Structure and Magnetism of Mn5Ge3 Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Crystal Structure and Microstructure Measurements
3.2. Magnetic Properties
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chappert, C.; Fert, A.; Van Dau, F.N. The emergence of spin electronics in data storage. Nat. Mater. 2007, 6, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Yakushiji, K.; Ernult, F.; Imamura, H.; Yamane, K.; Mitani, S.; Takanashi, K.; Takahashi, S.; Maekawa, S.; Fujimori, H. Enhanced Spin Accumulation and Novel Magnetotransport in Nanoparticles. Nat. Mater. 2005, 4, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Winkler, E.; Zysler, R.D.; Mansilla, M.V.; Fiorani, D. Surface anisotropy effects in NiO nanoparticles. Phys. Rev. B 2005, 72, 132409. [Google Scholar] [CrossRef]
- Gambardella, P.; Rusponi, S.; Veronese, M.; Dhesi, S.S.; Grazioli, C.; Dallmeyer, A.; Cabria, I.; Zeller, R.; Dederichs, P.H.; Kern, K. Giant Magnetic Anisotropy of Single Cobalt Atoms and Nanoparticles. Science 2003, 300, 1130–1133. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, B.; Manchanda, P.; Skomski, R.; Mukherjee, P.; Das, B.; George, T.A.; Hadjipanayis, G.C.; Sellmyer, D. Unusual spin correlations in a nanomagnet. J. Appl. Phys. Lett. 2015, 106, 242401. [Google Scholar] [CrossRef]
- Das, B.; Balasubramanian, B.; Manchanda, P.; Mukherjee, P.; Skomski, R.; Hadjipanayis, G.C.; Sellmyer, D.J. Mn5Si3 Nanoparticles: Synthesis and Size-Induced Ferromagnetism. Nano Lett. 2016, 16, 1132–1137. [Google Scholar] [CrossRef] [PubMed]
- Coey, J.M.D. Permanent magnets: Plugging the gap. Scr. Mater. 2012, 67, 524–529. [Google Scholar] [CrossRef]
- Jonietz, F.; Mühlbauer, S.; Pfleiderer, C.; Neubauer, A.; Münzer, W.; Bauer, A.; Adams, T.; Georgii, R.; Böni, P.; Duine, R.A.; et al. Spin transfer torques in MnSi at ultralow current densities. Science 2010, 330, 1648–1651. [Google Scholar] [CrossRef] [PubMed]
- Picozzi, S.; Continenza, A.; Freeman, A.J. First-principles characterization of ferromagnetic Mn5Ge3 for spintronic applications. Phys. Rev. B 2004, 70, 235205. [Google Scholar] [CrossRef]
- Zeng, C.; Erwin, S.C.; Feldman, L.C.; Li, A.P.; Jin, R.; Song, Y.; Thompson, J.R.; Weitering, H.H. Epitaxial ferromagnetic Mn5Ge3 on Ge(111). Appl. Phys. Lett. 2003, 83, 5002–5004. [Google Scholar] [CrossRef]
- Zeng, C.; Zhu, W.; Erwin, S.C.; Zhang, Z.; Weitering, H.H. Initial stages of Mn adsorption on Ge(111). Phys. Rev. B 2004, 70, 205340. [Google Scholar] [CrossRef]
- Stroppa, A.; Peressi, M. Competing magnetic phases of Mn5Ge3 compound. Phys. Status Solidi A 2007, 204, 44–52. [Google Scholar] [CrossRef]
- Olive-mendez, S.; Spiesser, A.; Michez, L.A.; Le Thanh, V.; Glachant, A.; Derrien, J.; Devillers, T.; Barski, A.; Jamet, M. Epitaxial growth of Mn5Ge3/Ge(111) heterostructures for spin injection. Thin Solid Films 2008, 517, 191–196. [Google Scholar] [CrossRef]
- Gajdzik, M.; Sürgers, C.; Kelemen, M.T.; Löhneysen, H.V. Strongly enhanced Curie temperature in carbon-doped Mn5Ge3 films. J. Magn. Magn. Mater. 2000, 221, 248–254. [Google Scholar] [CrossRef]
- Sürgers, C.; Potzger, K.; Strache, T.; Möller, W.; Fischer, G.; Joshi, N.; Löhneysen, H.V. Magnetic order by C-ion implantation into Mn5Si3 and Mn5Ge3 and its lateral modification. Appl. Phys. Lett. 2008, 93, 062503. [Google Scholar] [CrossRef]
