Acousto−Optics: Recent Studies and Medical Applications
Abstract
:1. Introduction
2. Modeling of Acousto−Optical Imaging
2.1. Acousto−Optic Interaction within Multiple Scattering Media
2.2. Theoretical Modeling and Computational Simulation
3. Experimental Biomedical Studies
3.1. AO Imaging of Tissue
3.2. Optical Fluence
4. Medical Applications
4.1. Monitoring HIFU Effects in Transcranial Applications
4.2. Enhancement of the Optics based Cerebral Blood Flow and Oxygenation Measurements
4.3. Tumor Detection
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tuchin, V.V. Tissue Optics and Photonics: Light-Tissue Interaction. J. Biomed. Photonics Eng. 2015, 1, 98–134. [Google Scholar] [CrossRef] [Green Version]
- Durduran, T.; Choe, R.; Baker, W.B.; Yodh, A.G. Diffuse Optics for Tissue Monitoring and Tomography. Rep. Prog. Phys. 2010, 73, 76701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.V. Ultrasound-Mediated Biophotonic Imaging: A Review of Acousto-Optical Tomography and Photo-Acoustic Tomography. Dis. Markers 2004, 19, 123–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elson, D.S.; Li, R.; Dunsby, C.; Eckersley, R.; Tang, M.-X. Ultrasound-Mediated Optical Tomography: A Review of Current Methods. Interface Focus 2011, 1, 632–648. [Google Scholar] [CrossRef] [Green Version]
- Gunther, J.; Walther, A.; Rippe, L.; Kröll, S.; Andersson-Engels, S. Theoretical Study of Combined Acousto-Optical Tomography and Slow Light Filters. In Optical Tomography and Spectroscopy; Part F90-O; Optica Publishing Group: Washington, DC, USA, 2018; pp. 6–8. [Google Scholar] [CrossRef]
- Steinberg, I.; Huland, D.M.; Vermesh, O.; Frostig, H.E.; Tummers, W.S.; Gambhir, S.S. Photoacoustic Clinical Imaging. Photoacoustics 2019, 14, 77–98. [Google Scholar] [CrossRef]
- Karlas, A.; Fasoula, N.-A.; Paul-Yuan, K.; Reber, J.; Kallmayer, M.; Bozhko, D.; Seeger, M.; Eckstein, H.-H.; Wildgruber, M.; Ntziachristos, V. Cardiovascular Optoacoustics: From Mice to Men—A Review. Photoacoustics 2019, 14, 19–30. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Y.-H.; Xia, F.; Sawan, M. Photoacoustic Imaging for Monitoring of Stroke Diseases: A Review. Photoacoustics 2021, 23, 100287. [Google Scholar] [CrossRef]
- Walther, A.; Rippe, L.; Wang, L.V.; Andersson-Engels, S.; Kröll, S. Analysis of the Potential for Non-Invasive Imaging of Oxygenation at Heart Depth, Using Ultrasound Optical Tomography (UOT) or Photo-Acoustic Tomography (PAT). Biomed. Opt. Express 2017, 8, 4523–4536. [Google Scholar] [CrossRef] [Green Version]
- Gunther, J.; Andersson-Engels, S. Review of Current Methods of Acousto-Optical Tomography for Biomedical Applications. Front. Optoelectron. 2017, 10, 211–238. [Google Scholar] [CrossRef]
- Yao, G.; Wang, L.V. Theoretical and Experimental Studies of Ultrasound-Modulated Optical Tomography in Biological Tissue. Appl. Opt. 2000, 39, 659–664. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Song, H.; Liu, H.; Lu, Y.; Zhu, L. Propagation of Acousto-Optic Signal in Multilayer Biological Tissue by Using COMSOL Multiphysics. In Optics in Health Care and Biomedical Optics XI; SPIE: Bellingham, WA, USA, 2021; Volume 1190024, p. 76. [Google Scholar]
- Jayet, B. Acousto-Optic and Photoacoustic Imaging of Scattering Media Using Wavefront Adaptive Holography Techniques in NdYO4. Ph.D. Thesis, Université Pierre et Marie Curie-Paris VI, Paris, France, 2015. [Google Scholar]
- Resink, S.G. State-of-the Art of Acousto-Optic Sensing and Imaging of Turbid Media. J. Biomed. Opt. 2012, 17, 40901. [Google Scholar] [CrossRef]
