Multifold Enhanced Raman Detection of Organic Molecules as Environmental Water Pollutants
Abstract
:1. Introduction
2. Design of Raman Detection Scheme by Plasmonic Hollow Fibers
3. Multifold Enhancement Mechanisms
3.1. Optical Feedback by Metallic Inner Wall
3.2. Bidirectional Raman Detection Scheme
3.3. SERS Effects
3.4. Extension of the Interaction Length
4. Detection of Toluene Molecules in Water
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Hao, W.; Zhang, H.; Pan, Y.; Kang, Y.; Zhang, X.; Zou, M.; Tong, P.; Du, Y. Analysis of polycyclic aromatic hydrocarbons in water with gold nanoparticles decorated hydrophobic porous polymer as surface-enhanced Raman spectroscopy substrate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 139, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Starek-Świechowicz, B.; Budziszewska, B.; Starek, A. Hexachlorobenzene as a persistent organic pollutant: Toxicity and molecular mechanism of action. Pharmacol. Rep. 2017, 69, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Augusto, S.; Máguas, C.; Branquinho, C. Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses-A review. Environ. Pollut. 2013, 180, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Lind, P.M.; Salihovic, S.; van Bavel, B.; Ekdahl, K.N.; Nilsson, B.; Lind, L.; Ingelsson, E. Influence of persistent organic pollutants on the complement system in a population-based human sample. Environ. Int. 2014, 71, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Pariatamby, A.; Kee, Y.L. Persistent organic pollutants management and remediation. Procedia Environ. Sci. 2016, 31, 842–848. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, S.; Singh, D.K. Biodegradation of persistent organic pollutants in soil, water and pristine sites by cold-adapted microorganisms: Mini review. Intern. Biodeterior. Biodegrad. 2015, 100, 98–105. [Google Scholar] [CrossRef]
- Abraham, J.; Jose, T.; Moni, G.; George, S.C.; Kalarikkal, N.; Thomas, S. Ionic liquid modified multiwalled carbon nanotube embedded styrene butadiene rubber membranes for the selective removal of toluene from toluene/methanol mixture via pervaporation. J. Taiwan Inst. Chem. Eng. 2019, 95, 594–601. [Google Scholar] [CrossRef]
- Okada, A.; Sekiguchi, K.; Sankoda, K. Mechanisms for removal of gaseous toluene in headspace using sonophysical and sonochemical effects at the gas-liquid interface. J. Hazard. Mater. 2022, 423, 127221. [Google Scholar] [CrossRef]
- Singh, P.; Singh, V.K.; Singh, R.; Borthakur, A.; Kumar, A.; Tiwary, D.; Mishra, P.K. Biological degradation of toluene by indigenous bacteria Acinetobacter junii CH005 isolated from petroleum contaminated sites in India. Energ. Ecol. Environ. 2018, 3, 162–170. [Google Scholar] [CrossRef]
- Wei, Z.S.; He, Y.M.; Huang, Z.S.; Xiao, X.L.; Li, B.L.; Ming, S.; Cheng, X.L. Photocatalytic membrane combined with biodegradation for toluene oxidation. Ecotoxicol. Environ. Saf. 2019, 184, 109618. [Google Scholar] [CrossRef]
- Muccee, F.; Ejaz, S.; Riaz, N. Toluene degradation via a unique metabolic route in indigenous bacterial species. Arch. Microbiol. 2019, 201, 1369–1383. [Google Scholar] [CrossRef]
- Xiong, S.; Huang, N.; Peng, Y.; Chen, J.; Li, J. Balance of activation and ring-breaking for toluene oxidation over CuO-MnOx bimetallic oxides. J. Hazard. Mater. 2021, 415, 125637. [Google Scholar] [CrossRef]
- Poyraz, N. Isolation of novel toluene degrading bacteria from waste water treatment plants and determination of their toluene tolerance and other biotechnological potential. Pol. J. Environ. Stud. 2021, 30, 811–821. [Google Scholar] [CrossRef]
- Sun, W.; Sun, X. Stable isotope probing implicates pseudomonas as the methanogenic toluene degrader in gasoline-contaminated soil. Water Air Soil Pollut. 2021, 232, 234. [Google Scholar] [CrossRef]
- Jeon, J.; Park, J.H.; Wi, S.; Yun, B.Y.; Kim, T.; Kim, S. Field study on the improvement of indoor air quality with toluene adsorption finishing materials in an urban residential apartment. Environ. Pollut. 2020, 261, 114137. [Google Scholar] [CrossRef]
