Soil Microbial Fuel Cell Based Self-Powered Cathodic Biosensor for Sensitive Detection of Heavy Metals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Soil
2.2. SMFC Sensor Setup and Operation
2.3. Heavy Metal Ions Detection
2.4. Electrochemical and Physical Analysis
2.5. High-throughput 16S rRNA Gene Sequencing
3. Results and Discussion
3.1. Bioelectricity-Producing Performance of the SMFC
3.2. Development of Carbon Felt Cathodic Sensing System with SMFC
3.3. Analytical Performance of the SMFC Self-Powered Biosensing System
3.4. Underlying Mechanism for the Cathodic Sensing of SMFC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A review on detection of heavy metal ions in water—An electrochemical approach. Sens. Actuators B Chem. 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, Z.; Yu, Y.-Y.; Wang, Y.-Z.; Naraginti, S.; Yong, Y.-C. A mediator-free whole-cell electrochemical biosensing system for sensitive assessment of heavy metal toxicity in water. Water Sci. Technol. 2019, 79, 1071–1080. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, E.; Lin, Q.; Zhang, E.; Yang, F.; Wei, C.; Shen, J. Comprehensive assessment of heavy metal pollution and ecological risk in lake sediment by combining total concentration and chemical partitioning. Environ. Pollut. 2020, 269, 116212. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, C.; Yang, J.; Zhao, Q. Assessing the heavy metal contamination of soils in the water-level fluctuation zone upstream and downstream of the Manwan Dam, Lancang River. J. Soils Sediments 2014, 14, 1147–1157. [Google Scholar] [CrossRef] [Green Version]
- Abourached, C.; Catal, T.; Liu, H. Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Res. 2014, 51, 228–233. [Google Scholar] [CrossRef]
- Aslan, S.; Conghaile, P.; Leech, D.; Gorton, L.; Timur, S.; Anik, U. Development of an Osmium Redox Polymer Mediated Bioanode and Examination of its Performance in Gluconobacter oxydans Based Microbial Fuel Cell. Electroanalysis 2017, 29, 1651–1657. [Google Scholar] [CrossRef]
- Aslan, S.; Conghaile, P.O.; Leech, D.; Gorton, L.; Timur, S.; Anik, U. Development of a Bioanode for Microbial Fuel Cells Based on the Combination of a MWCNT-Au-Pt Hybrid Nanomaterial, an Osmium Redox Polymer and Gluconobacter oxydans DSM 2343 Cells. Chemistryselect 2017, 2, 12034–12040. [Google Scholar] [CrossRef]
- Moradian, J.M.; Fang, Z.; Yong, Y.-C. Recent advances on biomass-fueled microbial fuel cell. Bioresour. Bioprocess. 2021, 8, 14. [Google Scholar] [CrossRef]
- Yu, Y.-Y.; Wang, Y.-Z.; Fang, Z.; Shi, Y.-T.; Cheng, Q.-W.; Chen, Y.-X.; Shi, W.; Yong, Y.-C. Single cell electron collectors for highly efficient wiring-up electronic abiotic/biotic interfaces. Nat. Commun. 2020, 11, 4087. [Google Scholar] [CrossRef]
- Zabihallahpoor, A.; Rahimnejad, M.; Talebnia, F. Sediment microbial fuel cells as a new source of renewable and sustainable energy: Present status and future prospects. RSC Adv. 2015, 5, 94171–94183. [Google Scholar] [CrossRef]
- Kim, M.; Sik Hyun, M.; Gadd, G.M.; Joo Kim, H. A novel biomonitoring system using microbial fuel cells. J. Environ. Monit. 2007, 9, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Deng, H.; Han, C.; Liu, L.; Zhong, W. A Novel Sediment Microbial Fuel Cell Based Sensor for On-Line and in situ Monitoring Copper Shock in Water. Electroanalysis 2018, 30, 2668–2675. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Z.; Zhao, F. Energy from Plants and Microorganisms: Progress in Plant-Microbial Fuel Cells. Chemsuschem 2011, 5, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Wu, Y.-C.; Zhang, F.; Huang, Z.-C.; Chen, Z.; Xu, H.-J.; Zhao, F. Factors Affecting the Performance of Single-Chamber Soil Microbial Fuel Cells for Power Generation. Pedosphere 2014, 24, 330–338. [Google Scholar] [CrossRef]