- Wang, L.V. Mechanisms of Ultrasonic Modulation of Multiply Scattered Coherent Light: A Monte Carlo Model. Opt. Lett. 2001, 26, 1191–1193. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.V.; Wu, H. Biomedical Optics: Principles and Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 0-470-17700-4. [Google Scholar]
- Huang, Y.; Cua, M.; Brake, J.; Liu, Y.; Yang, C. Investigating Ultrasound–Light Interaction in Scattering Media. J. Biomed. Opt. 2020, 25, 1. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Hollmann, J.L.; Horstmeyer, R.; Yang, C.; DiMarzio, C.A. Diffusion Model for Ultrasound-Modulated Light. J. Biomed. Opt. 2014, 19, 35005. [Google Scholar] [CrossRef] [Green Version]
- Bal, G.; Schotland, J.C. Inverse Scattering and Acousto-Optic Imaging. Phys. Rev. Lett. 2010, 104, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brillouin, L. Diffusion de La Lumière et Des Rayons X Par Un Corps Transparent Homogène. Ann. Phys. 1922, 9, 88–122. [Google Scholar] [CrossRef]
- Debye, P.; Sears, F.W. On the Scattering of Light by Supersonic Waves. Proc. Natl. Acad. Sci. USA 1932, 18, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Nath, N.S. The Diffraction of Light by High Frequency Sound Waves: Generalised Theory. Proc. Indian Acad. Sci.-Sect. A 1936, 4, 222–242. [Google Scholar] [CrossRef]
- Jang, M.; Ruan, H.; Judkewitz, B.; Yang, C. Model for Estimating the Penetration Depth Limit of the Time-Reversed Ultrasonically Encoded Optical Focusing Technique. Opt. Express 2014, 22, 5787. [Google Scholar] [CrossRef] [Green Version]
- Sakadžić, S.; Wang, L.V. Ultrasonic Modulation of Multiply Scattered Coherent Light: An Analytical Model for Anisotropically Scattering Media. Phys. Rev. E 2002, 66, 26603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, T.S.; Powell, S. Fast Monte Carlo Simulations of Ultrasound-Modulated Light Using a Graphics Processing Unit. J. Biomed. Opt. 2010, 15, 55007. [Google Scholar] [CrossRef] [Green Version]
- Powell, S.; Leung, T.S. Highly Parallel Monte-Carlo Simulations of the Acousto-Optic Effect in Heterogeneous Turbid Media. J. Biomed. Opt. 2012, 17, 45002. [Google Scholar] [CrossRef] [Green Version]
- Gunther, J.; Walther, A.; Rippe, L.; Kröll, S.; Andersson-Engels, S. Deep Tissue Imaging with Acousto-Optical Tomography and Spectral Hole Burning with Slow Light Effect: A Theoretical Study. J. Biomed. Opt. 2018, 23, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bocoum, M.; Gennisson, J.; Laudereau, J.; Louchet-Chauvet, A.; Tualle, J.-M.; Ramaz, F. Structured Ultrasound-Modulated Optical Tomography. Appl. Opt. 2019, 58, 1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, J.A.; Svendsen, N.B. Calculation of Pressure Fields from Arbitrarily Shaped, Apodized, and Excited Ultrasound Transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1992, 39, 262–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, D.; Bengtsson, A.; Erlöv, T.; Cinthio, M.; Kröll, S. Acousto-Optic Interaction Strengths in Optically Scattering Media Using High Pressure Acoustic Pulses. Biomed. Opt. Express 2021, 12, 3196. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.; Bengtsson, A.; Erlöv, T.; Cinthio, M.; Kröll, S. First Principle Simulation Package for Arbitrary Acousto-Optic Interaction in Scattering Materials. In Proceedings of the European Conference on Biomedical Optics, Munich, Germany, 20–24 June 2021; Optical Society of America: Washington, DC, USA, 2021; p. 3. [Google Scholar]
