Electronic Property and Negative Thermal Expansion Behavior of Si136-xGex (x = 8, 32, 40, 104) Clathrate Solid Solution from First Principles
Abstract
1. Introduction
2. Computational Approach
3. Results and Discussion
3.1. Electronic Properties
3.2. NTE Behavior Investigation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jeffrey, G.A. Hydrate inclusion compounds. J. Incl. Phenom. 1984, 1, 211–222. [Google Scholar] [CrossRef]
- Baranowaski, L.L.; Krishna, L.; Martinez, A.D.; Stevanovic, V. Synthesis and optical band gaps of alloyed Si-Ge type II clathrates. J. Mater. Chem. C 2014, 2, 3231–3237. [Google Scholar] [CrossRef]
- Segall, M.D.; Lindan, P.J.D.; al Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717. [Google Scholar] [CrossRef]
- Moriguchi, K.; Munetoh, S.; Shintani, A. First-principle study of Si34-xGex clathrates: Direct wide-gap semiconductors in Si-Ge alloys. Phys. Rev. B 2000, 62, 7138. [Google Scholar] [CrossRef]
- Härkönen, V.; Karttunen, A.J. Ab initio dynamical studies of silicon clathrate frameworks and their negative thermal expansion. Phys. Rev. B 2014, 89, 024305. [Google Scholar] [CrossRef]
- Ramachandran, G.K.; McMillan, P.F.; Deb, S.K.; Somayazulu, M.; Gryko, J.; Dong, J.; Sankey, O.F. High-pressure phase transformation of the silicon clathrate Si136. J. Phys. Condens. Matter 2000, 12, 4013. [Google Scholar] [CrossRef]
- Tang, X.; Dong, J.; Hutchins, P.; Shebanova, O.; Gryko, J.; Barnes, P.; Cockcroft, J.K.; Vickers, M.; McMillian, P.F. Thermal properties of Si136: Theoretical and experimental study of the Type-II clathrate polymorph of Si. Phys. Rev. B 2006, 74, 014109. [Google Scholar] [CrossRef]
- Biernacki, S.; Scheffler, M. Negative Thermal Expansion of Diamond and Zinc-Blende Semiconductors. Phys. Rev. Lett. 1989, 63, 290. [Google Scholar] [CrossRef]
- Ibach, H. Thermal expansion of silicon and zinc oxide (I). Physica Status Solidi (b) 1969, 31, 625–634. [Google Scholar] [CrossRef]
- Shah, J.S.; Straumanis, M.E. Thermal expansion behavior of silicon at low temperatures. Solid State Commun. 1972, 10, 159–162. [Google Scholar] [CrossRef]
- Gibbons, D.F. Thermal expansion of some crystals with the diamond structure. Phys. Rev. 1958, 112, 136. [Google Scholar] [CrossRef]
- Dolling, G.; Cowley, R.A. The thermodynamic and optical properties of germanium, silicon, diamond and gallium arsenide. Proc. Phys. Soc. 1966, 88, 463. [Google Scholar] [CrossRef]
- Novikova, S.I. Thermal expansion of germanium at low temperatures. Sov. Phys. Solid State 1960, 2, 37–38. [Google Scholar]
- Dong, J.; Sankey, O.F.; Kern, G. Theoretical study of the vibrational modes and their pressure dependence in the pure clathrate-II silicon framework. Phys. Rev. B 1999, 60, 950. [Google Scholar] [CrossRef]
- Koza, M.M.; Johnson, M.R.; Mutka, H.; Rotter, M.; Nasir, N.; Grytsiv, A.; Rogl, P. Vibrational dynamics of the type-I clathrate Ba8ZnxGe46-x☐y (x = 0, 2, 4, 6, 8). Phys. Rev. B 2010, 82, 214301. [Google Scholar] [CrossRef]
- Blake, N.P.; Mo/Ilnitz, L.; Kresse, G.; Metiu, H. Why clathrates are good thermoelectrics: A theoretical study of Sr8Ga16Ge30. J. Chem. Phys. 1999, 111, 3133–3144. [Google Scholar] [CrossRef]
