang, S.; Jiang, N.; Wang, J.; Lin, J.; Hu, C. Polyaniline/Carbon Nanotubes Composite Modified Anode via Graft Polymerization and Self-Assembling for Microbial Fuel Cells. Polymers 2018, 10, 759. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.W.; May, H.D. Electrochemical Evidence of Direct Electrode Reduction by a Thermophilic Gram-Positive Bacterium, Thermincola ferriacetica. Energy Environ. Sci. 2009, 2, 699–705. [Google Scholar] [CrossRef]
- Herrero-Hernandez, E.; Smith, T.J.; Akid, R. Electricity Generation from Wastewaters with Starch as Carbon Source Using a Mediatorless Microbial Fuel Cell. Biosens. Bioelectron. 2013, 39, 194–198. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Liu, J.; Qiao, Y.; Li, C.M.; Tan, T.T.Y. Architecture Engineering of Hierarchically Porous Chitosan/Vacuum-Stripped Graphene Scaffold as Bioanode for High Performance Microbial Fuel Cell. Nano Lett. 2012, 12, 4738–4741. [Google Scholar] [CrossRef] [PubMed]
- Mardiana, U.; Innocent, C.; Cretin, M.; Buchari; Setiyanto, H.; Nurpalah, R.; Kusmiati, M. Applicability of Alginate Film Entrapped Yeast for Microbial Fuel Cell. Russ. J. Electrochem. 2019, 55, 78–87. [Google Scholar] [CrossRef]
Yeast | Substrate | Mediator | Anode | Power Output (mW m−2) | Ref. |
---|---|---|---|---|---|
S. cerevisiae | Glucose | Resorufin | Glassy carbon | 155 | [54] |
S. cerevisiae | Glucose | Methylene blue + K3[Fe(CN)6] | Reticulated vitreous carbon | 147 | [55] |
S. cerevisiae | Glucose | Thionine | Graphite | 60 | [56] |
S. cerevisiae | Glucose | Neutral red | Graphite plate | 133 | [57] |
S. cerevisiae | Glucose | Methylene blue | Platinum mesh | 65 | [58] |
S. cerevisiae | Glucose | Methylene blue | Copper electrode | 4.48 | [59] |
S. cerevisiae | Dextrose | Methylene blue | Reticulated vitreous carbon | 400 | [60] |
S. cerevisiae | Dextrose | Neutral red | Reticulated vitreous carbon | 100 | [60] |
S. cerevisiae | Dextrose | Methylene blue with Neutral red | Reticulated vitreous carbon | 500 | [60] |
S. cerevisiae | Dextrose | Methylene blue | Carbon felt | 300 | [61] |
S. cerevisiae | YEPD with glucose | Methylene blue | Carbon felt modified with poly-ethyleneimine | 429.29 ± 42.75 | [62] |
S. cerevisiae | YEPD with glucose | Methylene red | Carbon felt modified with poly-ethyleneimine | 282.77 ± 15.95 | [62] |
S. cerevisiae | Glucose | Menadione + K3[Fe(CN)6] | Graphite rod | 0.408 | [11] |
S. cerevisiae | Glucose | 9,10-phenantrenequinone + K3[Fe(CN)6] | Graphite rod | 22.2 | [12] |
C. melibiosica | YEPD with fructose | Bromocresol green | Carbon felt | 46 | [37] |
C. melibiosica | YEPD with fructose | Methyl orange | Carbon felt | 137 | [37] |
C. melibiosica | YEPD with fructose | Methyl red | Carbon felt | 113 | [37] |
C. melibiosica | YEPD with fructose | Neutral red | Carbon felt | 89 | [37] |
C. melibiosica | YEPD with fructose | Methylene blue | Carbon felt | 640 | [37] |
C. melibiosica | Fructose | Methylene blue | Graphite rods | 185 | [63] |