- Hsieh, Z.H.; Fan, C.H.; Ho, Y.J.; Li, M.L.; Yeh, C.K. Improvement of Light Penetration in Biological Tissue Using an Ultrasound-Induced Heating Tunnel. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Pulkkinen, A. Simulation Methods in Transcranial Ultrasound Therapy. Ph.D. Thesis, Itä-Suomen Yliopisto, Joensuu, Finland, 2014. [Google Scholar]
- Zeng, X.; McGough, R.J. Evaluation of the Angular Spectrum Approach for Simulations of Near-Field Pressures. J. Acoust. Soc. Am. 2008, 123, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.T.; Cleveland, R.O.; Roy, R.A. Modeling-Based Design and Assessment of an Acousto-Optic Guided High-Intensity Focused Ultrasound System. J. Biomed. Opt. 2017, 22, 17001. [Google Scholar] [CrossRef]
- Wang, Z.; Ha, S.; Kim, K. Evaluation of Finite Element Based Simulation Model of Photoacoustics in Biological Tissues. In Medical Imaging 2012: Ultrasonic Imaging, Tomography, and Therapy; SPIE: Bellingham, WA, USA, 2012; Volume 8320, pp. 470–478. [Google Scholar] [CrossRef]
- Comsol, A.B. COMSOL Multiphysics Reference Manual, Version 5.3. In COMSOL AB; COMSOL Inc.: Stockholm, Sweden, 2018; Volume 564, p. 565. [Google Scholar]
- Song, H.; Qi, P.; Peng, D.; Zhang, X.; Zhu, L. Propagation of Ultrasound-Modulated Scattered Light in Biological Tissue by Using COMSOL Multiphysics. In Advanced Optical Imaging Technologies II; SPIE: Bellingham, WA, USA, 2019; Volume 1118612, p. 37. [Google Scholar] [CrossRef]
- Ling, H.; Gui, Z.; Hao, H.; Shang, Y. Enhancement of Diffuse Correlation Spectroscopy Tissue Blood Flow Measurement by Acoustic Radiation Force. Biomed. Opt. Express 2020, 11, 301. [Google Scholar] [CrossRef]
- Arridge, S.R.; Schweiger, M.; Hiraoka, M.; Delpy, D.T. A Finite Element Approach for Modeling Photon Transport in Tissue. Med. Phys. 1993, 20, 299–309. [Google Scholar] [CrossRef]
- Geuzaine, C.; Remacle, J.-F. Gmsh: A 3-D Finite Element Mesh Generator with Built-in Pre-and Post-Processing Facilities. Int. J. Numer. Methods Eng. 2009, 79, 1309–1331. [Google Scholar] [CrossRef]
- Dular, P.; Geuzaine, C.; Henrotte, F.; Legros, W. A General Environment for the Treatment of Discrete Problems and Its Application to the Finite Element Method. IEEE Trans. Magn. 1998, 34, 3395–3398. [Google Scholar] [CrossRef]
- Geuzaine, C.; Henrotte, F.; Remacle, J.-F.; Marchandise, E.; Sabariego, R. Onelab: Open Numerical Engineering Laboratory. In Proceedings of the Colloque National en Calcul des Structures (CSMA), Giens, France, 13–17 May 2013. [Google Scholar]
- Fadden, C.; Kothapalli, S.R. A Single Simulation Platform for Hybrid Photoacoustic and RF-Acoustic Computed Tomography. Appl. Sci. Switz. 2018, 8, 1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Sciacca, G.; Maffeis, G.; Farina, A.; Dalla Mora, A.; Pifferi, A.; Taroni, P.; Arridge, S. Evaluation of a Pipeline for Simulation, Reconstruction, and Classification in Ultrasound-Aided Diffuse Optical Tomography of Breast Tumors. J. Biomed. Opt. 2022, 27, 1–19. [Google Scholar] [CrossRef]
- Qureshi, M.M.; Brake, J.; Jeon, H.-J.; Ruan, H.; Liu, Y.; Safi, A.M.; Eom, T.J.; Yang, C.; Chung, E. In Vivo Study of Optical Speckle Decorrelation Time across Depths in the Mouse Brain: Erratum. Biomed. Opt. Express 2017, 8, 5039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Cao, R.; Xu, J.; Ruan, H.; Yang, C. Imaging through Highly Scattering Human Skulls with Ultrasound-Modulated Optical Tomography. Opt. Lett. 2020, 45, 2973. [Google Scholar] [CrossRef]
