From Biowaste to Lab-Bench: Low-Cost Magnetic Iron Oxide Nanoparticles for RNA Extraction and SARS-CoV-2 Diagnostics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and the Preparation of Magnetic Nanoplatelets (Fe3O4)
2.2. Structural and Chemical Characterizations
2.3. Nucleic Acid Extraction and RT-PCR Detection of SARS-CoV-2
3. Results and Discussions
3.1. Characterizations of Prepared Magnetic Iron Oxide Nanoplatelets (MNPs) from Biowaste
3.2. Characterization of Prepared Silica Coated Magnetic Nanoplatelets
3.3. Comparative Performance of Silica Coated Magnetic Nanoplatelets for RNA Extraction and SARS-CoV-2 RT-PCR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- WHO Report. Available online: https://covid19.who.int/ (accessed on 20 September 2022).
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.-W.; Schmitz, J.E.; Persing, D.H.; Stratton, C.W. Laboratory diagnosis of COVID-19: Current issues and challenges. J. Clin. Microbiol. 2020, 58, e00512-20. [Google Scholar] [CrossRef] [Green Version]
- Kevadiya, B.D.; Machhi, J.; Herskovitz, J.; Oleynikov, M.D.; Blomberg, W.R.; Bajwa, N.; Soni, D.; Das, S.; Hasan, M.; Patel, M.; et al. Diagnostics for SARS-CoV-2 infections. Nat. Mater. 2021, 20, 593–605. [Google Scholar] [CrossRef]
- Vandenberg, O.; Martiny, D.; Rochas, O.; van Belkum, A.; Kozlakidis, Z. Considerations for diagnostic COVID-19 tests. Nat. Rev. Microbiol. 2021, 19, 171–183. [Google Scholar] [CrossRef]
- Loeffelholz, M.J.; Tang, Y.W. Laboratory diagnosis of emerging human coronavirus infections—The state of the art. Emerg. Microbes Infect. 2020, 9, 747–756. [Google Scholar] [CrossRef] [Green Version]
- Peeling, P.W.; Heymann, D.I.; Teo, Y.-Y.; Garcia, P.J. Diagnostics for COVID-19: Moving from pandemic response to control. Lancet 2022, 399, 757–768. [Google Scholar]
- Xu, Y.; Cheng, M.; Chen, X.; Zhu, J. Current approaches in laboratory testing for SARS-CoV-2 kits. Int. J. Infect. Dis. 2020, 100, 7–9. [Google Scholar] [CrossRef]
- van Kasteren, P.B.; van der Veer, B.; van den Brink, S.; Wijsman, L.; de Jonge, J.; van den Brandt, A.; Molenkamp, R.; Reusken, C.B.; Meijer, A. Comparison of commercial RT-PCR diagnostic kits for COVID-19. J. Clin. Virol. 2020, 128, 104412. [Google Scholar] [CrossRef]
- Udugama, B.; Kadhiresan, P.; Kozlowski, H.N.; Malekjahani, A.; Osborne, M.; Li, V.Y.; Chen, H.; Mubareka, S.; Gubbay, J.B.; Chan, W.C.W. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano 2020, 14, 3822–3838. [Google Scholar] [CrossRef] [Green Version]
- Lambert-Niclot, S.; Cuffel, A.; Le Pape, S.; Vauloup-Fellous, C.; Morand-Joubert, L.; Roque-Afonso, A.M.; Le Goff, J.; Delaugerre, C. Evaluation of a rapid diagnostic assay for detection of SARS-CoV-2 antigen in nasopharyngeal swabs. J. Clin. Microbiol. 2020, 58, e00977-20. [Google Scholar] [CrossRef] [PubMed]
- D’Cruz, R.J.; Currier, A.W.; Sampson, V.B. Laboratory testing methods for novel severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Front. Cell Dev. Biol. 2020, 8, 468. [Google Scholar] [CrossRef] [PubMed]
- Kilic, T.; Weissleder, R.; Lee, H. Molecular and immunological diagnostic tests of COVID-19: Current status and challenges. iScience 2020, 23, 101406. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Cui, H.; Song, W.; Ru, X.; Zhou, W.; Yu, X. A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2. bioRxiv 2020. [CrossRef]