- Biswas, K.; Myles, C.W. Electronic and vibrational properties of framework-substituted type-II silicon clathrates. Phys. Rev. B 2007, 75, 245205. [Google Scholar] [CrossRef]
- Dong, J.; Sankey, O.F.; Ramachandran, G.K.; McMillan, P.F. Chemical trends of the rattling phonon modes in alloyed germanium clathrates. J. Appl. Phys. 2000, 87, 7726–7734. [Google Scholar] [CrossRef]
- Huang, K.; Bohn, M. Dynamical Theory and Crystal Lattices; Clarendon: Oxford, UK, 1954; p. 298. [Google Scholar]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1963, 140, A1133. [Google Scholar] [CrossRef]
- Hafner, J. Ab-initio simulations of materials of VASP: Density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044–2078. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmuller, J.; Hafner, J. Theory of the crystal structures of selenium and tellurium: The effect of generalized-gradient corrections to the local-density approximation. Phys. Rev. B 1994, 50, 13181. [Google Scholar] [CrossRef]
- Biswas, K.; Myles, C.W.; Sanati, M.; Nolas, G.S. Thermal properties of guest-free Si136 and Ge136 clathrates: A first-principles study. J. Appl. Phys. 2008, 104, 033535. [Google Scholar] [CrossRef]
- Qiu, L.; White, M.A.; Li, Z.; John, S.T.; Ratcliffe, C.I.; Tulk, C.A.; Dong, J.; Sankey, O.F. Thermal and lattice dynamical properties of Na8Si46 clathrate. Phys. Rev. B 2001, 64, 024303. [Google Scholar] [CrossRef]
- Nolas, G.S.; Kendziora, C.A.; Gryko, J.; Dong, J.; Myles, C.W.; Poddar, A.; Sankey, O.F. Raman scattering study of stoichiometric Si and Ge type-II clathrates. J. Appl. Phys. 2002, 92, 7225–7230. [Google Scholar] [CrossRef]
- Norouzzadeh, P.; Krasinski, J.S.; Myles, C.W.; Vashaee, D. Type VIII Si based clathrates: prospects for a giant thermoelectric power factor. Phys. Chem. Chem. Phys. 2015, 17, 8850–8859. [Google Scholar] [CrossRef] [PubMed]
- Birch, F. Elasticity and constitution of the Earth’s interior. J. Geophys. Res. 1952, 57, 227–286. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Myles, C.W.; Dong, J.; Sankey, O.F.; Kendziora, C.A.; Nolas, G.S. Vibrational properties of tin clathrate materials. Phys. Rev. B 2002, 65, 235208. [Google Scholar] [CrossRef]
- Tang, X.; Dong, J. Pressure dependence of harmonic and anharmonic lattice dynamics in MgO: A first-principles calculation and implications for lattice thermal conductivity. Phys. Earth Planet. Int. 2009, 174, 33–38. [Google Scholar] [CrossRef]
- Buzea, C.; Pacheco, I.; Robbie, K. Nanomaterials and Nanoparticles: Sources and Toxicity. Biointerphases 2007, 2, MR17–MR71. [Google Scholar] [CrossRef]
- Gryko, J.; McMillan, P.F.; Marzke, R.F.; Ramachandran, G.K.; Patton, D.; Deb, S.K.; Sankey, O.F. Low-density framework form of crystalline silicon with a wide optical band gap. Phys. Rev. B 2000, 62, R7707. [Google Scholar] [CrossRef]
- Adams, G.S.; O’Keeffe, M.; Demkov, A.A.; Sankey, O.F.; Huang, Y. Wide-band-gap Si in open fourfold-coordinated clathrate structures. Phys. Rev. B 1994, 49, 8048. [Google Scholar] [CrossRef]