- Gross, M. Selection of the Tagged Photons by off Axis Heterodyne Holography in Ultrasound-Modulated Optical Tomography. Appl. Opt. 2017, 56, 1846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunther, J.; Jayet, B.; Amissah, M.; Andersson-Engels, S. Imaging Speckle Decorrelation Effect with Combined Acousto-Optical Imaging with off-Axis Heterodyne Holography for Biomedical Applications. In Proceedings of the European Conference on Biomedical Optics, Munich, Germany, 20–24 June 2021; Optical Society of America: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Dutheil, L.; Bocoum, M.; Fink, M.; Popoff, S.M.; Dutheil, L.; Bocoum, M.; Fink, M.; Popoff, S.M.; Ramaz, F. Fourier Transform Acousto-Optic Imaging with off-Axis Holographic Detection. Appl. Opt. 2021, 60, 7107–7112. [Google Scholar] [CrossRef]
- Hussain, A.; Steenbergen, W.; Vellekoop, I.M. Imaging Blood Flow inside Highly Scattering Media Using Ultrasound Modulated Optical Tomography. J. Biophotonics 2018, 11, 1–11. [Google Scholar] [CrossRef]
- Liu, Y.; Lai, P.; Ma, C.; Xu, X.; Grabar, A.A.; Wang, L.V. Optical Focusing Deep inside Dynamic Scattering Media with Near-Infrared Time-Reversed Ultrasonically Encoded (TRUE) Light. Nat. Commun. 2015, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ruan, H.; Brake, J.; Robinson, J.E.; Liu, Y.; Jang, M.; Xiao, C.; Zhou, C.; Gradinaru, V.; Yang, C. Deep Tissue Optical Focusing and Optogenetic Modulation with Time-Reversed Ultrasonically Encoded Light. Sci. Adv. 2017, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Marks, F.A.; Tomlinson, H.W.; Brooksby, G.W. Comprehensive Approach to Breast Cancer Detection Using Light: Photon Localization by Ultrasound Modulation and Tissue Characterization by Spectral Discrimination. In Photon Migration and Imaging in Random Media and Tissues; SPIE: Bellingham, WA, USA, 1993; Volume 1888, pp. 500–510. [Google Scholar]
- Wang, L.; Jacques, S.L.; Zhao, X. Continuous-Wave Ultrasonic Modulation of Scattered Laser Light to Image Objects in Turbid Media. Opt. Lett. 1995, 20, 629–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, M.; Ko, H.; Hong, J.H.; Lee, W.K.; Lee, J.S.; Choi, W. Deep Tissue Space-Gated Microscopy via Acousto-Optic Interaction. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, M.; Weinberg, G.; Doktofsky, D.; Li, Y.; Tian, L.; Katz, O. Acousto-Optic Ptychography. Optica 2021, 8, 936. [Google Scholar] [CrossRef]
- Varma, H.M.; Mohanan, K.P.; Hyvönen, N.; Nandakumaran, A.K.; Vasu, R.M. Ultrasound-Modulated Optical Tomography: Recovery of Amplitude of Vibration in the Insonified Region from Boundary Measurement of Light Correlation. J. Opt. Soc. Am. A 2011, 28, 2322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koutsourelakis, P. Accurate Uncertainty Quantification Using Inaccurate Computational Models. Society 2009, 31, 3274–3300. [Google Scholar] [CrossRef]
- Powell, S.; Arridge, S.R.; Leung, T.S. Gradient-Based Quantitative Image Reconstruction in Ultrasound-Modulated Optical Tomography: First Harmonic Measurement Type in a Linearised Diffusion Formulation. IEEE Trans. Med. Imaging 2016, 35, 456–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bal, G.; Schotland, J.C. Ultrasound-Modulated Bioluminescence Tomography. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2014, 89, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ammari, H.; Nguyen, L.H.; Seppecher, L. Reconstruction and Stability in Acousto-Optic Imaging for Absorption Maps with Bounded Variation. J. Funct. Anal. 2014, 267, 4361–4398. [Google Scholar] [CrossRef]
