Electrostatic Spray Deposition-Based Manganese Oxide Films—From Pseudocapacitive Charge Storage Materials to Three-Dimensional Microelectrode Integrands
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystallographic, Spectroscopic and Microstructural Studies on the As-Prepared and Cycled MnOx Films
2.2. Electrochemical Characterization of the MnOx Films
2.3. MnOx/C-MEMS Characterization
3. Materials and Methods
3.1. Manganese Oxide Electrode Synthesis
3.2. Structural and Material Characterization
3.3. MnOx/C-MEMS Fabrication
3.4. Electrochemical Characterization
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Beidaghi, M.; Gogotsi, Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 2014, 7, 867–884. [Google Scholar] [CrossRef]
- Agrawal, R.; Chen, C.; Hao, Y.; Song, Y.; Wang, C. Graphene for Supercapacitors. In Graphene Based Energy Devices; Rashid bin Mohd Yusoff, A., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; pp. 171–214. [Google Scholar] [CrossRef]
- Yoo, J.J.; Balakrishnan, K.; Huang, J.; Meunier, V.; Sumpter, B.G.; Srivastava, A.; Conway, M.; Mohana Reddy, A.L.; Yu, J.; Vajtai, R.; et al. Ultrathin planar graphene supercapacitors. Nano Lett. 2011, 11, 1423–1427. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Heon, M.; Pech, D.; Brunet, M.; Taberna, P.L.; Gogotsi, Y.; Lofland, S.; Hettinger, J.D.; Simon, P. Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips. J. Power Sources 2013, 225, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.W.; Feng, Y.Q.; Yan, X.B.; Chen, J.T.; Xue, Q.J. Superior Micro-Supercapacitors Based on Graphene Quantum Dots. Adv. Funct. Mater. 2013, 23, 4111–4122. [Google Scholar] [CrossRef]
- Wang, C.; Taherabadi, L.; Jia, G.; Madou, M.; Yeh, Y.; Dunn, B. C-MEMS for the Manufacture of 3D Microbatteries. Electrochem. Solid State Lett. 2004, 7, A435–A438. [Google Scholar] [CrossRef]
- Wang, C.; Jia, G.; Taherabadi, L.H.; Madou, M.J. A Novel Method for the Fabrication of High-Aspect Ratio C-MEMS Structures. J. Microelectromech. Syst. 2005, 14, 348–358. [Google Scholar] [CrossRef]
- Song, Y.; Agrawal, R.; Hao, Y.; Chen, C.; Wang, C. C-MEMS Based Microsupercapacitors and Microsensors. ECS Trans. 2014, 61, 55–64. [Google Scholar] [CrossRef]
- Song, Y.; Chen, C.; Wang, C. Graphene/Enzyme Encrusted Three-Dimensional Carbon Micropillar Arrays for Mediatorless Micro-Biofuel Cells. Nanoscale 2015, 7, 7084–7090. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.; Beidaghi, M.; Chen, W.; Wang, C. Carbon microelectromechanical systems (C-MEMS) based microsupercapacitors. In Proceedings of the SPIE International Society for Optics and Photonics Sensing Technology + Applications, Baltimore, MD, USA, 20 April 2015; p. 94930C. [Google Scholar] [CrossRef]
- Chen, W.; Beidaghi, M.; Penmatsa, V.; Bechtold, K.; Kumari, L.; Li, W.Z.; Wang, C. Integration of Carbon Nanotubes to C-MEMS for On-chip supercapacitors. IEEE Trans. Nanotechnol. 2010, 9, 734–740. [Google Scholar] [CrossRef]
- Beidaghi, M.; Chen, W.; Wang, C. Electrochemically activated carbon micro-electrode arrays for electrochemical micro-capacitors. J. Power Sources 2011, 196, 2403–2409. [Google Scholar] [CrossRef]
- Beidaghi, M.; Wang, C. Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes. Electrochim. Acta 2011, 56, 9508–9514. [Google Scholar] [CrossRef]
- Wang, J.G.; Kang, F.; Wei, B. Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog. Mater Sci. 2015, 74, 51–124. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [Google Scholar] [CrossRef]