- Slipukhina, I.; Arras, E.; Mavropoulos, P.; Pochet, P. Simulation of the enhanced Curie temperature in Mn5Ge3Cx compounds. Appl. Phys. Lett. 2009, 94, 192505. [Google Scholar] [CrossRef]
- Chen, T.Y.; Chien, C.L.; Petrovic, C. Enhanced Curie temperature and spin polarization in Mn4FeGe3. Appl. Phys. Lett. 2007, 91, 142505. [Google Scholar] [CrossRef]
- Stroppa, A.; Kresse, G.; Continenza, A. Spin polarization tuning in Mn5−xFexGe3. Appl. Phys. Lett. 2008, 93, 092502. [Google Scholar] [CrossRef]
- Songlin, D.; Tegus, O.; Brück, E.; de Boer, F.R.; Buschow, K.H.J. Magnetic and magnetocaloric properties of Mn5Ge3−xSbx. J. Alloys Compd. 2002, 337, 269–271. [Google Scholar] [CrossRef]
- Tawara, Y.; Sato, K. On the Magnetic Anisotropy of Single Crystal of Mn5Ge3. Proc. Phys. Soc. Jpn. 1963, 18, 773–777. [Google Scholar] [CrossRef]
- Forsyth, J.B.; Brown, P.J. The spatial distribution of magnetization density in Mn5Ge3. J. Phys. Condens. Matter 1990, 2, 2713. [Google Scholar] [CrossRef]
- Kappel, G.; Fischer, G.; Jaegle, A. On the saturation magnetization of Mn5Ge3. Phys. Lett. 1973, 42, 267–268. [Google Scholar] [CrossRef]
- Kalvig, R.; Jedryka, E.; Aleshkevych, P.; Wojcik, M.; Bednarski, W.; Petit, M.; Michez, L. Ferromagnetic resonance in Mn5Ge3 epitaxial films with weak stripe domain structure. J. Phys. D Appl. Phys. 2017, 50, 125001. [Google Scholar] [CrossRef]
- Sürgers, C.; Fischer, G.; Winkel, P.; Löhneysen, H.V. Magnetotransport in ferromagnetic Mn5Ge3, Mn5Ge3C0.8, and Mn5Si3C0.8 thin films. Phys. Rev. B 2014, 90, 104421. [Google Scholar] [CrossRef]
- Kim, H.; Jung, G.; Lim, J.; Chung, K.H.; Kahng, S.; Son, W.; Han, S. Epitaxial Mn5Ge3 nano-islands on a Ge(001) surface. Nanotechnology 2008, 19, 025707. [Google Scholar] [CrossRef] [PubMed]
- Le, T.; Dau, M.; Thanh, V.L.; Nam, D.N.H.; Petit, M.; Michez, L.A.; Nguyen, V.; Nguyen, M. Growth competition between semiconducting Ge1−xMnx nanocolumns and metallic Mn5Ge3 clusters. Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 025007. [Google Scholar] [CrossRef]
- Park, Y.D.; Wilson, A.; Hanbicki, A.T.; Mattson, J.E.; Ambrose, T.; Spanos, G.; Jonker, B.T. Magnetoresistance of Mn:Ge ferromagnetic nanoclusters in a diluted magnetic semiconductor matrix. Appl. Phys. Lett. 2001, 78, 2739–2741. [Google Scholar] [CrossRef]
- Lechner, R.T.; Holý, V.; Ahlers, S.; Bougeard, D.; Stangl, J.; Trampert, A.; Navarro-Quezada, A.; Bauer, G. Self-assembled Mn5Ge3 nanomagnets close to the surface and deep inside a Ge1−xMnx epilayer. Appl. Phys. Lett. 2009, 95, 023102. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, W.; Shalimov, A.; Wang, Y.; Huang, Z.; Buerger, D.; Mücklich, A.; Zhang, W.; Schmidt, H.; Helm, M. Magnetic Mn5Ge3 nanocrystals embedded in crystalline Ge: A magnet/semiconductor hybrid synthesized by ion implantation. Nanoscale Res. Lett. 2012, 7, 528. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jain, A.; Jamet, M.; Barski, A.; Devillers, T.; Yu, I.; Porret, C.; Bayle-Guillemaud, P.; Favre-Nicolin, V.; Gambarelli, S.; Maurel, V.; et al. Structure and magnetism of Ge3Mn5 clusters. J. Appl. Phys. 2011, 109, 013911. [Google Scholar] [CrossRef]