- Ammari, H.; Bossy, E.; Garnier, J.; Nguyen, L.; Seppecher, L. A Reconstruction Algorithm for Ultrasound-Modulated Diffuse Optical Tomography. Proc. Am. Math. Soc. 2014, 142, 3221–3236. [Google Scholar] [CrossRef] [Green Version]
- Powell, S.; Leung, T.S. Quantitative Reconstruction of Absorption and Scattering Coefficients in Ultrasound-Modulated Optical Tomography. Photons Plus Ultrasound Imaging Sens. 2014, 8943, 89434X. [Google Scholar] [CrossRef] [Green Version]
- Bal, G.; Moskow, S. Local Inversions in Ultrasound-Modulated Optical Tomography. Inverse Probl. 2014, 30, 025005. [Google Scholar] [CrossRef] [Green Version]
- Ammari, H.; Garnier, J.; Nguyen, L.H.; Seppecher, L. Reconstruction of a Piecewise Smooth Absorption Coefficient by an Acousto-Optic Process. Commun. Partial Differ. Equ. 2013, 38, 1737–1762. [Google Scholar] [CrossRef] [Green Version]
- Allmaras, M.; Bangerth, W. Reconstructions in Ultrasound Modulated Optical Tomography. J. Inverse Ill-Posed Probl. 2011, 19, 801–823. [Google Scholar] [CrossRef]
- Huynh, N.T.; He, D.; Hayes-Gill, B.R.; Crowe, J.A.; Walker, J.G.; Mather, M.L.; Rose, F.R.A.J.; Parker, N.G.; Povey, M.J.W.; Morgan, S.P. Application of a Maximum Likelihood Algorithm to Ultrasound Modulated Optical Tomography. Photons Plus Ultrasound Imaging Sens. 2011, 7899, 78991C. [Google Scholar] [CrossRef]
- Bratchenia, A.; Molenaar, R.; van Leeuwen, T.G.; Kooyman, R.P.H. Acousto-Optic-Assisted Diffuse Optical Tomography. Opt. Lett. 2011, 36, 1539. [Google Scholar] [CrossRef] [Green Version]
- Chung, F.J.; Schotland, J.C. Inverse Transport and Acousto-Optic Imaging. SIAM J. Math. Anal. 2017, 49, 4704–4721. [Google Scholar] [CrossRef] [Green Version]
- Chung, F.J.; Hoskins, J.G.; Schotland, J.C. A Transport Model for Multi-Frequency Acousto-Optic Tomography. arXiv 2019, arXiv:1910.04798. [Google Scholar]
- Chung, F.J.; Lai, R.-Y.; Li, Q. On Diffusive Scaling in Acousto-Optic Imaging. Inverse Probl. 2020, 36, 85011. [Google Scholar] [CrossRef]
- Bocoum, M.M.; Gennisson, J.-L.; Grabar, A.A.; Ramaz, F.; Tualle, J.; Bocoum, M.M.; Gennisson, J.-L.; Grabar, A.A.; Ramaz, F.; Tualle, J. Reconstruction of Bi-Dimensional Images in Fourier-Transform Acousto-Optic Imaging. Opt. Lett. 2020, 45, 4855–4858. [Google Scholar] [CrossRef] [PubMed]
- Hua, Z.; Zhu, K.; Wang, Y.; Zeng, Z.; Tan, Y. Contrast-Enhanced Ultrasound-Modulated Laser Feedback Imaging with Microbubbles. Opt. Lasers Eng. 2022, 157, 107134. [Google Scholar] [CrossRef]
- Levi, A.R.; Hazan, Y.; Lev, A.; Sfez, B.; Rosenthal, A. Homodyne Time-Domain Acousto-Optic Imaging for Low-Gain Photodetectors. arXiv 2022, arXiv:2203.13796. [Google Scholar]
- Daoudi, K.; Hussain, A.; Hondebrink, E.; Steenbergen, W. Correcting Photoacoustic Signals for Fluence Variations Using Acousto-Optic Modulation. Opt. Express 2012, 20, 14117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, A.; Daoudi, K.; Hondebrink, E.; Steenbergen, W. Mapping Optical Fluence Variations in Highly Scattering Media by Measuring Ultrasonically Modulated Backscattered Light. J. Biomed. Opt. 2014, 19, 66002. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Petersen, W.; Staley, J.; Hondebrink, E.; Steenbergen, W. Quantitative Blood Oxygen Saturation Imaging Using Combined Photoacoustics and Acousto-Optics. Opt. Lett. 2016, 41, 1720–1723. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Hondebrink, E.; Staley, J.; Steenbergen, W. Photoacoustic and Acousto-Optic Tomography for Quantitative and Functional Imaging. Optica 2018, 5, 1579. [Google Scholar] [CrossRef]
