Improved Tool for Predicting Skin Irritation on Reconstructed Human Epidermis Models Based on Electrochemical Impedance Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Test Method Components as Described in OECD TG 439
2.1.1. General Conditions
2.1.2. Morphology
2.1.3. Barrier Function
2.1.4. Lipid Profile
2.1.5. Cell Viability
2.2. Skin Irritation Assay
2.2.1. Test Substances
2.2.2. Electrochemical Impedance Spectroscopy (EIS) Analysis
2.2.3. Procedural Conditions
2.2.4. Relative Viability Evaluation
2.2.5. Reliability and Accuracy Assessment
2.2.6. Acceptance Criteria
- (1)
- Initial barrier integrity according to TEER was ≥600 and ≤2500 Ωcm2;
- (2)
- MTT absorbance value of the negative control was ≥0.40 and ≤0.70;
- (3)
- Cell viability of positive control was <50%;
- (4)
- Cell viability variability between tissue replicates was SD ≤ 18.
3. Results
3.1. Quality Control of Test Method Components
3.1.1. Morphology
3.1.2. Barrier Function
3.1.3. Lipid Profile
3.1.4. Cell Viability
3.1.5. Capacitance Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OECD. Test Guideline 404: Acute Dermal Irritation/Corrosion; OECD: Paris, France, 2015. [Google Scholar]
- OECD. Test No. 439: In Vitro Skin Irritation–Reconstructed Human Epidermis Test Method. OECD Guidel. Test. Chem. 2021, 4, 1–25. [Google Scholar]
- OECD. Performance Standards for the Assessment of Proposed Similar or Modified in Vitro Reconstructed Human Epidermis (RhE) Test Methods for Skin Irritation Testing as Described in TG 439; OECD: Paris, France, 2015. [Google Scholar]
- Li, Z.; Hui, J.; Yang, P.; Mao, H. Microfluidic Organ-on-a-Chip System for Disease Modeling and Drug Development. Biosensors 2022, 12, 370. [Google Scholar] [CrossRef] [PubMed]
- Mark, D.; Haeberle, S.; Roth, G.; Von Stetten, F.; Zengerle, R. Microfluidic Lab-on-a-Chip Platforms: Requirements, Characteristics and Applications. Chem. Soc. Rev. 2010, 39, 1153–1182. [Google Scholar] [CrossRef] [Green Version]
- Eddy, N.O.; Momoh-Yahaya, H.; Oguzie, E.E. Theoretical and Experimental Studies on the Corrosion Inhibition Potentials of Some Purines for Aluminum in 0.1 M HCl. J. Adv. Res. 2015, 6, 203–217. [Google Scholar] [CrossRef] [Green Version]
- Tounsi, M.; Ben Braiek, M.; Barhoumi, H.; Baraket, A.; Lee, M.; Zine, N.; Maaref, A.; Errachid, A. A Novel EIS Field Effect Structures Coated with TESUD-PPy-PVC-Dibromoaza [7]Helicene Matrix for Potassium Ions Detection. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 61, 608–615. [Google Scholar] [CrossRef]
