Detection of L-Aspartic Acid with Ag-Doped ZnO Nanosheets Using Differential Pulse Voltammetry
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Tools
2.2. Preparation of Ag2O-Doped ZnO NSs
2.3. Fabrication of GCE with NSs
3. Results and Discussion
3.1. Structural Morphology of Ag2O-Doped ZnO NSs
3.2. X-ray Diffraction of Ag-Doped ZnO NSs
3.3. XPS Analysis of Ag-Doped ZnO NSs
3.4. Electrochemical Characterization of Working Electrode
3.5. Voltammetric Detection of L-Aspartic Acid
3.6. Analysis of Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azevedo, R.A.; Lancien, M.; Lea, P.J. The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids 2006, 30, 143–162. [Google Scholar] [CrossRef] [PubMed]
- Topo, E.; Soricelli, A.; D’Aniello, A.; Ronsini, S.; D’Aniello, G. The role and molecular mechanism of D-aspartic acid in the release and synthesis of LH and testosterone in humans and rats. Reprod. Biol. Endocrinol. 2009, 7, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neidle, A.; Dunlop, D.S. Developmental changes of free D-aspartic acid in the chicken embryo and in the neonatal rat. Life Sci. 1990, 46, 1517–1522. [Google Scholar] [CrossRef]
- Hashimoto, A.; Kumashiro, S.; Nishikawa, T.; Oka, T.; Takahashi, K.; Mito, T.; Takashima, S.; Doi, N.; Mizutani, Y.; Kaneco, T.; et al. Embryonic development and postnatal changes in free D-aspartate and D-serine in the human prefrontal cortex. J. Neurochem. 1993, 61, 348–351. [Google Scholar] [CrossRef]
- Spinelli, P.; Brown, E.; Ferrandino, G.; Branno, M.; Montarolo, P.G.; D’Aniello, E.; Rastogi, R.K.; D’Aniello, B.; Baccari, G.; Fisher, G.; et al. D-Aspartic acid in the nervous system of Aplysia limacine: Possible Role in Neurotransmission. J. Cell. Physiol. 2006, 206, 672–681. [Google Scholar] [CrossRef]
- Topo, E.; Soricelli, A.; Maio, A.D.; D’Aniello, E.; Fiore, M.M.D.; D’Aniello, A. Evidence for the involvement of D-aspartic acid in learning and memory of rat. Amino Acids 2010, 38, 1561–1569. [Google Scholar] [CrossRef]
- Birken, D.L.; Oldendorf, W.H. N-Acetyl-L-Aspartic acid: A literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci. Biobehav. Rev. 1989, 13, 23–31. [Google Scholar] [CrossRef]
- Newburg, D.S.; Frankel, D.L.; Fillios, L.C. An Asparagine Requirement in Young Rats Fed the Dietary Combinations of Aspartic Acid, Glutamine, and Glutamic Acid. J. Nutr. 1975, 105, 356–363. [Google Scholar] [CrossRef]
- Stoof, J.C.; Booij, J.; Drukarch, B. Amantadine as receptor antagonist: New possibilities for therapeutic applications. Clin. Neurol. Neurosurg. 1992, 94, 4–6. [Google Scholar] [CrossRef]
- D’Aniello, A. D-Aspartic acid: An endogenous amino acid with an important neuroendocrine role. Brain Res. Rev. 2007, 53, 215–234. [Google Scholar] [CrossRef]
- Li, Y.A.; Zhao, C.W.; Zhu, N.X.; Liu, Q.K.; Chen, G.J.; Liu, J.B.; Zhao, X.D.; Ma, J.P.; Zhang, S.J.; Dong, Y.B. Nanoscale UiO-MOF-based luminescent sensors for highly selective detection of cysteine and glutathione and their application in bio-imaging. Chem. Commun. 2015, 51, 17672–17675. [Google Scholar] [CrossRef] [PubMed]
- Manjunatha, J.G.; Swamy, K.; Awitdrus, A.; Mamatha, G.P. Simultaneous determination of ascorbic acid, dopamine and uric acid at poly (aniline blue) modified carbon paste electrode: A cyclic voltammetric study. Int. J. Pharm. 2013, 5, 355–361. [Google Scholar]
- Yan, N.; Song, H.J.; Wan, X.Y.; Fan, X.Q.; Sun, Y.Y.; Lv, Y. A metal (Co)–organic framework-based chemi-luminescence system for selective detection of L-cysteine. Analyst 2015, 140, 2656–2663. [Google Scholar] [CrossRef]