- Connetable, D.; Timoshevskii, V.; Artacho, E.; Blase, X. Tailoring Band Gap and Hardness by Intercalation: An ab initio Study of I8@Si-46 and Related Doped Clathrates. Phys. Rev. Lett. 2001, 87, 206405. [Google Scholar] [CrossRef]
- Herman, F.; Kortum, R.L.; Kuglin, C.D. Energy band structure of diamond, cubic silicon carbide, silicon, and germanium. Int. J. Quantum Chem. 1967, 1, 533–566. [Google Scholar] [CrossRef]
- Blake, D.; Allamandola, L.; Sandford, S.; Hudgins, D.; Freund, F. Clathrate hydrate formation in amorphous cometary ice analogs in vacuo. Science 1991, 254, 5031. [Google Scholar] [CrossRef]
- Santamaria-Perez, D.; Vegas, A.; Liebau, F. The Zintl-Klemm concept applied to cations in oxides. II. The structures of silicates. In Semiconductor Nanocrystals and Silicate Nanoparticles; Springer: Berlin, Germany, 2005; pp. 121–177. [Google Scholar]
- Dong, J.; Sankey, O.F. Theoretical study of two expanded phases of crystalline germanium: Clathrate-I and clathrate-II. J. Phys. Condens. Matter 1999, 11, 61209. [Google Scholar] [CrossRef]
- Saito, S.; Oshiyama, A. Electronic structure of Si46 and Na2Ba6Si46. Phys. Rev. B 1995, 51, 2628. [Google Scholar] [CrossRef]
- Mujica, A.; Pickard, C.J.; Needs, R.J. Low-energy tetrahedral polymorphs of carbon, silicon, and germanium. Phys. Rev. B 2015, 91, 214104. [Google Scholar] [CrossRef]
- Miranda, C.R.; Antonelli, A. Thermodynamics of type-I and type-II Si clathrates at zero pressure: Monte Carlo simulations. Phys. Rev. B 2006, 74, 153203. [Google Scholar] [CrossRef]
- Barrera, G.D.; Bruno, J.A.O.; Barron, T.H.K.; Allan, N.L. Negative thermal expansion. J. Phys. Condens. Matter 2005, 17, R217. [Google Scholar] [CrossRef]
- Bertoldi, D.S.; Miranda, E.N.; Guillermet, A.F. Revisiting the thermostatistics of the Grüneisen parameters and applications to quasiharmonic solids. J. Phys. Chem. Solids 2014, 75, 1147–1151. [Google Scholar] [CrossRef]
Mode | Critical Point | Si128Ge8 | Si104Ge32 |
---|---|---|---|
TA(1) | X | −1.37 | −1.23 |
TA(1) | Γ | −1.42 | −1.29 |
LA | X | 0.51 | 0.76 |
LA | Γ | 0.94 | 0.90 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, D.; Myles, C.W. Electronic Property and Negative Thermal Expansion Behavior of Si136-xGex (x = 8, 32, 40, 104) Clathrate Solid Solution from First Principles. Nanomaterials 2019, 9, 851. https://doi.org/10.3390/nano9060851
Xue D, Myles CW. Electronic Property and Negative Thermal Expansion Behavior of Si136-xGex (x = 8, 32, 40, 104) Clathrate Solid Solution from First Principles. Nanomaterials. 2019; 9(6):851. https://doi.org/10.3390/nano9060851
Chicago/Turabian StyleXue, Dong, and Charles W. Myles. 2019. "Electronic Property and Negative Thermal Expansion Behavior of Si136-xGex (x = 8, 32, 40, 104) Clathrate Solid Solution from First Principles" Nanomaterials 9, no. 6: 851. https://doi.org/10.3390/nano9060851
APA StyleXue, D., & Myles, C. W. (2019). Electronic Property and Negative Thermal Expansion Behavior of Si136-xGex (x = 8, 32, 40, 104) Clathrate Solid Solution from First Principles. Nanomaterials, 9(6), 851. https://doi.org/10.3390/nano9060851