- Jo, S.; Jayababu, N.; Kim, D. Facile Fabrication of Double-Layered Electrodes for a Self-Powered Energy Conversion and Storage System. Nanomater 2020, 10, 2380. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Murakami, K.; Borra, V.J.; Ozen, M.O.; Demirci, U.; Nakamura, T.; Esfandiari, L. A Label-Free Electrical Impedance Spectroscopy for Detection of Clusters of Extracellular Vesicles Based on Their Unique Dielectric Properties. Biosensors 2022, 12, 104. [Google Scholar] [CrossRef]
- Isaac, J.A.; Mangani, L.R.; Devaux, D.; Bouchet, R. Electrochemical Impedance Spectroscopy of PEO-LATP Model Multilayers: Ionic Charge Transport and Transfer. ACS Appl. Mater. Interfaces 2022, 14, 13158–13168. [Google Scholar] [CrossRef]
- Chacón, M.; Sánchez, M.; Vázquez, N.; Persinal-Medina, M.; Alonso-Alonso, S.; Baamonde, B.; Alfonso, J.F.; Fernández-Vega-Cueto, L.; Merayo-Lloves, J.; Meana, Á. Impedance-Based Non-Invasive Assay for Ocular Damage Prediction on in Vitro 3D Reconstructed Human Corneal Epithelium. Bioelectrochemistry 2022, 146, 108129. [Google Scholar] [CrossRef]
- Lanfredi, S.; Rodrigues, A.C.M. Impedance Spectroscopy Study of the Electrical Conductivity and Dielectric Constant of Polycrystalline LiNbO3. J. Appl. Phys. 1999, 86, 2215–2219. [Google Scholar] [CrossRef]
- van der Helm, M.W.; Henry, O.Y.F.; Bein, A.; Hamkins-Indik, T.; Cronce, M.J.; Leineweber, W.D.; Odijk, M.; van der Meer, A.D.; Segerink, L.I.; Ingber, D.E. Non-Invasive Sensing of Transepithelial Barrier Function and Tissue Differentiation in Organs-on-Chips Using Impedance Spectroscopy. Lab Chip 2019, 19, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Odijk, M.; Van Der Meer, A.D.; Levner, D.; Kim, H.J.; Van Der Helm, M.W.; Segerink, L.I.; Frimat, J.P.; Hamilton, G.A.; Ingber, D.E.; Van Den Berg, A. Measuring Direct Current Trans-Epithelial Electrical Resistance in Organ-on-a-Chip Microsystems. Lab Chip 2015, 15, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Benson, K.; Cramer, S.; Galla, H.J. Impedance-Based Cell Monitoring: Barrier Properties and Beyond. Fluids Barriers CNS 2013, 10, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutzen, J.; Valet, M.; Alviset, A.; Fradot, V.; Rousseau, L.; Français, O.; Picaud, S.; Lissorgues, G. Impedance Spectroscopy Study of the Retinal Pigment Epithelium: Application to the Monitoring of Blue Light Exposure Effect on A2E-Loaded in-Vitro Cell Cultures. Biosens. Bioelectron. 2020, 161, 112180. [Google Scholar] [CrossRef] [PubMed]
- Chacón, M.; Vázquez, N.; Persinal-Medina, M.; Alonso-Alonso, S.; Pevida, M.; Llames, S.; Baamonde, B.; Quiros, L.; Merayo-Lloves, J.; Meana, Á. Development of an In-House Reconstructed Human Epidermis Model as an Alternative Method in Skin Corrosion Assessment. Toxicol. Vitr. 2020, 65, 104779. [Google Scholar] [CrossRef]
