Synthesis, Characterization and Gas Sensing Properties of Ag@α-Fe2O3 Core–Shell Nanocomposites
Abstract
:1. Introduction
2. Results and Discussion
2.1. SEM and TEM Investigations
2.2. UV-Vis
2.3. Sensing Tests
2.4. Sensing Mechanism
3. Experimental Section
3.1. Chemicals
3.2. Ag Nanoparticle Synthesis
3.3. Ag@α-Fe2O3 Nanoparticle Synthesis
3.4. Characterization
3.5. Gas Sensing Measurements
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Li, F.; Cheng, Z.; Yang, Y.; Wang, Y.; Chen, W. A facile and novel synthetic route to core–shell Al/Co nanocomposites. Mater. Lett. 2008, 68, 2003–2005. [Google Scholar]
- Yu, Y.T.; Dutta, P. Examination of Au/SnO2 core-shell architecture nanoparticle for low temperature gas sensing applications. Sens. Actuators B 2011, 157, 444–449. [Google Scholar] [CrossRef]
- Chung, F.C.; Wu, R.J.; Cheng, F.C. Fabrication of a Au@SnO2 core–shell structure for gaseous formaldehyde sensing at room temperature. Sens. Actuators B 2014, 190, 1–7. [Google Scholar] [CrossRef]
- Zhu, Z.; KaO, C.T.; Wu, R.J. A highly sensitive ethanol sensor based on Ag@TiO2 nanoparticles at room temperature. Appl. Surface Sci. 2014, 320, 348–355. [Google Scholar] [CrossRef]
- Kamat, P.V. Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C 2007, 111, 2834–2860. [Google Scholar] [CrossRef]
- Song, H.Y.; Wu, X.F.; Yoon, J.M.; Yu, Y.T.; Chen, Y.F. Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties. Langmuir 2009, 11, 6438–6447. [Google Scholar]
- An, Z.G.; Zhang, J.J.; Pan, S.L. Facile preparation and characterization of glass/α-Fe2O3 core/shell composite hollow spheres with the shell layer assembled by disk-like petals. Mater. Chem. Phys. 2009, 117, 209–213. [Google Scholar] [CrossRef]
- Shan, H.; Liu, C.; Liu, L.; Li, S.; Wang, L.; Zhang, X.; Bo, X.; Chia, X. Highly sensitive acetone sensors based on La-doped α-Fe2O3 nanotubes. Sens. Actuators B 2013, 184, 243–247. [Google Scholar] [CrossRef]
- Zhao, C.; Hu, W.; Zhang, Z.; Zhou, Z.J.; Pan, X.; Xie, E. Effects of SnO2 additives on nanostructure and gas-sensing properties of α-Fe2O3 nanotubes. Sens. Actuators B 2014, 195, 486–493. [Google Scholar] [CrossRef]
- Bandgar, D.K.; Navale, S.T.; Khuspe, G.D.; Pawar, S.A.; Mulik, R.N.; Patil, V.B. Novel route for fabrication of nanostructured α-Fe2O3 gas sensor. Mater. Sci. Semiconduct. Process. 2014, 17, 67–73. [Google Scholar] [CrossRef]
- Sun, P.; Wang, W.; Liu, Y.; Sun, Y.; Ma, J.; Lu, G. Hydrothermal synthesis of 3D urchin-like α-Fe2O3 nanostructure for gas sensor. Sens. Actuators B 2012, 173, 52–57. [Google Scholar] [CrossRef]
- Sun, P.; Wang, C.; Zhou, X.; Cheng, P.; Shimanoe, K.; Lu, G.; Yamazoe, N. Cu-doped α-Fe2O3 hierarchical microcubes: Synthesis and gas sensing properties. Sens. Actuators B 2014, 193, 616–622. [Google Scholar] [CrossRef]
- Sun, P.; Du, S.; Xu, X.; You, L.; Ma, J.; Liu, F.; Liang, X.; Sun, Y.; Lu, G. Hierarchical α-Fe2O3/SnO2 semiconductor composites: Hydrothermal synthesis and gas sensing properties. Sens. Actuators B 2013, 82, 336–343. [Google Scholar] [CrossRef]
- Manikam, V.R.; Cheong, K.Y.; Razak, K.A. Chemical reduction methods for synthesizing Ag and Al nanoparticles and their respective nanoalloys. Mater. Sci. Eng. B 2011, 176, 187–203. [Google Scholar] [CrossRef]
- Arena, A.; Donato, N.; Saitta, G.; Bonavita, A.; Rizzo, G.; Neri, G. Flexible ethanol sensors on glossy paper substrates operating at room temperature. Sens. Actuators B 2010, 145, 488–494. [Google Scholar] [CrossRef]
- Solomon, S.D.; Bahadory, M.; Jeyarajasingam, A.V.; Rutkowsky, S.A.; Boritz, C.; Mulfinger, L. Synthesis and study of silver nanoparticles. J. Chem. Educ. 2007, 84, 322–325. [Google Scholar] [CrossRef]
- Chou, C.C.; Chu, K.S. Fabrication and characterization of silver core and porous silica shell nanocomposite particles. Microporous Mesoporous Mater. 2007, 98, 208–213. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. Theory of power laws for semiconductor gas sensors. Sens. Actuators B 2008, 128, 566–573. [Google Scholar] [CrossRef]
- Choi, J.K.; Hwang, I.S.; Kim, S.J.; Park, J.S.; Park, S.S.; Jeong, U.; Kang, Y.C.; Lee, J.H. Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers. Sens. Actuators B 2010, 150, 191–199. [Google Scholar]
- Morrison, S.R. Semiconductor gas sensors. Sens. Actuators B 1981–1982, 2, 329–341. [Google Scholar]
- Wu, R.J.; Lin, D.J.; Yu, M.R.; Chen, M.H.; Lai, H.F. Ag@SnO2 core–shell material for use in fast-response ethanol sensor at room operating temperature. Sens. Actuators B 2013, 178, 185–191. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, X. Preparation and characterization of single-phase α-Fe2O3 nano-powders by Pechini sol–gel method. Mater. Lett. 2011, 65, 2062–2065. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirzaei, A.; Janghorban, K.; Hashemi, B.; Bonavita, A.; Bonyani, M.; Leonardi, S.G.; Neri, G. Synthesis, Characterization and Gas Sensing Properties of Ag@α-Fe2O3 Core–Shell Nanocomposites. Nanomaterials 2015, 5, 737-749. https://doi.org/10.3390/nano5020737
Mirzaei A, Janghorban K, Hashemi B, Bonavita A, Bonyani M, Leonardi SG, Neri G. Synthesis, Characterization and Gas Sensing Properties of Ag@α-Fe2O3 Core–Shell Nanocomposites. Nanomaterials. 2015; 5(2):737-749. https://doi.org/10.3390/nano5020737
Chicago/Turabian StyleMirzaei, Ali, Kamal Janghorban, Babak Hashemi, Anna Bonavita, Maryam Bonyani, Salvatore Gianluca Leonardi, and Giovanni Neri. 2015. "Synthesis, Characterization and Gas Sensing Properties of Ag@α-Fe2O3 Core–Shell Nanocomposites" Nanomaterials 5, no. 2: 737-749. https://doi.org/10.3390/nano5020737
APA StyleMirzaei, A., Janghorban, K., Hashemi, B., Bonavita, A., Bonyani, M., Leonardi, S. G., & Neri, G. (2015). Synthesis, Characterization and Gas Sensing Properties of Ag@α-Fe2O3 Core–Shell Nanocomposites. Nanomaterials, 5(2), 737-749. https://doi.org/10.3390/nano5020737