- Park, Y.D.; Hambicki, A.T.; Erwin, S.C.; Hellberg, C.S.; Sullivan, J.M.; Mattson, J.E.; Ambrose, T.F.; Wilson, A.; Spanos, G.; Jonker, B.T. A Group-IV Ferromagnetic Semiconductor: MnxGe1−x. Science 2002, 295, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Li, A.P.; Shen, J.; Thompson, J.R.; Weitering, H.H. Ferromagnetic percolation in MnxGe1−x dilute magnetic semiconductor. Appl. Phys. Lett. 2005, 86, 152507. [Google Scholar] [CrossRef]
- Yuan, H.K.; Chen, H.; Kuang, A.L.; Tian, C.L.; Wang, J.Z. Electronic structural and magnetic properties of Mn5Ge3 clusters. J. Chem. Phys. 2013, 139, 204307. [Google Scholar] [CrossRef] [PubMed]
- Haberland, H.; Karrais, M.; Mall, M.; Thurner, Y. Thin films from energetic cluster impact: A feasibility study. J. Vac. Sci. Technol. 1992, 10, 3266–3271. [Google Scholar] [CrossRef]
- Stoyanov, S.; Skumryev, V.; Zhang, Y.; Huang, Y.; Hadjipanayis, G.C.; Nogués, J. High anisotropy Sm-Co. nanoparticles: Preparation by cluster gun technique and their magnetic properties. J. Appl. Phys. 2003, 93, 7592–7594. [Google Scholar] [CrossRef]
- Zhang, Y.; Runge, A.P.; Shan, Z.S.; Sellmyer, D.J. Magnetic and magneto-optical properties of Mn5(Ge1−xMx)3 alloys with M=Sn, Pb. J. Appl. Phys. 1994, 75, 6354–6356. [Google Scholar] [CrossRef]
- PowderCell 2.3 Powder Pattern Calculation from Single Crystal Data and Refinement of Experimental Curves. Available online: http://www.ccp14.ac.uk (accessed on 5 April 2018).
- Kneller, E.; Seeger, A.; Kronmüller, H. Ferromagnetism; Springer: Berlin/Heidelberg, Germany, 1962; pp. 151–152. [Google Scholar]
- Hadjipanayis, G.; Sellmyer, D.J.; Brandt, B. Rare-earth-rich metallic glasses. I. Magnetic hysteresis. Phys. Rev. B 1981, 23, 3349–3354. [Google Scholar] [CrossRef]
- Skomski, R.; Kumar, P.; Balamurugan, B.; Das, B.; Manchanda, P.; Raghani, P.; Kashyap, A.; Sellmyer, D.J. Exchange and Magnetic Order in Bulk and Nanostructured Fe5Si3. J. Magn. Magn. Mater. 2018, in press. [Google Scholar]
Average Particle Size (nm) (TEM) | Average Particle Size (nm) (Scherrer’s Equation) | Lattice Parameters (Å) (Fitting) |
---|---|---|
S1 7.2 | 7.3 | a = b = 7.183 Å, c = 5.080 Å |
S2 10 | 12.2 | a = b = 7.167 Å, c = 5.011 Å |
S3 12.6 | 16.7 | a = b = 7.193 Å, c = 5.078 Å |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tosun, O.; Salehi-Fashami, M.; Balasubramanian, B.; Skomski, R.; Sellmyer, D.J.; Hadjipanayis, G.C. Structure and Magnetism of Mn5Ge3 Nanoparticles. Nanomaterials 2018, 8, 241. https://doi.org/10.3390/nano8040241
Tosun O, Salehi-Fashami M, Balasubramanian B, Skomski R, Sellmyer DJ, Hadjipanayis GC. Structure and Magnetism of Mn5Ge3 Nanoparticles. Nanomaterials. 2018; 8(4):241. https://doi.org/10.3390/nano8040241
Chicago/Turabian StyleTosun, Onur, Mohammed Salehi-Fashami, Balamurugan Balasubramanian, Ralph Skomski, David J. Sellmyer, and George C. Hadjipanayis. 2018. "Structure and Magnetism of Mn5Ge3 Nanoparticles" Nanomaterials 8, no. 4: 241. https://doi.org/10.3390/nano8040241
APA StyleTosun, O., Salehi-Fashami, M., Balasubramanian, B., Skomski, R., Sellmyer, D. J., & Hadjipanayis, G. C. (2018). Structure and Magnetism of Mn5Ge3 Nanoparticles. Nanomaterials, 8(4), 241. https://doi.org/10.3390/nano8040241