- Ponec, M.; Boelsma, E.; Gibbs, S.; Mommaas, M. Characterization of Reconstructed Skin Models. Skin Pharmacol. Appl. Skin Physiol. 2002, 15, 4–17. [Google Scholar] [CrossRef]
- Schurer, N.Y.; Elias, P.M. The Biochemistry and Function of Stratum Corneum Lipids. Adv. Lipid Res. 1991, 24, 27–56. [Google Scholar] [CrossRef]
- Knox, S.; O’Boyle, N.M. Skin Lipids in Health and Disease: A Review. Chem. Phys. Lipids 2021, 236, 105055. [Google Scholar] [CrossRef]
- Sjövall, P.; Skedung, L.; Gregoire, S.; Biganska, O.; Clément, F.; Luengo, G.S. Imaging the Distribution of Skin Lipids and Topically Applied Compounds in Human Skin Using Mass Spectrometry. Sci. Rep. 2018, 8, 16683. [Google Scholar] [CrossRef] [Green Version]
- Lampe, M.A.; Burlingame, A.L.; Whitney, J.A.; Williams, M.L.; Brown, B.E.; Roitman, E.; Elias, P.M. Human Stratum Corneum Lipids: Characterization and Regional Variations. J. Lipid Res. 1983, 24, 120–130. [Google Scholar] [CrossRef]
- Coderch, L.; López, O.; De La Maza, A.; Parra, J.L. Ceramides and Skin Function. Am. J. Clin. Dermatol. 2003, 4, 107–129. [Google Scholar] [CrossRef] [PubMed]
- Kandárová, H. Evaluation and Validation of Reconstructed Human Skin Models as Alternatives to Animal Tests in Regulatory Toxicology; Freie Universität Berlin: Berlin, Germany, 2006. [Google Scholar]
- Twentyman, P.R.; Luscombe, M. A Study of Some Variables in a Tetrazolium Dye (MTT) Based Assay for Cell Growth and Chemosensitivity. Br. J. Cancer 1987, 56, 279–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernas, T.; Dobrucki, J. Mitochondrial and Nonmitochondrial Reduction of MTT: Interaction of MTT with TMRE, JC-1, and NAO Mitochondrial Fluorescent Probes. Cytometry 2002, 47, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Berridge, M.V.; Herst, P.M.; Tan, A.S. Tetrazolium Dyes as Tools in Cell Biology: New Insights into Their Cellular Reduction. Biotechnol. Annu. Rev. 2005, 11, 127–152. [Google Scholar] [CrossRef] [PubMed]
- Youngstrom, E.A. A Primer on Receiver Operating Characteristic Analysis and Diagnostic Efficiency Statistics for Pediatric Psychology: We Are Ready to ROC. J. Pediatr. Psychol. 2014, 39, 204–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Kim, S.; Lee, S.H.; Kim, J.S.; Chang, Y.J.; Jeong, T.C.; Kang, M.J.; Kim, T.S.; Yoon, H.S.; Lee, G.Y.; et al. Me-Too Validation Study for in Vitro Skin Irritation Test with a Reconstructed Human Epidermis Model, KeraSkinTM for OECD Test Guideline 439. Regul. Toxicol. Pharmacol. 2020, 117, 104725. [Google Scholar] [CrossRef]
- LabCyte Validation Management Team. Validation Study of In Vitro Skin Irritation Test Using LabCyte EPI-MODEL24 (Final Report); OECD: Paris, France, 2009. [Google Scholar]