- Xu, F.; Mou, Z.; Geng, J.; Zhang, X.; Li, C.-Z. Azo dye decolorization by a halotolerant exoelectrogenic decolorizer isolated from marine sediment. Chemosphere 2016, 158, 30–36. [Google Scholar] [CrossRef]
- Yang, Z.-C.; Cheng, Y.-Y.; Zhang, F.; Li, B.-B.; Mu, Y.; Li, W.-W.; Yu, H.-Q. Rapid Detection and Enumeration of Exoelectrogenic Bacteria in Lake Sediments and a Wastewater Treatment Plant Using a Coupled WO3 Nanoclusters and Most Probable Number Method. Environ. Sci. Technol. Lett. 2016, 3, 133–137. [Google Scholar] [CrossRef]
- Abbas, S.Z.; Rafatullah, M. Recent advances in soil microbial fuel cells for soil contaminants remediation. Chemosphere 2021, 272, 129691. [Google Scholar] [CrossRef]
- Gustave, W.; Yuan, Z.-F.; Sekar, R.; Ren, Y.-X.; Liu, J.-Y.; Zhang, J.; Chen, Z. Soil organic matter amount determines the behavior of iron and arsenic in paddy soil with microbial fuel cells. Chemosphere 2019, 237, 124459. [Google Scholar] [CrossRef]
- Meunier, N.; Laroulandie, J.; Blais, J.; Tyagi, R. Cocoa shells for heavy metal removal from acidic solutions. Bioresour. Technol. 2003, 90, 255–263. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, H.; Chen, L.; Xiao, Y.; Zhao, F. In situ measurements of dissolved oxygen, pH and redox potential of biocathode microenvironments using microelectrodes. Bioresour. Technol. 2013, 132, 387–390. [Google Scholar] [CrossRef]
- Liu, L.; Lu, Y.; Zhong, W.; Meng, L.; Deng, H. On-line monitoring of repeated copper pollutions using sediment microbial fuel cell based sensors in the field environment. Sci. Total. Environ. 2020, 748, 141544. [Google Scholar] [CrossRef]
- Wen, L.; Dong, J.B.; Yang, H.S.; Zhao, J.Y.; Hu, Z.K.; Han, H.Y.; Hou, C.J.; Luo, X.G.; Huo, D.Q. A novel electrochemical sensor for simultaneous detection of Cd2+ and Pb2+ by MXene aerogel-CuO/carbon cloth flexible electrode based on oxygen vacancy and bismuth film. Sci. Total Environ. 2022, 851, 158325. [Google Scholar] [CrossRef]
- Zhao, L.; Zhong, S.; Fang, K.; Qian, Z.; Chen, J. Determination of cadmium(II), cobalt(II), nickel(II), lead(II), zinc(II), and copper(II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry. J. Hazard. Mater. 2012, 239–240, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.-H.; Cui, D.; Liang, B.; Sangeetha, T.; Wang, A.-J.; Cheng, H.-Y. Decolorization enhancement by optimizing azo dye loading rate in an anaerobic reactor. RSC Adv. 2016, 6, 49995–50001. [Google Scholar] [CrossRef]
- Yang, C.; Liu, W.; He, Z.; Thangavel, S.; Wang, L.; Zhou, A.; Wang, A. Freezing/thawing pretreatment coupled with biological process of thermophilic Geobacillus sp. G1: Acceleration on waste activated sludge hydrolysis and acidification. Bioresour. Technol. 2015, 175, 509–516. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, P.; Niu, Y.; Chen, Z.; Khan, A.; Zhang, P.; Li, X. A Novel Early Warning System Based on a Sediment Microbial Fuel Cell for In Situ and Real Time Hexavalent Chromium Detection in Industrial Wastewater. Sensors 2018, 18, 642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clauwaert, P.; Aelterman, P.; Pham, T.H.; De Schamphelaire, L.; Carballa, M.; Rabaey, K.; Verstraete, W. Minimizing losses in bio-electrochemical systems: The road to applications. Appl. Microbiol. Biotechnol. 2008, 79, 901–913. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-B.; Zhong, W.-H.; Han, C.; Deng, H. Characterization of Electricity Generated by Soil in Microbial Fuel Cells and the Isolation of Soil Source Exoelectrogenic Bacteria. Front. Microbiol. 2016, 7, 1776. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Hu, X.; Tang, L.; Peng, B.; Tang, J.; Zeng, T.; Zhang, X.; Liu, Q. Effect of CuO/ZnO/FTO electrode properties on the performance of a photo-microbial fuel cell sensor for the detection of heavy metals. Chemosphere 2022, 302, 134779. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Salama, E.-S.; Chen, Z.; Ni, H.; Zhao, S.; Zhou, T.; Pei, Y.; Sani, R.K.; Ling, Z.; Liu, P.; et al. A novel biosensor for zinc detection based on microbial fuel cell system. Biosens. Bioelectron. 2019, 147, 111763. [Google Scholar] [CrossRef] [PubMed]