- Wei, W.; Cui, X.; Chen, W.; Ivey, D.G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721. [Google Scholar] [CrossRef] [PubMed]
- Komaba, S.; Tsuchikawa, T.; Ogata, A.; Yabuuchi, N.; Nakagawa, D.; Tomita, M. Nano-structured birnessite prepared by electrochemical activation of manganese (III)-based oxides for aqueous supercapacitors. Electrochim. Acta 2012, 59, 455–463. [Google Scholar] [CrossRef]
- Dubal, D.P.; Dhawale, D.S.; Salunkhe, R.R.; Lokhande, C.D. A novel chemical synthesis of Mn3O4 thin film and its stepwise conversion into birnessite MnO2 during super capacitive studies. J. Electroanal. Chem. 2010, 647, 60–65. [Google Scholar] [CrossRef]
- Dubal, D.P.; Dhawale, D.S.; Salunkhe, R.R.; Lokhande, C.D. Conversion of chemically prepared interlocked cubelike Mn3O4 to birnessite MnO2 using electrochemical cycling. J. Electrochem. Soc. 2010, 157, A812–A817. [Google Scholar] [CrossRef]
- Wu, T.H.; Hesp, D.; Dhanak, V.; Collins, C.; Braga, F.; Hardwick, L.J.; Hu, C.C. Charge storage mechanism of activated manganese oxide composites for pseudocapacitors. J. Mater. Chem. A 2015, 3, 12786–12795. [Google Scholar] [CrossRef]
- Hu, C.C.; Hung, C.Y.; Chang, K.H.; Yang, Y.L. A hierarchical nanostructure consisting of amorphous MnO2, Mn3O4 nanocrystallites, and single-crystalline MnOOH nanowires for supercapacitors. J. Power Sources 2011, 196, 847–850. [Google Scholar] [CrossRef]
- Kim, S.; Nam, K.W.; Lee, S.; Cho, W.; Kim, J.S.; Kim, B.G.; Oshima, Y.; Kim, J.S.; Doo, S.G.; Chang, H.; et al. Direct Observation of an Anomalous Spinel-to-Layered Phase Transition Mediated by Crystal Water Intercalation. Angew. Chem. Int. Ed. 2015, 54, 15094–15099. [Google Scholar] [CrossRef] [PubMed]
- Jaworek, A.; Sobczyk, A.T.; Krupa, A.; Lackowski, M.; Czech, T. Electrostatic deposition of nanothin films on metal substrate. Bull. Pol. Acad. Sci. Tech. Sci. 2009, 57, 63–70. [Google Scholar] [CrossRef]
- Jaworek, A.; Sobczyk, A.T. Electrospraying route to nanotechnology: An overview. J. Electrostat. 2008, 66, 197–219. [Google Scholar] [CrossRef]
- Chen, C.; Agrawal, R.; Kim, T.K.; Li, X.; Chen, W.; Yu, Y.; Beidaghi, M.; Penmatsa, V.; Wang, C. Nanostructured Electrodes via Electrostatic Spray Deposition for Energy Storage System. ECS Trans. 2014, 61, 155–163. [Google Scholar] [CrossRef]
- Li, X.; Wang, C. Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application. J. Mater. Chem. A 2013, 1, 165. [Google Scholar] [CrossRef]
- Dhanabalan, A.; Li, X.; Agrawal, R.; Chen, C.; Wang, C. Fabrication and Characterization of SnO2/Graphene Composites as High Capacity Anodes for Li-Ion Batteries. Nanomaterials 2013, 3, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.; Chen, C.; Dages, S.; Wang, C. A High Energy 3V Lithium-Ion Capacitor Synthesized via Electrostatic Spray Deposition. Adv. Mater. Lett. 2017, 8, 783–790. [Google Scholar] [CrossRef]
- Nam, K.W.; Kim, K.B. Manganese oxide film electrodes prepared by electrostatic spray deposition for electrochemical capacitors. J. Electrochem. Soc. 2006, 153, A81–A88. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, K.; Zhao, J.; Xie, J. Manganese oxide film electrodes prepared by electrostatic spray deposition for electrochemical capacitors from the KMnO4 solution. J. Power Sources 2006, 161, 737–742. [Google Scholar] [CrossRef]
- Pech, D.; Brunet, M.; Dinh, T.M.; Armstrong, K.; Gaudet, J.; Guay, D. Influence of the configuration in planar interdigitated electrochemical micro-capacitors. J. Power Sources 2013, 230, 230–235. [Google Scholar] [CrossRef]