- Portes, P.; Grandidier, M.H.; Cohen, C.; Roguet, R. Refinement of the Episkin® Protocol for the Assessment of Acute Skin Irritation of Chemicals: Follow-up to the ECVAM Prevalidation Study. Toxicol. Vitr. 2002, 16, 765–770. [Google Scholar] [CrossRef]
- Patel, K.; Nixon, R. Irritant Contact Dermatitis—A Review. Curr. Dermatol. Rep. 2022, 11, 41. [Google Scholar] [CrossRef]
- Hu, X.M.; Li, Z.X.; Lin, R.H.; Shan, J.Q.; Yu, Q.W.; Wang, R.X.; Liao, L.S.; Yan, W.T.; Wang, Z.; Shang, L.; et al. Guidelines for Regulated Cell Death Assays: A Systematic Summary, A Categorical Comparison, A Prospective. Front. Cell Dev. Biol. 2021, 9, 634690. [Google Scholar] [CrossRef]
- Lee, R.M.; Choi, H.; Shin, J.S.; Kim, K.; Yoo, K.H. Distinguishing between Apoptosis and Necrosis Using a Capacitance Sensor. Biosens. Bioelectron. 2009, 24, 2586–2591. [Google Scholar] [CrossRef]
- Cotovio, J.; Grandidier, M.H.; Portes, P.; Roguet, R.; Rubinstenn, G. The in Vitro Acute Skin Irritation of Chemicals: Optimisation of the EPISKIN Prediction Model within the Framework of the ECVAM Validation Process. ATLA Altern. Lab. Anim. 2005, 33, 329–349. [Google Scholar] [CrossRef] [PubMed]
- Coquette, A.; Berna, N.; Vandenbosch, A.; Rosdy, M.; De Wever, B.; Poumay, Y. Analysis of Interleukin-1α (IL-1α) and Interleukin-8 (IL-8) Expression and Release in in Vitro Reconstructed Human Epidermis for the Prediction of in Vivo Skin Irritation and/or Sensitization. Toxicol. Vitr. 2003, 17, 311–321. [Google Scholar] [CrossRef] [PubMed]
N° | Chemical Product | CASRN | In Vivo GHS | Physical State |
---|---|---|---|---|
1 | 1-Bromo-4-chlorobutane | 6940-78-9 | NC | Liquid |
2 | Diethyl phthalate | 84-66-2 | NC | Liquid |
3 | Naphthalene acetic acid | 86-87-3 | NC | Solid |
4 | Allylphenoxy-acetate | 7493-74-5 | NC | Liquid |
5 | Isopropanol | 67-63-0 | NC | Liquid |
6 | 4-Methyl-thio-benzaldehyde | 3446-89-7 | NC | Liquid |
7 | Methyl stearate | 112-61-8 | NC | Solid |
8 | Heptyl butyrate | 5870-93-9 | NC | Liquid |
9 | Heptyl salicylate | 6259-76-3 | NC | Liquid |
10 | Cinnamaldehyde | 104-55-2 | NC | Liquid |
11 | 1-Decanol | 112-30-1 | CAT 2 | Liquid |
12 | Cyclamen aldehyde | 103-95-7 | CAT 2 | Liquid |
13 | 1-Bromohexane | 111-25-1 | CAT 2 | Liquid |
14 | 2-Chloromethyl-3,5-dimethyl-4-methoxypyridine HCl | 86604-75-3 | CAT 2 | Solid |
15 | Di-n-propyl disulphide | 629-19-6 | CAT 2 | Liquid |
16 | Potassium hydroxide (5% aq.) | 1310-58-3 | CAT 2 | Liquid |
17 | Benzenethiol, 5-(1,1-dimethylethyl)-2-methyl | 7340-90-1 | CAT 2 | Liquid |
18 | 1-Methyl-3-phenyl-1-piperazine | 5271-27-2 | CAT 2 | Solid |
19 | Heptanal | 111-71-7 | CAT 2 | Liquid |
20 | Tetrachloroethylene | 127-18-4 | CAT 2 | Liquid |
Lipids | QileX-RhE | SkinEthic RHE * | EpiDerm ®,* | Epidermis * |