- Jeng, G.S.; Li, M.L.; Kim, M.W.; Yoon, S.J.; Pitre, J.J.; Li, D.S.; Pelivanov, I.; O’Donnell, M. Real-Time Interleaved Spectroscopic Photoacoustic and Ultrasound (PAUS) Scanning with Simultaneous Fluence Compensation and Motion Correction. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J.; Jayet, B.; Hill, P.J.; Mather, M.L.; Dehghani, H.; Morgan, S.P. Ultrasound Modulation of Bioluminescence Generated inside a Turbid Medium. Photons Plus Ultrasound Imaging Sens. 2017, 10064, 1006454. [Google Scholar] [CrossRef]
- Kennedy, J.E. High-Intensity Focused Ultrasound in the Treatment of Solid Tumours. Nat. Rev. Cancer 2005, 5, 321–327. [Google Scholar] [CrossRef]
- Welch, A.J.; Van Gemert, M.J.C. (Eds.) Optical-Thermal Response of Laser-Irradiated Tissue; Springer: Boston, MA, USA, 2011; Volume 2, ISBN 978-1-4757-6094-1. [Google Scholar]
- Adams, M.T.; Cleveland, R.O.; Roy, R.A. Treatment Planning and Strategies for Acousto-Optic Guided High-Intensity Focused Ultrasound Therapies. J. Acoust. Soc. Am. 2014, 135, 2267. [Google Scholar] [CrossRef]
- Adams, M.T. A Modeling-Based Assessment of Acousto-Optic Sensing for Monitoring High-Intensity Focused Ultrasound Lesion Formation. Ph.D. Thesis, Boston University, Boston, MA, USA, 2015. [Google Scholar]
- Raymond, J.L.; Cleveland, R.O.; Roy, R.A. HIFU-Induced Changes in Optical Scattering and Absorption of Tissue over Nine Orders of Thermal Dose. Phys. Med. Biol. 2018, 63, 245001. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.B.; Carp, S.A.; Peruch, A.; Boas, D.A.; Franceschini, M.A.; Sakadžić, S. Characterization of Continuous Wave Ultrasound for Acousto-Optic Modulated Diffuse Correlation Spectroscopy (AOM-DCS). Biomed. Opt. Express 2020, 11, 3071. [Google Scholar] [CrossRef] [PubMed]
- Caccioppola, A.; Carbonara, M.; Macrì, M.; Longhi, L.; Magnoni, S.; Ortolano, F.; Triulzi, F.; Zanier, E.R.; Zoerle, T.; Stocchetti, N. Ultrasound-Tagged near-Infrared Spectroscopy Does Not Disclose Absent Cerebral Circulation in Brain-Dead Adults. Br. J. Anaesth. 2018, 121, 588–594. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, J.S.; Schmidt, R.A.; La Riviere, P.J. Full-field Acoustomammography Using an Acousto-optic Sensor. Med. Phys. 2009, 36, 2324–2327. [Google Scholar] [CrossRef] [Green Version]
- Laudereau, J.-B. Acousto-Optic Imaging: Challenges of in Vivo Imaging. Ph.D. Thesis, Université Pierre et Marie Curie-Paris VI, Paris, France, 2016. [Google Scholar]
- Laudereau, J.-B.; à La Guillaume, E.B.; Servois, V.; Mariani, P.; Grabar, A.A.; Tanter, M.; Gennisson, J.-L.; Ramaz, F. Multi-Modal Acousto-Optic/Ultrasound Imaging of Ex Vivo Liver Tumors at 790 Nm Using a Sn2P2S6 Wavefront Adaptive Holographic Setup. J. Biophotonics 2015, 8, 429–436. [Google Scholar] [CrossRef]
- Grossniklaus, H.E. Progression of Ocular Melanoma Metastasis to the Liver: The 2012 Zimmerman Lecture. JAMA Ophthalmol. 2013, 131, 462–469. [Google Scholar] [CrossRef] [Green Version]
Publication | Year | Purpose of the Study | Key Results | Type of Sample | Possible Medical Application |
---|---|---|---|---|---|
[52] | 2018 | AOI for locally sensing and imaging blood flow deep in highly scattering medium | AO signal relation to the speed of blood flow. | Phantom | Imaging blood flow in tissue |
[89] | 2018 | Measuring cerebral flow index (CFI) | in brain−dead patients, that CBF is lacking, the UT−NIRS can indicate an apparently perfused brain. | Human brain | Measuring cerebral flow index (CFI) |