C. slooffiae strain JSUX1 | Xylose | Riboflavin | Carbon felt | 67 | [64] |
P. fermentans | YEPD broth | Methylene blue | Carbon fibers in dual chamber | 12.3 | [65] |
P. fermentans | YEPD broth | Methylene blue | Carbon fibers in single membrane-less chamber | 16.4 | [65] |
A. adeninivorans | Dextrose with glucose | Tetramethyl-phenylenediamine | Carbon fibre cloth | 1000 | [66] |
Anode | Anode Material/Electron Donor | Power Density, mW m−2 | Ref. |
---|---|---|---|
Bacillus subtilis on aldrithiol monolayer and OsRP | Gold, Graphite/Succinate | - | [27] |
Saccharomyces cerevisiae on PQ and MWCNTs | Graphite/Glucose | 1.13 | [14] |
Saccharomyces cerevisiae | Carbon paper/Glucose | 3 | [111] |
Scedosporium dehoogii | CF/APAP | 6.5 | [22] |
Shewanella loihica on PANI and carbon nanotubes | APTES, ITO/Sodium lactate | 34.5 | [112] |
Scedosporium dehoogii | CF/APAP, Lignin | 50, 16 | [23] |
Saccharomyces cerevisiae with CNTs | PU/Glucose, MB | 100 | [18] |
Thermincola ferriacetica | Graphite/DSMZ | 146 | [113] |
Saccharomyces cerevisiae on PEI and one of the QS molecules (phenylethanol, ryptophol, and tyrosol). | CF/Glucose | 159 * 156 135 | [28] |
Gammaproteobacteria and Negativicutes on MWCNTs blended with biogenic Au | CF/Sludge | 178 | [25] |
Saccharomyces cerevisiae on PEI and CNTs | CNTs/Glucose | 344 | [26] |
Escherichia coli | Platinized titanium/Glucose | 502 | [114] |
Candida melibiosica | CF/Methylene blue | 640 | [37] |
Pseudomonas aeruginosa | Chitosan, vacuum-stripped graphene/Glucose | 1530 | [115] |
Saccharomyces cerevisiae on PEI and AuNPs | CF/Glucose | 2771 | [21] |
Saccharomyces cerevisiae on alginate | CF/Glucose | 3900 | [116] |
Saccharomyces cerevisiae on PEI, with SDBS and FeMnNPs | CF/Glucose | 5838 | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kižys, K.; Zinovičius, A.; Jakštys, B.; Bružaitė, I.; Balčiūnas, E.; Petrulevičienė, M.; Ramanavičius, A.; Morkvėnaitė-Vilkončienė, I. Microbial Biofuel Cells: Fundamental Principles, Development and Recent Obstacles. Biosensors 2023, 13, 221. https://doi.org/10.3390/bios13020221
Kižys K, Zinovičius A, Jakštys B, Bružaitė I, Balčiūnas E, Petrulevičienė M, Ramanavičius A, Morkvėnaitė-Vilkončienė I. Microbial Biofuel Cells: Fundamental Principles, Development and Recent Obstacles. Biosensors. 2023; 13(2):221. https://doi.org/10.3390/bios13020221
Chicago/Turabian StyleKižys, Kasparas, Antanas Zinovičius, Baltramiejus Jakštys, Ingrida Bružaitė, Evaldas Balčiūnas, Milda Petrulevičienė, Arūnas Ramanavičius, and Inga Morkvėnaitė-Vilkončienė. 2023. "Microbial Biofuel Cells: Fundamental Principles, Development and Recent Obstacles" Biosensors 13, no. 2: 221. https://doi.org/10.3390/bios13020221
APA StyleKižys, K., Zinovičius, A., Jakštys, B., Bružaitė, I., Balčiūnas, E., Petrulevičienė, M., Ramanavičius, A., & Morkvėnaitė-Vilkončienė, I. (2023). Microbial Biofuel Cells: Fundamental Principles, Development and Recent Obstacles. Biosensors, 13(2), 221. https://doi.org/10.3390/bios13020221