---|---|---|---|---|
Phospholipids | 10.7 ± 1.8 | 17.0 ± 10.5 | 36.5 ± 2.7 | 36.5 ± 4.1 |
Sphingomyelin | 1.7 ± 0.3 | 2.8 ± 1.3 | 8.2 ± 1.5 | 8.9 ± 1.6 |
Phosphatidylcholine | 3.0 ± 0.6 | 6.4 ± 3.8 | 13.6 ± 2.4 | 11.2 ± 0.8 |
Phosphatidylserine | 0.6 ± 0.1 | 1.1 ± 0.7 | 3.2 ± 0.7 | 3.9 ± 0.3 |
Phosphatidylinositol | 0.6 ± 0.2 | 1.8 ± 1.2 | 4.3 ± 0.8 | 2.2 ± 0.8 |
Phosphatidylethanolamine | 4.1 ± 0.8 | 4.9 ± 4.0 | 7.1 ± 1.6 | 10.3 ± 0.8 |
Cholesterol sulfate | 3.7 ± 0.4 | 3.8 ± 2.0 | 5.8 ± 1.2 | 5.0 ± 1.6 |
Ceramides | 26.0 ± 0.6 | 26.5 ± 12.2 | 18.5 ± 3.5 | 12.1 ± 1.8 |
Free fatty acids | 5.9 ± 1.7 | 6.9 ± 3.9 | 2.6 ± 0.5 | 7.8 ± 1.2 |
Cholesterol | 28.1 ± 0.7 | 19.5 ± 9.5 | 14.8 ± 1.3 | 17.7 ± 3.2 |
Di-triglycerides | 16.2 ± 1.6 | 12.6 ± 8.6 | 10.5 ± 2.2 | 8.9 ± 3.7 |
Cholesterol esters | 6.0 ± 1.8 | 6.5 ± 4.4 | 2.7 ± 1.1 | 7.0 ± 0.4 |
Normalized Capacitance [17 kHz] | |||
---|---|---|---|
Test Chemical | 2 h | 24 h | 42 h |
Negative control | 0.96 ± 0.02 | 0.87 ± 0.10 | 0.81 ± 0.07 |
Positive control | 21.66 ± 4.94 | 22.50 ± 1.24 | 28.04 ± 7.04 |
In vivo non-irritants (GHS No Category) | |||
6940-78-9 | 1.17 ± 0.22 | 3.17 ± 0.48 | 5.88 ± 1.15 |
84-66-2 | 0.97 ± 0.15 | 1.07 ± 0.10 | 1.19 ± 0.17 |
86-87-3 | 1.26 ± 0.09 | 1.24 ± 0.23 | 1.30 ± 0.34 |
7493-74-5 | 1.08 ± 0.14 | 1.17 ± 0.23 | 1.74 ± 0.38 |
67-63-0 | 3.13 ± 0.22 | 2.89 ± 0.20 | 3.65 ± 0.74 |
3446-89-7 | 1.05 ± 0.06 | 4.10 ± 3.49 | 4.20 ± 0.55 |
112-61-8 | 1.04 ± 0.08 | 0.88 ± 0.09 | 0.95 ± 0.27 |
5870-93-9 | 1.17 ± 0.14 | 1.07 ± 0.18 | 1.11 ± 0.18 |
6259-76-3 | 1.00 ± 0.15 | 0.96 ± 0.13 | 0.92 ± 0.25 |
104-55-2 | 1.74 ± 0.65 | 2.83 ± 0.27 | 5.28 ± 1.28 |
In vivo irritants (GHS Category 2) | |||
112-30-1 | 2.55 ± 1.00 | 31.22 ± 10.71 | 33.29 ± 12.00 |
103-95-7 | 4.01 ± 2.27 | 10.94 ± 3.70 | 13.88 ± 4.53 |
111-25-1 | 4.41 ± 2.27 | 13.01 ± 9.56 | 10.30 ± 0.10 |
86604-75-3 | 33.16 ± 16.72 | 34.00 ± 18.61 | 27.41 ± 10.15 |
629-19-6 | 1.12 ± 0.35 | 8.31 ± 2.24 | 8.56 ± 2.44 |
1310-58-3 | 23.17 ± 3.50 | 20.58 ± 5.44 | 26.61 ± 7.99 |
7340-90-1 | 0.89 ± 0.17 | 5.45 ± 1.19 | 13.10 ± 3.63 |
5271-27-2 | 11.10 ± 1.54 | 14.60 ± 10.37 | 13.36 ± 5.62 |
111-71-7 | 27.52 ± 9.31 | 31.72 ± 15.98 | 28.20 ± 12.85 |
127-18-4 | 21.42 ± 9.29 | 19.26 ± 10.44 | 20.21 ± 4.03 |
Normalized Capacitance (42 h) [17 kHz] | ||||
---|---|---|---|---|
Test Chemical | Run 1 | Run 2 | Run 3 | Mean |
Negative control | 0.88 ± 1.13 | 0.74 ± 0.04 | 0.8 ± 0.32 | 0.81 ± 0.07 |
Positive control | 36.08 ± 9.19 | 25.07 ± 2.55 | 22.97 ± 13.73 | 28.04 ± 7.04 |
In vivo non-irritants (GHS No Category) | ||||
6940-78-9 | 5.34 ± 0.79 | 5.11 ± 0.10 | 7.2 ± 2.39 | 5.88 ± 1.15 |
84-66-2 | 1.00 ± 0.14 | 1.34 ± 0.42 | 1.23 ± 0.29 | 1.19 ± 0.17 |