[87] | 2018 | HIFU monitoring | During HIFU lesion, both absorption and scattering increased, resulting in a decreased optical penetration depth And AO signal. | Phantom | Real−time HIFU therapy monitoring |
[80] | 2018 | PA imaging correction | In PAI, spatial and spectral variations in fluence can be corrected by AOI. | Phantom and Mouse | Quantitative estimation of blood oxygen saturation |
[88] | 2020 | Enhance DCS spatial resolution | The AO−based blood flow induced scatterer dynamics is identical well (< 1%) with DCS−based measurement. | Phantom | Estimation BFI |
[74] | 2020 | 2D Fourier Transform acousto−optic imaging (FT−AOI) | The overall acquisition time in used photorefractive detection scheme is compatible with medical monitoring applications. | Phantom | In vivo imaging for functional or metabolism |
[57] | 2020 | Extend the imaging depth of high−resolution optical microscopy | The space gating suppresses the multiply scattered wave by 10–100 times in a highly scattering medium. | Phantom | Deep tissue optical imaging for tumor and other tissue abnormality |
[48] | 2020 | AO imaging through human skull | Possibility of imaging objects in tissue phantom through human skull sample. | Phantom | Human brain imaging noninvasively through the skull |
[40] | 2020 | ARF improved DCS | ARF generated by US enhanced DCS data and blood flow measurements, | Phantom | Measuring blood flow |
[17] | 2020 | Calculation of tagging efficiency and relationship between ultrasound optical modulation mechanisms | All orders of tagging efficiency in US focus can reach 70% | Simulation and phantom | Estimating maximal AO signal in tissue |
[58] | 2021 | Improving AOI resolution for microscopic investigation. | 40−fold improvement in resolution over conventional AOIs. | Phantom | Microscopy imaging |
[51] | 2021 | Fourier transform acousto−optic imaging | 2D FT imaging compatible with in vivo imaging, deep tissue imaging. | Phantom and simulation | Deep tumor and metabolism imaging |
[75] | 2022 | Microbubbles effect in AOI | Using microbubbles, the contrast−to−noise is increased from 0.78 to 3.73 with the lateral imaging resolution of 0.75 mm. | Phantom | Deep vessel imaging |
[76] | 2022 | Simplifying and reducing cost of AOI setup | By using a silicon PD, achieving over a 4−fold improvement in SNR in comparison to a PMT−based setups. | Phantom | Hand−on low cost AOI for skin imaging |
[46] | 2022 | Utilize ultrasound wave in diffuse optical tomography simulation in order to increase resolution of the imaging | Accurate lesion detection, the accuracy of the classification of lesions was 75%. | Simulation | Discriminate malignant lesions from benign one |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omidali, M.; Mardanshahi, A.; Särestöniemi, M.; Zhao, Z.; Myllylä, T. Acousto−Optics: Recent Studies and Medical Applications. Biosensors 2023, 13, 186. https://doi.org/10.3390/bios13020186
Omidali M, Mardanshahi A, Särestöniemi M, Zhao Z, Myllylä T. Acousto−Optics: Recent Studies and Medical Applications. Biosensors. 2023; 13(2):186. https://doi.org/10.3390/bios13020186
Chicago/Turabian StyleOmidali, Mohammadreza, Ali Mardanshahi, Mariella Särestöniemi, Zuomin Zhao, and Teemu Myllylä. 2023. "Acousto−Optics: Recent Studies and Medical Applications" Biosensors 13, no. 2: 186. https://doi.org/10.3390/bios13020186
APA StyleOmidali, M., Mardanshahi, A., Särestöniemi, M., Zhao, Z., & Myllylä, T. (2023). Acousto−Optics: Recent Studies and Medical Applications. Biosensors, 13(2), 186. https://doi.org/10.3390/bios13020186