- Hosseini, H.; Ahmar, H.; Dehghani, A.; Bagheri, A.; Tadjarodi, A.; Fakhari, A.R. Anovel electrochemical sensor based on metal-organic framework forelectro-catalytic oxidation of L-cysteine. Biosens. Bioelectron. 2013, 42, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ren, X.; Chen, Z. One-and two-photon turn-on fluorescence probe for cysteine and homocysteine with large emission shift. Org. Lett. 2009, 11, 1257–1260. [Google Scholar] [CrossRef]
- Le Boucher, J.; Charret, C.; Coudray-Lucas, C.; Giboudeau, J.; Cynober, L. Amino acid determination in biological fluids by automated ion- exchange chromatography: Performance of Hitachi L-8500A. Clin. Chem. 1997, 43, 1421–1428. [Google Scholar] [CrossRef] [Green Version]
- Mayadunne, R.; Nguyen, T.T.; Marriott, P.J. Amino acid analysis by using comprehensive two-dimensional gas chromatography. Anal. Bioanal. Chem. 2005, 382, 836–847. [Google Scholar] [CrossRef]
- Dettmer, K.; Stevens, A.P.; Fagerer, S.R.; Kaspar, H.; Oefner, P.J. Amino acid analysis in physiological samples by GC– MS with propyl chloroformate derivatization and iTRAQ-LC-MS/MS. Methods Mol. Biol. 2012, 828, 165–181. [Google Scholar] [CrossRef]
- Pitkänen, H.T.; Oja, S.S.; Kemppainen, K.; Seppä, J.M.; Mero, A.A. Serum amino acid concentrations in aging men and women. Amino Acids 2003, 24, 413–421. [Google Scholar] [CrossRef]
- Xu, D.; Fan, D.; Shen, W. Catalyst-free direct vapor-phase growth of Zn1−xCuxO micro-cross structures and their optical properties. Nanoscale Res. Lett. 2013, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Prasad, B.B.; Jaiswal, S.; Singh, K. Ultra-trace analysis of d-and l-aspartic acid applying one-by-one approach on a dual imprinted electrochemical sensor. Sens. Actuators B Chem. 2017, 240, 631–639. [Google Scholar] [CrossRef]
- Manjunatha, P.; Nayaka, Y.A.; Chethana, B.K.; Vidyasagar, C.C.; Yathisha, R.O. Development of multi-walled carbon nanotubes modified pencil graphite electrode for the electrochemical investigation of aceclofenac present in pharmaceutical and biological samples. Sens. Bio-Sens. Res. 2018, 17, 7–17. [Google Scholar] [CrossRef]
- Zhan, Z.; Li, Y.; Zhao, Y.; Zhang, H.; Wang, Z.; Fu, B.; Li, W.J. A review of electrochemical sensors for the detection of glaycated hemoglobin. Biosensors 2022, 12, 221. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.M.; Uddin, M.T.; Asiri, A.M.; Awual, M.R.; Fazal, M.A.; Rahman, M.M.; Islam, M.A. Fabrication of selective l-glutamic acid sensor in electrochemical technique from wet-chemically prepared RuO2 doped ZnO nanoparticles. Mater. Chem. Phys. 2020, 251, 123029. [Google Scholar] [CrossRef]
- Alam, M.M.; Asiri, A.M.; Uddin, M.T.; Islam, M.A.; Awual, M.R.; Rahman, M.M. Detection of uric acid based on doped ZnO/Ag2O/Co3O4 nanoparticle loaded glassy carbon electrode. New J. Chem. 2019, 43, 8651–8659. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.M.; Asiri, A.M. Detection of thiourea with ternary Ag2O/TiO2/ZrO2 nanoparticles by electrochemical approach. J. Mater. Sci. Mater. Electron. 2020, 31, 15422–15433. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.M.; Asiri, A.M. Development of an efficient phenolic sensor based on facile Ag2O/Sb2O3 nanoparticles for environmental safety. Nanoscale Adv. 2019, 1, 696–705. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Alam, M.M.; Asiri, A.M.; Uddin, J. 3-Methoxyphenol chemical sensor fabrication with Ag2O/CB nanocomposites. New J. Chem. 2020, 44, 2001–2010. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Jiao, Y.; Qu, F.; Pan, Q.; Wu, X. Hybrid Ag2O/ZnO Heterostructures. J. Nanomater. 2013, 2013, 684797. [Google Scholar] [CrossRef] [Green Version]