86-87-3 | 0.85 ± 0.08 | 1.90 ± 0.28 | 1.14 ± 0.09 | 1.30 ± 0.34 |
7493-74-5 | 1.31 ± 0.23 | 1.92 ± 0.50 | 2.00 ± 0.84 | 1.74 ± 0.38 |
67-63-0 | 2.87 ± 0.93 | 3.75 ± 0.98 | 4.33 ± 1.33 | 3.65 ± 0.74 |
3446-89-7 | 3.59 ± 1.78 | 4.67 ± 2.62 | 4.35 ± 2.24 | 4.20 ± 0.55 |
112-61-8 | 0.95 ± 0.17 | 1.21 ± 0.12 | 0.68 ± 0.05 | 0.95 ± 0.27 |
5870-93-9 | 1.13 ± 0.11 | 1.28 ± 0.03 | 0.92 ± 0.04 | 1.11 ± 0.18 |
6259-76-3 | 0.97 ± 0.05 | 1.14 ± 0.14 | 0.65 ± 0.09 | 0.92 ± 0.25 |
104-55-2 | 4.02 ± 0.27 | 5.24 ± 0.42 | 6.57 ± 1.28 | 5.28 ± 1.28 |
In vivo irritants (GHS Category 2) | ||||
112-30-1 | 36.66 ± 8.45 | 41.67 ± 2.66 | 19.55 ± 10.43 | 33.29 ± 12.00 |
103-95-7 | 15.69 ± 6.58 | 17.22 ± 2.91 | 8.73 ± 4.88 | 13.88 ± 4.53 |
111-25-1 | 10.25 ± 0.49 | 10.23 ± 0.89 | 10.42 ± 3.41 | 10.30 ± 0.10 |
86604-75-3 | 36.55 ± 10.60 | 29.21 ± 5.99 | 16.48 ± 8.15 | 27.41 ± 10.15 |
629-19-6 | 9.50 ± 0.70 | 10.38 ± 1.03 | 5.79 ± 2.30 | 8.56 ± 2.44 |
1310-58-3 | 20.26 ± 4.76 | 35.58 ± 14.10 | 23.98 ± 8.76 | 26.61 ± 7.99 |
7340-90-1 | 9.63 ± 0.69 | 12.8 ± 0.78 | 16.88 ± 16.24 | 13.10 ± 3.63 |
5271-27-2 | 8.81 ± 2.09 | 11.64 ± 4.63 | 19.64 ± 13.67 | 13.36 ± 5.62 |
111-71-7 | 25.15 ± 5.44 | 42.30 ± 4.93 | 17.16 ± 2.99 | 28.20 ± 12.85 |
127-18-4 | 19.89 ± 3.37 | 24.39 ± 4.54 | 16.35 ± 3.21 | 20.21 ± 4.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chacón, M.; Vázquez, N.; Alonso-Alonso, S.; Persinal-Medina, M.; Llames, S.; Pevida, M.; Alcalde, I.; Merayo-Lloves, J.; Meana, Á. Improved Tool for Predicting Skin Irritation on Reconstructed Human Epidermis Models Based on Electrochemical Impedance Spectroscopy. Biosensors 2023, 13, 162. https://doi.org/10.3390/bios13020162
Chacón M, Vázquez N, Alonso-Alonso S, Persinal-Medina M, Llames S, Pevida M, Alcalde I, Merayo-Lloves J, Meana Á. Improved Tool for Predicting Skin Irritation on Reconstructed Human Epidermis Models Based on Electrochemical Impedance Spectroscopy. Biosensors. 2023; 13(2):162. https://doi.org/10.3390/bios13020162
Chicago/Turabian StyleChacón, Manuel, Natalia Vázquez, Sergio Alonso-Alonso, Mairobi Persinal-Medina, Sara Llames, Marta Pevida, Ignacio Alcalde, Jesús Merayo-Lloves, and Álvaro Meana. 2023. "Improved Tool for Predicting Skin Irritation on Reconstructed Human Epidermis Models Based on Electrochemical Impedance Spectroscopy" Biosensors 13, no. 2: 162. https://doi.org/10.3390/bios13020162
APA StyleChacón, M., Vázquez, N., Alonso-Alonso, S., Persinal-Medina, M., Llames, S., Pevida, M., Alcalde, I., Merayo-Lloves, J., & Meana, Á. (2023). Improved Tool for Predicting Skin Irritation on Reconstructed Human Epidermis Models Based on Electrochemical Impedance Spectroscopy. Biosensors, 13(2), 162. https://doi.org/10.3390/bios13020162