Properties-Adjustable Alumina-Zirconia Nanolaminate Dielectric Fabricated by Spin-Coating
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Optimized Annealing Temperature Exploration and Verification
3.2. Performance of Nanolaminates
3.2.1. Optical Properties
3.2.2. Electrical Properties
3.2.3. The Influence of the Number of Bilayers
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fakhri, M.; Theisen, M. Top-gate zinc tin oxide thin-film transistors with high bias and environmental stress stability. Appl. Phys. Lett. 2014, 104, 251603. [Google Scholar] [CrossRef]
- Waggoner, T.; Triska, J. Zirconium oxide-aluminum oxide nanolaminate gate dielectrics for amorphous oxide semiconductor thin-film transistors. Am. Vac. Soc. 2011, 29, 04D115. [Google Scholar] [CrossRef]
- López, J.; Sotelo, A. Influence of the bilayer thickness on the optical properties of Al2O3-Y2O3 dielectric nanolaminate films grown by thermal atomic layer deposition. Mater. Res. Bull. 2017, 87, 14–19. [Google Scholar] [CrossRef]
- Nehm, F.; Dollinger, F. Atomic layer deposited TiOx/AlOx nanolaminates as moisture barriers for organic devices. Org. Electron. 2016, 38, 84–88. [Google Scholar] [CrossRef]
- Krylov, I.; Pokroy, B. A comparison between HfO2/Al2O3 nano-laminates and ternary HfxAlyO compound as the dielectric material in InGaAs based metal-oxide-semiconductor (MOS) capacitors. J. Appl. Phys. 2016, 120, 124505. [Google Scholar] [CrossRef]
- Rowlette, P.C.; Wolden, C.A. Pulsed plasma-enhanced chemical vapor deposition of Al2O3-TiO2 nanolaminates. Thin Solid Films 2010, 518, 3337–3341. [Google Scholar] [CrossRef]
- Song, X.; Christos, G. Cyclic Chemical-Vapor-Deposited TiO2/Al2O3 Film Using Trimethyl Aluminum, Tetrakis(diethylamino)titanium. Electrochem. Soc. 2007, 154, G177–G182. [Google Scholar] [CrossRef]
- Son, B.; Je, S.Y. High-performance In-Zn-O thin-film transistors with a soluble processed ZrO2 gate insulator. Phys. Status Solidi (RRL)-Rapid Res. Lett. 2013, 7, 485–488. [Google Scholar] [CrossRef]
- Stephen, T; Jeremy, T. Solution-Processed Aluminum Oxide Phosphate Thin-Film Dielectrics. Chem. Mater. 2007, 19, 4023–4029. [Google Scholar] [CrossRef]
- Yoo, Y.B.; Park, J.H. Solution-processed high-k HfO2 gate dielectric processed under softening temperature of polymer substrates. J. Mater. Chem. C 2013, 1, 1651. [Google Scholar] [CrossRef]
- Chang, S.; Doong, R. ZrO2 thin films with controllable morphology and thickness by spin-coated sol-gel method. Thin Solid Films 2005, 489, 17–22. [Google Scholar] [CrossRef]
- Song, K.; Yang, W. A solution-processed yttrium oxide gate insulator for high-performance all-solution-processed fully transparent thin film transistors. J. Mater. Chem. 2012, 22, 21265–21271. [Google Scholar] [CrossRef]
- Wang, C.; Hsieh, C. Flexible Organic Thin-Film Transistors with Silk Fibroin as the Gate Dielectric. Adv. Mater. 2011, 23, 1630–1634. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Wan, Y. Solution-processed molybdenum oxide for hole-selective contacts on crystalline silicon solar cells. Appl. Surf. Sci. 2017, 423, 139–146. [Google Scholar] [CrossRef]
- Lisco, F.; Shaw, A. Atmospheric-pressure plasma surface activation for solution processed photovoltaic devices. Sol. Energy 2017, 146, 287–297. [Google Scholar] [CrossRef]
- Hamid, S.; Saeed, P. The Relationship between Religious Coping and Self-Care Behaviors in Iranian Medical Students. J. Relig. Health 2017, 56, 2109–2117. [Google Scholar]
- Yao, J.; Wu, L.; Meng, X.; Yang, H.; Ni, S.; Wang, Q.; Zhou, J.; Zhang, Q.; Su, K.; Shao, L.; et al. Profiling, clinicopathological correlation and functional validation of specific long noncoding RNAs for hepatocellular carcinoma. Mol. Cancer 2017, 16, 164. [Google Scholar] [CrossRef] [PubMed]