- Klein, S.; Müller, T.; Khalid, D.; Sonntag-Buck, V.; Heuser, A.-M.; Glass, B.; Meurer, M.; Morales, I.; Schillak, A.; Freistaedter, A.; et al. SARS-CoV-2 RNA Extraction Using Magnetic Beads for Rapid Large-Scale Testing by RT-qPCR and RT-LAMP. Viruses 2020, 12, 863. [Google Scholar] [CrossRef]
- Chacón-Torres, J.C.; Reinoso, C.; Navas-León, D.G.; Briceño, S.; González, G. Optimized and scalable synthesis of magnetic nanoparticles for RNA extraction in response to developing countries’ needs in the detection and control of SARS-CoV-2. Sci. Rep. 2020, 10, 19004. [Google Scholar] [CrossRef]
- Kumeria, T.; Maher, S.; Wang, Y.; Kaur, G.; Wang, L.; Erkelens, M.; Forward, P.; Lambert, M.F.; Evdokiou, A.; Losic, D. Naturally Derived Iron Oxide Nanowires from Bacteria for Magnetically Triggered Drug Release and Cancer Hyperthermia in 2D and 3D Culture Environments: Bacteria Biofilm to Potent Cancer Therapeutic. Biomacromolecules 2016, 17, 2726–2736. [Google Scholar] [CrossRef]
- Wang, L.; Kumeria, T.; Santos, A.; Forward, P.; Lambert, M.F.; Losic, D. Iron Oxide Nanowires from Bacteria Biofilm as an Efficient Visible-Light Magnetic Photocatalyst. ACS Appl. Mater. Interfaces 2016, 8, 20110–20119. [Google Scholar] [CrossRef] [Green Version]
- Andjelkovic, I.; Azari, S.; Erkelens, M.; Forward, P.; Lambert, M.F.; Losic, D. Bacterial iron-oxide nanowires from biofilm waste as a new adsorbent for removal of arsenic from waters. RSC Adv. 2017, 7, 3941–3948. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Tran, D.N.H.; Forward, P.; Lambert, M.F.; Losic, D. The hydrothermal processing of iron oxides from bacterial biofilm waste as new nanomaterials for broad applications. RSC Adv. 2018, 8, 34848–34852. [Google Scholar] [CrossRef]
- Emerson, D. Biogeochemistry and microbiology of microaerobic Fe(II) oxidation. Biochem. Soc. Trans. 2012, 40, 1211–1216. [Google Scholar] [CrossRef] [Green Version]
- Maher, S.; Santos, A.; Kumeria, T.; Kaur, G.; Lambert, M.; Forward, P.; Evdokiou, A.; Losic, D. Multifunctional Micro-Spherical Magnetic and pH Responsive Carriers for Combination Anticancer Therapy Engineered by Droplet-based Microfluidics. J. Mater. Chem. B 2017, 5, 4097–4109. [Google Scholar] [CrossRef] [PubMed]
- Pham, Q.N.; Winter, M.; Milanova, V.; Young, C.; Condina, M.R.; Hoffmann, P.; Pham, N.T.H.; Tung, T.T.; Losic, D.; Thierry, B. Magnetic enrichment of immuno-specific extracellular vesicles for mass spectrometry using biofilm-derived iron oxide nanowires. Nanoscale 2023, 15, 1236–1247. [Google Scholar] [CrossRef] [PubMed]
- Dayana, I.; Sembiring, T.; Tetuko, A.P.; Sembiring, K.; Maulida, N.; Cahyarani, Z.; Setiadi, E.A.; Asri, N.S.; Ginting, M.; Sebayang, P. The effect of tetraethyl orthosilicate (TE OS) additions as silica precursors on the magnetite nano-particles (Fe3O4) properties for the application of ferro-lubricant. J. Mol. Liq. 2019, 294, 111557. [Google Scholar] [CrossRef]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [Green Version]
- Comolli, L.R.; Luef, B.; Chan, C.S. High resolution 2D and 3D cryo-TEM reveal structural adaptations of two stalk-forming bacteria to an Fe-oxidizing lifestyle. Environ. Microbiol. 2011, 13, 2915–2929. [Google Scholar] [CrossRef]