- Faghihi-Zarandi, A.; Shirkhanloo, H.; Jamshidzadeh, C. A new method for removal of hazardous toluene vapor from air based on ionic liquid-phase adsorbent. Int. J. Environ. Sci. Technol. 2019, 16, 2797–2808. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Zhao, B.; Wang, H.; Qin, L.; Han, J. Preparation of high-performance toluene adsorbents by sugarcane bagasse carbonization combined with surface modification. RSC Adv. 2020, 10, 23749–23758. [Google Scholar] [CrossRef]
- Kim, T.-H.; Jeong, S.-Y.; Moon, Y.K.; Lee, J.-H. Dual-mode gas sensor for ultrasensitive and highly selective detection of xylene and toluene using Nb-doped NiO hollow spheres. Sens. Actuators B. Chem. 2019, 301, 127104. [Google Scholar] [CrossRef]
- Guo, W.; Surya, S.G.; Babar, V.; Ming, F.; Sharma, S.; Alshareef, H.N.; Schwingenschlögl, U.; Salama, K.N. Selective toluene detection with Mo2CTx MXene at room temperature. ACS Appl. Mater. Interfaces 2020, 12, 57218–57227. [Google Scholar] [CrossRef]
- Suematsu, K.; Harano, W.; Yamasaki, S.; Watanabe, K.; Shimanoe, K. One-trillionth level toluene detection using a dual-designed semiconductor gas sensor: Material and sensor-driven designs. ACS Appl. Electron. Mater. 2020, 2, 4122–4126. [Google Scholar] [CrossRef]
- David, S.P.S.; Veeralakshmi, S.; Sandhya, J.; Nehrub, S.; Kalaiselvam, S. Room temperature operatable high sensitive toluene gas sensor using chemiresistive Ag/Bi2O3 nanocomposite. Sens. Actuators B. Chem. 2020, 320, 128410. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, Z.; Suematsu, K.; Zhang, W.; Zhang, W.; Zhuiykov, S.; Shimanoe, K.; Hu, J. MOF-derived Au-NiO/In2O3 for selective and fast detection of toluene at ppb-level in high humid environments. Sens. Actuators B. Chem. 2022, 360, 131631. [Google Scholar] [CrossRef]
- Liu, Z.; Luo, D.; Yang, K.-L. Monitoring the two-dimensional concentration profile of toluene vapors by using polymerstabilized nematic liquid crystals in microchannels. Lab Chip 2020, 20, 1687–1693. [Google Scholar] [CrossRef] [PubMed]
- Khaing Oo, M.K.; Guo, Y.; Reddy, K.; Liu, J.; Fan, X. Ultrasensitive vapor detection with surface-enhanced Raman scattering-active gold nanoparticle immobilized flow-through multihole capillaries. Anal. Chem. 2012, 84, 3376–3381. [Google Scholar] [CrossRef]
- Liu, J.; White, I.; DeVoe, D.L. Nanoparticle-functionalized porous polymer monolith detection elements for surface-enhanced Raman scattering. Anal. Chem. 2011, 83, 2119–2124. [Google Scholar] [CrossRef] [Green Version]
- Mu, Y.; Liu, M.; Li, J.; Zhang, X. Plasmonic hollow fibers with distributed inner-wall hotspots for direct SERS detection of flowing liquids. Opt. Lett. 2021, 46, 1369–1372. [Google Scholar] [CrossRef]
- Li, J.; Mu, Y.; Liu, M.; Zhang, X. Direct laser writing of SERS hollow fibers. Nanomaterials 2022, 12, 2843. [Google Scholar] [CrossRef]
- Liu, M.; Mu, Y.; Hu, J.; Li, J.; Zhang, X. Optical feedback for sensitivity enhancement in direct raman detection of liquids. J. Spectrosc. 2021, 2021, 5588417. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, Y.; Liu, M.; Li, J.; Zhang, X. Multifold Enhanced Raman Detection of Organic Molecules as Environmental Water Pollutants. Biosensors 2023, 13, 4. https://doi.org/10.3390/bios13010004
Mu Y, Liu M, Li J, Zhang X. Multifold Enhanced Raman Detection of Organic Molecules as Environmental Water Pollutants. Biosensors. 2023; 13(1):4. https://doi.org/10.3390/bios13010004
Chicago/Turabian StyleMu, Yunyun, Miao Liu, Jiajun Li, and Xinping Zhang. 2023. "Multifold Enhanced Raman Detection of Organic Molecules as Environmental Water Pollutants" Biosensors 13, no. 1: 4. https://doi.org/10.3390/bios13010004
APA StyleMu, Y., Liu, M., Li, J., & Zhang, X. (2023). Multifold Enhanced Raman Detection of Organic Molecules as Environmental Water Pollutants. Biosensors, 13(1), 4. https://doi.org/10.3390/bios13010004