- Chand, P.; Vaish, S. Structural, optical and dielectric properties of transition metal (MFe2O4; M = Co, Ni and Zn) nanoferrites. Phys. B Condens. Matter 2017, 524, 53–63. [Google Scholar] [CrossRef]
- Moosavi, S.; Zakaria, S. Hydrothermal synthesis, magnetic properties and characterization of CoFe2O4 nanocrystals. Ceram. Int. 2017, 43, 7889–7894. [Google Scholar] [CrossRef]
- Shanker, J.; Prasad, B.V. Electrical properties of NdCr1-xFexO3 perovskite ceramic nanoparticles—An impedance spectroscopy studies. Mater. Res. Bull. 2017, 94, 385–398. [Google Scholar] [CrossRef]
- Farajimotlagh, M.; Poursalehi, R. Synthesis mechanisms, optical and structural properties of η-Al2O3 based nanoparticles prepared by DC arc discharge in environmentally friendly liquids. Ceram. Int. 2017, 43, 7717–7723. [Google Scholar] [CrossRef]
- Cai, W.; Zhu, Z. A Simple Method for High-Performance, Solution-Processed, Amorphous ZrO2 Gate Insulator TFT with a High Concentration Precursor. Materials 2017, 10, 972. [Google Scholar] [CrossRef] [PubMed]
- Vasil, Y.; Mathias, R. Tunneling atomic-force microscopy as a highly sensitive mapping tool for the characterization of film morphology in thin high-k dielectrics. Appl. Phys. Lett. 2008, 92, 252910. [Google Scholar]
- Dominik, M.; Matthias, G. Mesoscopic analysis of leakage current suppression in ZrO2/Al2O3/ZrO2 nanolaminates. J. Appl. Phys. 2013, 113, 194103. [Google Scholar] [CrossRef]
- Han, R.; Jin, J. Effect of crystal structure on polarization reversal and energy storage of ferroelectric poly (vinylidene fluoride-co-chlorotrifluoroethylene) thin films. Polymer 2012, 53, 1277–1281. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J. Strength Weakening by Nanocrystals in Ceramic Materials. Nano Lett. 2007, 7, 3196–3199. [Google Scholar] [CrossRef] [PubMed]
Al2O3% | n1 | n2 | C1 (mol/L) | C2 (mol/L) |
---|---|---|---|---|
0 | 2 | 0 | - | 0.6 |
25 | 6 | 3 | 0.1 | 0.3 |
50 | 6 | 3 | 0.2 | 0.2 |
75 | 6 | 3 | 0.3 | 0.1 |
100 | 2 | 0 | 0.6 | - |
Al2O3% | 0% | 25% | 50% | 75% | 100% |
---|---|---|---|---|---|
Eg (eV) | 4.232 | 4.50 | 4.66 | 4.85 | 4.89 |
Al2O3% | 0% | 25% | 50% | 75% | 100% |
---|---|---|---|---|---|
Vds (MV/cm) | 0.11 | 0.94 | 2.23 | 2.46 | 2.83 |
Cd (nF/cm2) | 238.85 | 155.25 | 103.50 | 91.56 | 79.62 |
20.3 | 13.2 | 8.66 | 7.66 | 6.9 |
Al2O3% | n3 | n4 | C3(mol/L) | C4(mol/L) |
---|---|---|---|---|
50 | 2 | 1 | 0.6 | 0.6 |
50 | 4 | 2 | 0.3 | 0.3 |
50 | 6 | 3 | 0.2 | 0.2 |
50 | 12 | 6 | 0.1 | 0.1 |
T (%) | Eg (eV) | Cd (nF/cm2) | |
---|---|---|---|
87 ± 1.4 | 4.65 ± 0.05 | 120 ± 7 | 8.7 ± 0.5 |
Number | 1 | 2 | 3 | 6 |
---|---|---|---|---|
Vds (MV/cm) | 1.09 | 1.71 | 2.23 | 3.14 |
D(nm) | 14.47 | 15.24 | 9.42 | 11.13 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Wei, J.; Zhu, Z.; Ning, H.; Cai, W.; Lu, K.; Yao, R.; Tao, H.; Zheng, Y.; Lu, X. Properties-Adjustable Alumina-Zirconia Nanolaminate Dielectric Fabricated by Spin-Coating. Nanomaterials 2017, 7, 419. https://doi.org/10.3390/nano7120419
Peng J, Wei J, Zhu Z, Ning H, Cai W, Lu K, Yao R, Tao H, Zheng Y, Lu X. Properties-Adjustable Alumina-Zirconia Nanolaminate Dielectric Fabricated by Spin-Coating. Nanomaterials. 2017; 7(12):419. https://doi.org/10.3390/nano7120419
Chicago/Turabian StylePeng, Junbiao, Jinglin Wei, Zhennan Zhu, Honglong Ning, Wei Cai, Kuankuan Lu, Rihui Yao, Hong Tao, Yanqiong Zheng, and Xubing Lu. 2017. "Properties-Adjustable Alumina-Zirconia Nanolaminate Dielectric Fabricated by Spin-Coating" Nanomaterials 7, no. 12: 419. https://doi.org/10.3390/nano7120419