- Chan, C.S.; Fakra, S.C.; Emerson, D.; Fleming, E.J.; Edwards, K.J. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: Implications for biosignature formation. ISME J. 2011, 5, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Biswas, R.K.; Khan, P.; Mukherjee, S.; Mukhopadhyay, A.K.; Ghosh, J.; Muraleedharan, K. Study of short range structure of amorphous Silica from PDF using Ag radiation in laboratory XRD system, RAMAN and NEXAFS. J. Non-Cryst. Solids 2018, 488, 1–9. [Google Scholar] [CrossRef]
- Genuzio, F.; Sala, A.; Schmidt, T.; Menzel, D.; Freund, H.-J. Interconversion of α-Fe2O3 and Fe3O4 Thin Films: Mechanisms, Morphology, and Evidence for Unexpected Substrate Participation. J. Phys. Chem. C 2014, 118, 29068–29076. [Google Scholar] [CrossRef]
- Qu, X.-F.; Yao, Q.-Z.; Zhou, G.-T.; Fu, S.-Q.; Huang, J.-L. 2010 Formation of Hollow Magnetite Microspheres and Their Evolution into Durian-like Architectures. J. Phys. Chem. C 2010, 114, 8734–8740. [Google Scholar] [CrossRef]
- Li, Y.; Church, J.S.; Woodhead, A.L. Infrared and Raman spectroscopic studies on ironoxide magnetic nano-particles and their surface modifications. J. Magn. Magn. Mater. 2012, 324, 1543–1550. [Google Scholar] [CrossRef]
- Liu, F.; Niu, F.; Peng, N.; Su, Y.; Yang, Y. Synthesis, characterization, and application of Fe3O4@SiO2-NH2 nanoparticles. RSC Adv. 2015, 5, 18128–18136. [Google Scholar] [CrossRef]
Type of Magnetic Beads | SARS-CoV-2 Samples with E Gene Primers | SARS-CoV-2 Samples with IC Primers | Negative Samples with E Gene Primers | Negative Samples with IC Primers |
---|---|---|---|---|
Ref. Magn. Beads | 26.75 | 27.79 | 0 | 30.27 |
26.75 | 27.98 | 0 | 30.82 | |
26.75 | 27.85 | 0 | 30.71 | |
26.71 | 27.93 | 0 | 30.5 | |
26.84 | 28.03 | 0 | 30.3 | |
Average | 26.752 | 27.916 | 30.52 | |
Std Dev | 0.053 | 0.096 | 0.243 | |
Our SiO2/Fe3O4 | 27.3 | 28.23 | 0 | 30.72 |
27.36 | 28.09 | 0 | 30.65 | |
27.23 | 28.01 | 0 | 30.55 | |
27.04 | 28.12 | 0 | 30.62 | |
27.05 | 28.07 | 0 | 30.05 | |
Average | 27.196 | 28.104 | 30.518 | |
Std Dev | 0.145 | 0.081 | 0.268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Adamson, P.; Lay Yap, P.; Tung, T.; Makar, S.; Turra, M.; Higgins, G.; Losic, D. From Biowaste to Lab-Bench: Low-Cost Magnetic Iron Oxide Nanoparticles for RNA Extraction and SARS-CoV-2 Diagnostics. Biosensors 2023, 13, 196. https://doi.org/10.3390/bios13020196
Yu L, Adamson P, Lay Yap P, Tung T, Makar S, Turra M, Higgins G, Losic D. From Biowaste to Lab-Bench: Low-Cost Magnetic Iron Oxide Nanoparticles for RNA Extraction and SARS-CoV-2 Diagnostics. Biosensors. 2023; 13(2):196. https://doi.org/10.3390/bios13020196
Chicago/Turabian StyleYu, Le, Penelope Adamson, Pei Lay Yap, Tran Tung, Shaheer Makar, Mark Turra, Geoff Higgins, and Dusan Losic. 2023. "From Biowaste to Lab-Bench: Low-Cost Magnetic Iron Oxide Nanoparticles for RNA Extraction and SARS-CoV-2 Diagnostics" Biosensors 13, no. 2: 196. https://doi.org/10.3390/bios13020196
APA StyleYu, L., Adamson, P., Lay Yap, P., Tung, T., Makar, S., Turra, M., Higgins, G., & Losic, D. (2023). From Biowaste to Lab-Bench: Low-Cost Magnetic Iron Oxide Nanoparticles for RNA Extraction and SARS-CoV-2 Diagnostics. Biosensors, 13(2), 196. https://doi.org/10.3390/bios13020196