- Lam, S.M.; Sin, J.C.; Abdullah, A.Z.; Mohamed, A.R. Efficient photodegradation of resorcinol with Ag2O/ZnO nanorods heterostructure under a compact fluorescent lamp irradiation. Chem. Pap. 2013, 67, 1277–1284. [Google Scholar] [CrossRef]
- Awan, S.U.; Hasanain, S.K.; Rashid, J.; Hussain, S.; Shah, S.A.; Hussain, M.Z.; Rafique, M.; Aftab, M.; Khan, R. Structural, optical, electronic and magnetic properties of multiphase ZnO/Zn(OH)2/ZnO2 nanocomposites and hexagonal prism shaped ZnO nanoparticles synthesized by pulse laser ablation in Heptanes. Mater. Chem. Phys. 2018, 211, 510–521. [Google Scholar] [CrossRef]
- Alam, M.M.; Asiri, A.M.; Uddin, J. Selective 1,4-dioxane chemical sensor development with doped ZnO/GO nanocomposites by electrochemical approach. J. Mater. Sci Mater. Electron. 2022, 33, 4360–4374. [Google Scholar] [CrossRef]
- György, E.; Perez del Pino, A.; Datcu, A.; Duta, L.; Logofatu, C.; Iordache, I.; Duta, A. Titanium oxide—Reduced graphene oxide—Silver composite layers synthesized by laser technique: Wetting and electrical properties. Ceram. Int. 2016, 42, 16191–16197. [Google Scholar] [CrossRef] [Green Version]
- Ambroziak, R.; Hołdynski, M.; Płocinski, T.; Pisarek, M.; Kudelski, A. Cubic Silver Nanoparticles Fixed on TiO2 Nanotubes as Simple and Efficient Substrates for Surface Enhanced Raman Scattering. Materials 2019, 12, 3373. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, T.; Azizi, S. Graphene/graphite paste electrode incorporated with molecularly imprinted polymer nanoparticles as a novel sensor for differential pulse voltammetry determination of fluoxetine. Biosens. Bioelectron. 2016, 81, 198–206. [Google Scholar] [CrossRef]
- Ahmed, J.; Rakib, R.H.; Rahman, M.M.; Asiri, A.M.; Siddiquey, I.A.; Islam, S.S.M.; Hasnat, M.A. Electrocatalytic Oxidation of 4-Aminophenol Molecules at the Surface of an FeS2/Carbon Nanotube Modified Glassy Carbon Electrode in Aqueous Medium. ChemPlusChem 2019, 84, 175–182. [Google Scholar] [CrossRef]
- Hussain, M.M.; Asiri, A.M.; Rahman, M.M. Simultaneous detection of L-aspartic acid and glycine using wet-chemically prepared Fe3O4@ZnO nanoparticles: Real sample analysis. RSC Adv. 2020, 10, 19276–19289. [Google Scholar] [CrossRef]
- Guan, H.; Zhou, P.; Zhou, X.; He, Z. Sensitive and selective detection of aspartic acid and glutamic acid based on polythiophene–gold nanoparticles composite. Talanta 2008, 77, 319–324. [Google Scholar] [CrossRef]
- Prasad, B.B.; Pandey, I. Electrochemically imprinted molecular recognition sites on multiwalled carbon-nanotubes/pencil graphite electrode surface for enantioselective detection of d- and l-aspartic acid. Electrochim. Acta 2013, 88, 24–34. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.M.; Alfaifi, S.Y.; Asiri, A.M.; Ali, M.M. Sensitive detection of thiourea hazardous unsafe toxin with sandwich type Nafion/CuO/ZnO nanospikes/Glassy carbon composite electrodes. Polymers 2021, 13, 3998. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khan, S.B.; Marwani, H.M.; Asiri, A.M. Selective Divalent Cobalt Ions Detection Using Ag2O3-ZnO Nanocones by ICP-OES Method for Environmental Remediation. PLoS ONE 2014, 9, e114084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asiri, A.M.; Khan, S.B.; Rahman, M.M.; Al-Sehemi, A.G.; Al-Sayari, S.A.; Al-Asiri, M.S. Green material: Ecological importance of imperative and sensitive chemi-sensor based on Ag/Ag2O3/ZnO composite nanorods. Nanoscale Res. Lett. 2013, 8, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subhan, M.A.; Fahim, A.M.M.; Saha, P.C.; Rahman, M.M.; Begum, K.; Azad, A.K. Structural study, photoluminescence and photocatalytic properties of La2O·Fe3O4·ZnO, AgO·NiO·ZnO and La2O3·AgO·ZnO nanocomposites. Nano-Struct. Nano-Objects 2017, 10, 30–41. [Google Scholar] [CrossRef]