- Naik, S.; Jujjavarapu, S.E. Self-powered and reusable microbial fuel cell biosensor for toxicity detection in heavy metal polluted water. J. Environ. Chem. Eng. 2021, 9, 105318. [Google Scholar] [CrossRef]
- Zhou, X.; Qu, Y.; Kim, B.H.; Choo, P.Y.; Liu, J.; Du, Y.; He, W.; Chang, I.S.; Ren, N.; Feng, Y. Effects of azide on electron transport of exoelectrogens in air-cathode microbial fuel cells. Bioresour. Technol. 2014, 169, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, B.; Zhou, P.; Kang, R.; Zhang, B.; Guo, D. A novel approach of chemical mechanical polishing for cadmium zinc telluride wafers. Sci. Rep. 2016, 6, 26891. [Google Scholar] [CrossRef] [Green Version]
- Dilasari, B.; Jung, Y.; Kwon, K. Effect of water on the stability of zinc in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid. J. Ind. Eng. Chem. 2017, 45, 375–379. [Google Scholar] [CrossRef]
- McGettrick, J.D.; Hooper, K.; Pockett, A.; Baker, J.; Troughton, J.; Carnie, M.; Watson, T. Sources of Pb(0) artefacts during XPS analysis of lead halide perovskites. Mater. Lett. 2019, 251, 98–101. [Google Scholar] [CrossRef]
Configuration | Sensing Element | Electrode Material | Heavy Metals | Electric Change | MFC Voltage | Linear Range for Detection | Sensitivity (Estimated) (mV/mg) | References |
---|---|---|---|---|---|---|---|---|
Dual-chamber MFC | Bioanode | Anode, carbon felt; cathode, CuO/ZnO | Cu2+, Cd2+ | Decrease | 200 mV | Cd2+ 0.1–4 mg/L Cu2+ 10–80 mg/L | - | [30] |
Dual-chamber MFC | Bioanode | Anode, carbon felt; cathode, carbon felt | Zn2+ | Increase | 250 mV | Zn2+ 20–100 μM | ~0.5 | [31] |
Single-chamber MFC | Bioanode | Anode, graphite; cathode, graphite | Cu2+,Cr6+, Zn2+, Ni2+ | Decrease | 200 mV | Cu2+ 5–20 mg/L Cr6+ 5–20 mg/L Zn2+ 5–20 mg/L Ni2+ 5–20 mg/L | Cu2+ ~4.5 Cr6+ ~6.5 Zn2+ ~5.0 Ni2+ ~4.0 | [32] |
Single-chamber MFC | Cathode | Anode, stainless steel; cathode, platinum | Cu2+ | Increase | ~170 mV | Cu2+ 12.5–400 mg/L | ~0.1–0.3 | [22] |
Single-chamber MFC | Cathode | Anode, stainless steel; cathode, platinum | Cu2+ | Increase | ~200 mV | Cu2+ 0.3–2.5 mg/L | ~0.1 | [13] |
Single-chamber MFC | Cathode | Anode, carbon felt; cathode, carbon felt | Cd2+, Zn2, Pb2+, Hg2+ | Increase | ~42,700 mV | Cd2+ 1–30 mg/L Zn2+ 1–30 mg/L Pb2+ 0.5–30 mg/L Hg2+ 0.5–20 mg/L | Cd2+ ~0.92 Zn2+ ~0.98 Pb2+ 1.87 Hg2+ 7.65 | This study |
Sample | Detected by SMFC (mg/L) | Detected by ICP (mg/L) | Coefficient of Variation (%) |
---|---|---|---|
Sample 1 | 3.58 | 3.64 | −1.68 |
Sample 2 | 5.28 | 5.26 | 0.38 |
Sample 3 | 8.11 | 8.49 | −4.75 |
Sample 4 | 12.81 | 13.50 | −5.39 |
Sample 5 | 16.70 | 18.20 | −8.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.-H.; Wang, J.-W.; Zhao, L.-T.; Abbas, S.Z.; Yang, Z.; Yong, Y.-C. Soil Microbial Fuel Cell Based Self-Powered Cathodic Biosensor for Sensitive Detection of Heavy Metals. Biosensors 2023, 13, 145. https://doi.org/10.3390/bios13010145
Wang S-H, Wang J-W, Zhao L-T, Abbas SZ, Yang Z, Yong Y-C. Soil Microbial Fuel Cell Based Self-Powered Cathodic Biosensor for Sensitive Detection of Heavy Metals. Biosensors. 2023; 13(1):145. https://doi.org/10.3390/bios13010145
Chicago/Turabian StyleWang, Shi-Hang, Jian-Wei Wang, Li-Ting Zhao, Syed Zaghum Abbas, Zhugen Yang, and Yang-Chun Yong. 2023. "Soil Microbial Fuel Cell Based Self-Powered Cathodic Biosensor for Sensitive Detection of Heavy Metals" Biosensors 13, no. 1: 145. https://doi.org/10.3390/bios13010145
APA StyleWang, S. -H., Wang, J. -W., Zhao, L. -T., Abbas, S. Z., Yang, Z., & Yong, Y. -C. (2023). Soil Microbial Fuel Cell Based Self-Powered Cathodic Biosensor for Sensitive Detection of Heavy Metals. Biosensors, 13(1), 145. https://doi.org/10.3390/bios13010145