- Thissandier, F.; Gentile, P.; Brousse, T.; Bidan, G.; Sadki, S. Are tomorrow’s micro-supercapacitors hidden in a forest of silicon nanotrees? J. Power Sources 2014, 269, 740–746. [Google Scholar] [CrossRef]
- In, J.B.; Hsia, B.; Yoo, J.H.; Hyun, S.; Carraro, C.; Maboudian, R.; Grigoropoulos, C.P. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide. Carbon 2015, 83, 144–151. [Google Scholar] [CrossRef]
- Tolstoy, V.P.; Gulina, L.B. Synthesis of Birnessite Structure Layers at the Solution-air Interface and the Formation of Microtubules from Them. Langmuir 2014, 30, 8366–8372. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.Y.; Lai, Q.Y.; Wang, L.; Lu, J.F.; Zhao, Y. Preparation of MnO2/WMNT composite and MnO2/AB composite by redox deposition method and its comparative study as supercapacitive materials. Ionics 2010, 16, 233–238. [Google Scholar] [CrossRef]
- Julien, C.M.; Massot, M.; Poinsignon, C. Lattice vibrations of manganese oxides: Part I. Periodic structures. Spectrochim. Acta Mol. Biomol. Spectrosc. 2004, 60, 689–700. [Google Scholar] [CrossRef]
- Ocana, M. Uniform particles of manganese compounds obtained by forced hydrolysis of manganese (II) acetate. Colloid Polym. Sci. 2000, 278, 443–449. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; National Association of Corrosion Engineers: Houston, TX, USA, 1974. [Google Scholar]
- Dong, R.; Ye, Q.; Kuang, L.; Lu, X.; Zhang, Y.; Zhang, X.; Tan, G.; Wen, Y.; Wang, F. Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions. ACS Appl. Mater. Interfaces 2013, 5, 9508–9516. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Fan, Z.; Gu, L.; Bao, X.; Wang, C. Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. Chem. Commun. 2010, 46, 3905–3907. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Yuan, L.; Shen, H. Effects of electrode mass-loading on the electrochemical properties of porous MnO2 for electrochemical supercapacitor. Int. J. Electrochem. Sci. 2014, 9, 4024–4038. [Google Scholar]
Before Cycling | After 100 Cycles | After 200 Cycles | After 300 Cycles | After 400 Cycles | After 500 Cycles | |
---|---|---|---|---|---|---|
Rs (Ω) | 3.56 | 4.51 | 4.51 | 9.54 | 4.44 | 5.11 |
Rct (Ω) | 198.91 | 81.63 | 55.31 | 62.95 | 67.84 | 72 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agrawal, R.; Adelowo, E.; Baboukani, A.R.; Villegas, M.F.; Henriques, A.; Wang, C. Electrostatic Spray Deposition-Based Manganese Oxide Films—From Pseudocapacitive Charge Storage Materials to Three-Dimensional Microelectrode Integrands. Nanomaterials 2017, 7, 198. https://doi.org/10.3390/nano7080198
Agrawal R, Adelowo E, Baboukani AR, Villegas MF, Henriques A, Wang C. Electrostatic Spray Deposition-Based Manganese Oxide Films—From Pseudocapacitive Charge Storage Materials to Three-Dimensional Microelectrode Integrands. Nanomaterials. 2017; 7(8):198. https://doi.org/10.3390/nano7080198
Chicago/Turabian StyleAgrawal, Richa, Ebenezer Adelowo, Amin Rabiei Baboukani, Michael Franc Villegas, Alexandra Henriques, and Chunlei Wang. 2017. "Electrostatic Spray Deposition-Based Manganese Oxide Films—From Pseudocapacitive Charge Storage Materials to Three-Dimensional Microelectrode Integrands" Nanomaterials 7, no. 8: 198. https://doi.org/10.3390/nano7080198
APA StyleAgrawal, R., Adelowo, E., Baboukani, A. R., Villegas, M. F., Henriques, A., & Wang, C. (2017). Electrostatic Spray Deposition-Based Manganese Oxide Films—From Pseudocapacitive Charge Storage Materials to Three-Dimensional Microelectrode Integrands. Nanomaterials, 7(8), 198. https://doi.org/10.3390/nano7080198