- Rahman, M.M.; Ahmed, J.; Asiri, A.M.; Alfaifi, S.Y. Ultra-sensitive, selective, and rapid carcinogenic Bisphenol A contaminant determination using low-dimensional facile binary Mg-SnO2 doped metal oxide by potential electro-analytical technique for the safety of environment. J. Ind. Eng. Chem. 2022, 109, 147–154. [Google Scholar] [CrossRef]
- Islam, M.F.; Hasnat, M.A.; Rakib, R.H.; Alamry, K.A.; Rahman, M.M. Electrocatalytic oxidation of catechol using IrOx- ITO electrode in the aqueous medium. J. Electroanal. Chem. 2022, 907, 116031. [Google Scholar] [CrossRef]
- Hussain, M.M.; Asiri, A.M.; Uddin, J.; Rahman, M.M. Development of L-cysteine sensor based on thallium oxide coupled multi-walled carbon nanotube nanocomposites with electrochemical approach. Chem. Asian J. 2022, 17, e202101117. [Google Scholar] [CrossRef]
- Rahman, M.M.; Ahmed, J.; Asiri, A.M. Ultra-sensitive, selective, and rapid carcinogenic 1,2-diaminobenzene chemical determination using sol-gel coating low-dimensional facile CuS modified-CNT nanocomposites by electrochemical approach. Microchem. J. 2022, 175, 107230. [Google Scholar] [CrossRef]
- Islam, M.F.; Islam, M.T.; Hasan, M.M.; Rahman, M.M.; Nagao, Y.; Hasnat, M.A. Facile fabrication of GCE/Nafion/Ni composite, a robust platform to detect hydrogen peroxide in the basic medium via oxidation reaction. Talanta 2022, 240, 123202. [Google Scholar] [CrossRef]
Modified Electrode | Method | DOL * | LDR # | Sensitivity | Ref. |
---|---|---|---|---|---|
Fe3O4@ZnO NPs/GCE | I–V | 97.0 pM | 0.1 nM~10 μM | 0.1266 µA µM−1 cm−2 | [37] |
Au NPs–PT | fluoresce | 32.0 pM | 75.0 pM~6.0 µM | --- | [38] |
MWCNT/PGOE | DPV | 16.0 pM | 0.15–8.9 µM | --- | [39] |
Ag2O-ZnO NSs/GCE | 3.5 µM | 15.0~105.0 µM | 0.2689 µA µM−1 cm−2 | This work |
Sample | Added L-Aspartic Conc. (µM) | Measured L-Aspartic Conc. by Ag2O Doped ZnO NSs/GCE (µM) a | Average Recovery b (%) | RSD c (%) (n = 3) | ||
---|---|---|---|---|---|---|
R1 | R2 | R3 | ||||
Human serum | 45 | 44.23 | 44.15 | 43.96 | 98.03 | 0.60 |
Mouse serum | 45 | 43.76 | 43.89 | 44.17 | 97.64 | 1.20 |
Rabbit serum | 45 | 42.93 | 43.27 | 44.07 | 96.49 | 1.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.M.; Asiri, A.M.; Hasnat, M.A.; Rahman, M.M. Detection of L-Aspartic Acid with Ag-Doped ZnO Nanosheets Using Differential Pulse Voltammetry. Biosensors 2022, 12, 379. https://doi.org/10.3390/bios12060379
Alam MM, Asiri AM, Hasnat MA, Rahman MM. Detection of L-Aspartic Acid with Ag-Doped ZnO Nanosheets Using Differential Pulse Voltammetry. Biosensors. 2022; 12(6):379. https://doi.org/10.3390/bios12060379
Chicago/Turabian StyleAlam, Md Mahmud, Abdullah M. Asiri, Mohammad A. Hasnat, and Mohammed M. Rahman. 2022. "Detection of L-Aspartic Acid with Ag-Doped ZnO Nanosheets Using Differential Pulse Voltammetry" Biosensors 12, no. 6: 379. https://doi.org/10.3390/bios12060379
APA StyleAlam, M. M., Asiri, A. M., Hasnat, M. A., & Rahman, M. M. (2022). Detection of L-Aspartic Acid with Ag-Doped ZnO Nanosheets Using Differential Pulse Voltammetry. Biosensors, 12(6), 379. https://doi.org/10.3390/bios12060379